Travelling Salesper son Problems

The Travelling Salesperson Problem (TSP) is probably the most widely
studied combinatorial optimisation problem and has attracted a large num-
ber of researchers over the last five decades. Research on the TSP has been a
driving force for the emergence of many important fields such as Stochastic
Local Search Algorithms and Polyhedral Theory, as well as for the develop-
ment of Complexity Theory. Apart from its practical importance, the TSP
has also become a standard test-bed for new algorithmic ideas.

In this chapter we first give a general overview of aspects for TSP solv-
ing and available benchmark problems and present next the most basic local
search algorithms for the TSP. Based on these algorithms, several SLS al-
gorithms have been designed which largely improved the ability of finding
high quality solutions for large instances. We give a detailed overview of
Iterated Local Search algorithms, which are currently among the most suc-
cessful algorithms for large TSPs, and present several approaches making
use of a population of solutions. While most of this chapter focuses on
symmetric TSPs, we also discuss aspects that arise for asymmetric TSPs.

8.1 TSP Applicationsand Benchmark | nstances
Given an edge-weighted, completely connected, directed graph G = (V, E, w),
where V' is the set of n = |V/| vertices, E the set of (directed) edges, and

w : E — R a function assigning each edge e € E a weight w(e), the
Travelling Salesperson Problem (TSP) is to find a Hamiltonian cycle in G,

299



300

i.e., a cyclic path that visits each vertex exactly once, that has minimal total
weight (a formal definition was given in Chapter 1, see page 13). Following
one of the most intuitive applications of the TSP, namely, finding optimal
round trips that visit a number of geographical locations, the vertices of a
TSP instance are often called “cities”, the paths in G are called “tours”, and
the edge weights are referred to as “distances”. In this chapter we focus
mainly on the symmetric TSP, i.e., the class of TSP instances in which for
each pair of edges (v, v2) and (v, v1) we have w((vy,v9)) = w((vg, v1)).
We will also highlight some of the issues that arise when dealing with the
asymmetric TSP (ATSP), where for at least one pairs of vertices the edges
(v1,v9) and (v, v1) have different weights.

TSP as a Central Problem in Combinatorial Optimisation

The TSP plays a prominent role in research as well as in a number of ap-
plication areas. The design of increasingly efficient TSP algorithms has
provided a constant intellectual challenge and many of the most impor-
tant techniques for solving combinatorial optimisation problems were de-
veloped using the TSP as an example application. This includes cutting
planes in integer programming [Dantzig et al., 1954], which later lead to
the modern, high performing Branch-and-Cut methods [Grétschel and Hol-
land, 1991; Padberg and Rinaldi, 1991], polyhedral approaches [Grotschel
and Padberg, 1985; Padberg and Grotschel, 1985], as well as early local
search algorithms [Croes, 1958; Flood, 1956; Lin, 1965; Lin and Kernighan,
1973]. Additionally, many of the general SLS methods presented in Chap-
ter 2, such as Simulated Annealing or Ant Colony Optimisation, were first
tested on the TSP. The TSP also played an important role in the devel-
opment of computational complexity theory [Garey and Johnson, 1979].
In fact, several books are entirely devoted to the TSP [Gutin and Pun-
nen, 2002; Lawler et al., 1985; Reinelt, 1994] and a huge number of re-
search articles was written on aspects related to TSP solving. (For details
on the history of TSP solving, we refer toa Schrijver’s overview paper on
the history of combinatorial optimisation [Schrjiver, 2002], the book chap-
ter by Hoffmann and Wolfe [Hoffman and Wolfe, 1985], and the web-page
www.math.princeton.edu/tsp/histmain.html.)

There are various reasons for this central role of the TSP in combina-
torial optimisation. First, it is a conceptually simple problem, which is



8.1. TSPAPPLICATIONS AND BENCHMARK INSTANCES 301

easily explained and understood, but as an NP-hard problem, it is diffi-
cult to solve [Garey and Johnson, 1979]. Second, the design and analysis
of algorithms for the TSP is not obscured by technicalities that arise from
dealing with side constraints which are often difficult to handle in practice.
Third, the TSP is now established as a standard testbed for new algorith-
mic ideas, which are often assessed based on their performance on the TSP.
Fourth, given the significant amount of interest in the research community,
new contributions to TSP solving or insights into the problem structure are
likely to have large impact. Fifth, the TSP is a problem that arises in a
variety of applications.

Benchmark Instances

Extensive computational experiments have always played an important role
in the history of TSP. These experiments involve several types of TSP in-
stances. In many cases these are predominantly metric TSP instances, i.e.,
instances in which the vertices correspond to points in a metric space and
the edge weights correspond to metric distances between pairs of points,
rounded to the nearest integer. Integer distances are used in almost all avail-
able TSP benchmark instances, regardless of whether they are metric or not.
Metric TSP instances for which the distances are computed by using the
standard Euclidean metric, are also called Euclidean.

A well known and widely used collection of TSP instances is available
through TSPLIB [Reinelt, 1991], a benchmark library for the TSP, which is
accessible at www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95.
TSPLIB comprises more than 100 instances with up to 85,900 cities. For
many TSPLIB instances optimal solutions have been determined; as of Oc-
tober 2002, the largest instance solved to optimality has 15, 112 cities (in-
stance d15112). Most of the TSPLIB instances stem from influential stud-
ies on the TSP; many of them originate from practical applications, such
as minimising drill paths in printed circuit board manufacturing, position-
ing of detectors in X-ray crystallography, or finding the shortest round-trip
through all the beer-gardens in Augsburg, Germany.! Many of the remain-
ing TSPLIB instances are of geographical nature, where the inter-vertex dis-

L Augsburg is close to one of the authors' (T.S.) home town; however, T.S. never man-
aged to do all beer-gardensin one night, although knowing the shortest tour.



302

A A

=
- "
3 %+
++ 4
Fong + +
%+
t&“ﬁ
e
.
i
M
. {
N
m +$§%*+
7
ot
i o s
s T
a4

Figure 8.1: Four (Euclidean) TSP benchmark instances. The two upper
instances stem from an application in which drill paths in manufacturing
printed circuit boards are to be minimised in length (left: TSPLIB instance
pcb1173 with 1173 vertices and right: f1 1577 with 1577 vertices, the
latter instance shows a pathological clustering of vertices). The bottom row
shows a Random Uniform Euclidean instance (left) and a Random Clustered
Euclidean instance (right).

tances are derived from the distances between cities and towns with given
coordinates. Two examples of TSPLIB instances are shown in the upper
part of Figure 8.1.

A set of TSP instances derived from problems in VLSI design, ranging
from 131 to 744,710 vertices, is available from the web-page on Solving
TSPs accessible at www.math.princeton.edu/tsp. From the same web-page
a TSP instance of potential interest for globetrotter is available, constructed
by Applegate, Bixby, Chvatal, and Cook. The World TSP instance com-
prises all 1,904, 711 populated cities or towns registered in the National



8.1. TSPAPPLICATIONS AND BENCHMARK INSTANCES 303

Imagery and Mapping Agency database and the Geographic Names In-
formation System; several additional TSP instances comprising the towns
and cities of individual countries are available from the same site. An
overview of further practical applications of the TSP can be found on the
web-page www.math.princeton.edu/tsp/apps/index.html or in the book by
Reinelt [Reinelt, 1994].

A large part of the experimental (and also theoretical) research on the
TSP has used randomly generated instances with the most widely used
classes being Random Euclidean instances (RE) and Random Distance Ma-
trix instances (RDM). In RE instances, the vertices correspond to randomly
placed points in a d-dimensional hypercube, and the edge weights are given
by the pairwise Euclidean distances between these points. (The Euclidean
distance between two points x = (z1,...,24) and y = (yi,...,yq) is de-

fined as d(z,y) = \/Zle(:cz- — y;)%.) Commonly, real valued weights are
scaled by a constant factor o and subsequently rounded or truncated to ob-
tain integer values; by choosing « sufficiently large, the resulting deviations
from true Euclidean distances are rendered insignificant.

Most experimental studies involving RE instances have focused on two
dimensional instances (i.e., d = 2), in which the points are uniformly dis-
tributed in a square; we refer to these as Random Uniform Euclidean in-
stances (RUE). An example for an RUE instance is shown in Figure 8.1
(bottom left). The class of RUE instances has the interesting property that,
as the instance size approaches infinity, the ratio of the optimal tour length
to /n (where n is the number of vertices) converges towards a constant
~ [Beardwood et al., 1959], whose value is now known to be approximately
0.721 [Johnson et al., 1996; Percus and Martin, 1996].

Another type of two dimensional RE instances, which have been used
in the 8th DIMACS Implementation Challenge on the TSP [Johnson et al.,
2002a], places the points in clusters within a square area. More precisely,
these Random Clustered Euclidean instances (RCE) are obtained by first
distributing the cluster centres uniformly at random; then, each actual point
is placed by choosing a cluster centre uniformly at random, and then adding
to each coordinate a displacement that is sampled from a normal distri-
bution. An example of an RCE instance is shown in Figure 8.1 (bottom
right). The RCE instances are interesting because it is known that various
local search algorithms are negatively affected by a clustering of the ver-



304

tices. (The same effect can be observed for non-random instances, such as
TSPLIB instance f | 1577 shown in Figure 8.1).

RDM instances are symmetric, non-Euclidean instances in which the
edge weights are randomly chosen integers from a given interval. This dis-
tribution of TSP instances is known to pose a considerable challenge for
many SLS algorithms [Johnson and McGeoch, 1997].

Lower Bounds on the Optimal Solution Quality

A large amount of research efforts on the TSP have been dedicated to find-
ing good lower bounds on the optimal solution quality for given instances.
Lower bounds are used in complete algorithms like Branch-and-Bound to
estimate the minimum cost incurred for completing partial solutions and to
prune search trees, if the cost estimation is larger than or equal an already
found solution. In this context it is important to have estimates that are
close to the real costs, because the better the estimates the larger parts of the
search tree can be pruned. When applying SLS algorithms, lower bounds
can be used to give a guarantee on the quality of some the solution they
return.

A general approach to obtain lower bounds is to solve a relaxation of
the original problem. Feasible solutions to the original problem are then a
subset of the solutions to the relaxed problem and an optimal solution to
the relaxed problem is therefore always a true lower bound for the solution
quality of the original problem. The main goal then becomes to find relax-
ations that result in problems that can quickly be solved but at the same time
yield optimal solution values close to the optimum for the original problem.

One of the simplest lower bounds on the optimal tour length of some
TSP instance can be obtained based on the following relaxation: By remov-
ing a single edge from an optimal tour s* with weight w(s*), a spanning tree
t of G with weight w(t) is obtained, where the weight of the spanning tree
is defined as the sum of the weights of the edges it contains. Obviously, a
minimum weight spanning tree ¢*, which can be computed in O(mlogn)
by using Kruskal’s or Prim’s algorithm [Cormen et al., 2001], where m is
the number of edges, has a total edge weight w(t*) < w(t), and hence w(¢*)
is a lower bound for w(s*) (notice that Prim’s algorithm can be speeded up
using Fibonacci heaps to run in O(m + nlogn)).

This relaxation can be made tighter as follows: Let G \ {v1} be the



8.1. TSPAPPLICATIONS AND BENCHMARK INSTANCES 305

graph that is obtained from G by deleting vertex v; and all the edges inci-
dent to v;. A one-tree is a spanning tree on the vertices v,, vs, ... v, plus
two edges incident to vertex v;. We get a minimum weight one-tree for
G by computing a minimum spanning tree of G \ {v1} and adding the
two least cost edges incident to v;. The weight of the resulting one-tree
is a lower bound for w(s*) since every minimum weight tour s* of G is
a one-tree. This lower bound could be improved by choosing several or
all vertices to play the role of v; and then taking the maximum weight of
the corresponding one-trees as a lower bound w(s*). However, this does
not result in significant gains and is quite time consuming [Reinelt, 1994;
Cook et al., 1997].

Luckily, there exist other techniques to improve upon the one-tree bound.
These are based on the following observation: We can assign a value p; to
each vertex »; and add these values to the weights of all edges incident to
a vertex v; € V, resulting in a graph G' = (V, E,w') with edge weights
w'((vi, v5)) = w((vi,v;)) + pi + p; (recall that the edges are not oriented).
This has the effect of increasing the weight of each tour in G by a constant
amountof 2- """ | p; in G’. Clearly, this transformation preserves the opti-
mality of tours. It may, however, result in different optimal one-trees [Held
and Karp, 1971; Cook et al., 1997]; by subtracting 2 - >~" | p; from a min-
imal weight one-tree of G, a lower bound on the mimimum weight tour in
(G can be obtained.

The quality of this lower bound depends on the values of the vertex
penalties pq,...,p, and it can be optimised by iteratively modifying the
penalties py, . .., p, [Held and Karp, 1971]. Roughly speaking, these meth-
ods iteratively increase the penalties for vertices with degree one in the cur-
rent optimal one-tree, and decrease the penalties for vertices with degree
greater than two; the search is terminated when a minimum weight one-tree
is obtained in which all vertices have degree two (this corresponds to a fea-
sible solution of ), or when a maximum number of iterations has passed.
In the literature, the bounds as described above are called Held-Karp lower
bounds [Reinelt, 1994].

Experimental results suggest that for many types of TSP instances, the
Held-Karp bounds are very tight. For RUE instances, the lower bound is
typically within less then one percent of the actual optimal solution qual-
ity [Johnson et al., 1996]. For TSPLIB instances, the gap between the
Held-Karp lower bound and the respective optimum solution quality is of-



306

ten slightly larger, but for almost all instances the lower bound is still within
two percent of the optimal solution quality.

State-of-the-Art Methods for TSP Solving

The TSP is probably the best example for the extremely high performance
of modern algorithmic techniques for A/P-hard optimisation problems. To
date, small to medium size symmetric TSP instances ranging from a few
hundred to around 1,000 to 3,000 vertices can be solved optimally within
a few CPU hours or less using state-of-the-art complete TSP algorithms,
particularly Branch-and-Cut methods.

Branch-and-Cut works by solving a series of linear programming re-
laxations of an integer programming problem [Mitchell, 2002]. Such a
relaxation is typically obtained by allowing 0-1 variables, which are typ-
ically used in integer programming formulations of the TSP [Nemhauser
and Wolsey, 1988], to take arbitrary values from the interval [0, 1] instead
of constraining them to integer values from the set {0,1}. Cutting plane
methods are used to make the relaxation more closely approximate the op-
timum solution value of the original integer programming problem. This is
done by finding linear inequalities that are satisfied by all integer feasible
solutions but not by the optimal solution of the current relaxation. These
inequalities are then added to obtain the next linear optimisation problem
which again is solved to optimality. This process is iterated until finding
*good” cuts becomes hard. Then, it may become preferable to branch by
splitting the current problem into two subproblems; this is done by forc-
ing one edge to be part of any solution in one subproblem and to not ap-
pear in any solution of the other subproblem [Grotschel and Holland, 1991;
Padberg and Rinaldi, 1991].

Based on the impressive performance of state-of-the-art complete TSP
algorithms for solving large symmetric instances optimally, most studies
on symmetric TSP algorithms now focus on solving large instances start-
ing with thousands of vertices. For example, in the context of the 8th DI-
MACS Implementation Challenge on the TSP [Johnson et al., 2002a], only
instances with 1,000 or more vertices were considered. However, complete
algorithms have their limitations. Firstly, the computation times become
quickly prohibitively large with increasing instance size. For example, the
largest TSPLIB instance that has been solved (provably) optimally at the



8.1. TSPAPPLICATIONS AND BENCHMARK INSTANCES 307

time of this writing (August, 2002) has 15,112 vertices; but this took a total
estimated computation time of 22.6 CPU years on a Compag EV6 Alpha
processor running at 500 MHz (this computation was actually performed on
a network of 110 workstations). Secondly, the computation times of com-
plete methods vary strongly depending on the particular instance: while
TSPLIB instance pr 2392 (with 2392 vertices) was solved within 116 CPU
seconds on a 500 MHz Compaq XP1000 workstation, solving the TSPLIB
instance d2103 (with 2103 vertices) took about 129 CPU days on a set of
400 and 500 MHz Alpha 21164 processors.

It may be noted, that the largest part of the computation time required
by complete algorithms is not required for finding an optimal solution for
a given instance, but rather for proving its optimality; general folklore sug-
gests that around 90% of the computation time are spent for the proof of op-
timality. Nevertheless, incomplete heuristic search algorithms are the meth-
ods of choice for solving very large or hard problem instances as well as for
finding high quality solutions very quickly.

Heuristic construction search algorithms are useful for obtaining reason-
ably good solutions very quickly. The best construction methods, such as
the Savings Heuristic or Farthest Insert, can solve symmetric TSP instances
with a few thousands vertices within about 11 to 16 percent of the Held-
Karp lower bounds (which, as explained above, are known to be close to
the optimal solution quality) in fractions of a CPU second on a state-of-the-
art processor [Johnson and McGeoch, 2002]. When allowing run-times of
a few CPU seconds, the same relative solution quality can be obtained for
instances with several hundred thousand vertices [Johnson and McGeoch,
2002].

Better quality solutions can typically be obtained by using hybrid SLS
algorithms at the cost of higher computation times. State-of-the-art SLS
algorithms for the TSP can find optimal solutions for symmetric instances
with around thousand cities within few CPU minutes on a modern worksta-
tion; significantly larger instances can be solved optimally within hours of
CPU time. For example, the best performing SLS algorithm identified in
a recent extensive experimental study found a solution of TSPLIB instance
d15112 whose quality is only 0.0186 percent away from the known op-
timum in about seven hours of CPU time [Johnson and McGeoch, 2002]
(this result was reported for the iterated version of Helsgaun’s LK heuris-
tic, which is presented in Section 8.3, on a Compaq ES40 machine with



308

500MHz Alpha processors); some SLS algorithms obtained solution qual-
ities for this instance within one percent of the optimum in less than seven
CPU seconds. The impressive performance of SLS algorithms when ap-
plied to very large TSP instances is exemplified by the results obtained for
a RUE instance comprising 25 million cities, for which after 8 CPU days
on a IBM RS6000, Model 43-P 260, a solution quality within 0.3 percent of
the estimated optimal solution quality was obtained using a high performing
iterated local search algorithm [Applegate et al., 1999b].

Asymmetric TSPs

Empirical results indicate that asymmetric TSP (ATSP) instances, in which a
given graph has at least one pair of vertices for which w((v,v")) # w((v', v)),
are typically harder to solve than symmetric TSP instances of comparable
size [Johnson et al., 2002b]. TSPLIB includes 27 ATSP instances rang-
ing from 17 to 443 vertices. A large number of additional instances was
recently generated for testing various heuristic search algorithms for the
ATSP [Cirasella et al., 2001; Johnson et al., 2002b]; these include several
classes of randomly generated ATSP instances that model real-world prob-
lems such as moving drills along a tilted surface, scheduling read operations
on computer disks, collecting coins from pay phones, or finding shortest
common super-strings for a set of genomic DNA sequences (a problem that
arises in genome reconstruction). There are also some individual instances
directly taken from practical applications of the ATSP, such as stacker crane
problems, vehicle routing [Fischetti et al., 1994], robot motion planning,
scheduling read operations on a tape drive, or code optimisation [Young et
al., 1997]. These instances and random instance generators are available
online at www.research.att.com/ dsj/chtsp/atsp.html.

Instead of applying a native ATSP algorithm, ATSP instances can be
solved by using a transformation into symmetric TSP in conjunction with a
symmetric TSP algorithm. One such transformation works as follows [Jonker
and Volgenant, 1983]. Given a directed graph G = (V, E, w), with vertex
set V.= {v,...,v,}, edge set E, and weight function w, we define an
undirected graph G' = (V', E', w") with V' = V U {v,41, Vs, - -, Unin b
E'=V'x V' and w' is defined as

W' (Viy Vnj)) == W ((Vptjy v3)) 1= w(vi, ;) for i,je{l,...,n} andi # j



82 'SIMPLE SLSALGORITHMS FOR THE TSP 309

W ((Vngis v3)) = W' (Vi Vpys)) = —M for ie{l,...,n}
w'(v;,vj) := M  otherwise ,

where M is a sufficiently large number, e.g., M = > {w(v,v') | v,v" € V}.

Although symmetric TSP instances obtained from this transformation
have twice as many vertices as the respective original ATSP instances, solv-
ing these using algorithms for symmetric TSP is often more effective than
solving the original ATSP instances using native ATSP algorithms [Johnson
et al., 2002b]. Furthermore, empirical results indicate that the Held-Karp
(HK) lower bounds on the optimal solution quality for the symmetric TSP
instances obtained from this transformation are often tighter than the widely
used Assignment Problem (AP) lower bounds for the respective ATSP in-
stances [Johnson et al., 2002b]. Recent empirical results indicate that ATSP
instances with a relatively large gap between the AP and the HK bound, are
most efficiently solved by transforming them into symmetric TSP instances
and solving these using state-of-the-art symmetric TSP algorithms, such as
Helsgaun’s Lin-Kernighan variant [Helsgaun, 2000]. However, ATSP algo-
rithms that are guided by information from the AP bound, such as Zhang’s
heuristic [Zhang, 1993], tend to show better performance for ATSP in-
stances for which both bounds are relatively close to each other [Johnson
et al., 2002b]. (Zhang’s heuristic is a truncated Branch-and-Bound algo-
rithm which uses the AP lower bound.)

8.2 ’'Simple’ SLSAlgorithmsfor the TSP

Much of the early research on incomplete algorithms for the TSP focused on
construction heuristics and iterative improvement algorithms. These tech-
niques are important, because they are at the core of many applications of
advanced SLS techniques to the TSP. In this section we give an overview of
the most important variants of conceptually simple local search algorithms.

Nearest Neighbour and Insertion Construction Heuristics

There is a large number of constructive search algorithms for the TSP, rang-
ing from extremely fast methods for geometric TSP instances, whose run-
time is only slightly larger than the time required for just reading the in-



310

stance data from hard-disk, to more sophisticated algorithms with non-trivial
bounds on the on the solution quality achieved in the worst case. In the con-
text of SLS algorithms, construction heuristics are often used for initialising
the search; iterative improvement algorithms for the TSP typically require
fewer steps for reaching a local optimum when started from higher quality
tours obtained from a good construction heuristic.

One particularly intuitive and well-known construction heuristic was al-
ready discussed in Section 1.4: The Nearest Neighbour Heuristic (NN) starts
tour construction from some randomly chosen vertex v, in the given graph
and then iteratively extends the current partial tour p = (v1,...,vx) With
the unvisited vertex vy, that is connected to v, by a minimal weight edge
(vk41 is called the nearest neighbour of v;); when all vertices are visited,
a complete tour is obtained by extending p with the initial vertex, v;. The
tours constructed by NN are called nearest neighbour tours.

For TSP instances satisfying the triangle inequality, in the worst case the
solution quality achieved by NN can be up to a factor 1/3([log, n| + 4/3)
worse then the optimum solution quality [Rosenkrantz et al., 1977], and
hence, worst case performance of NN cannot be bounded by any constant.
In practice, however, NN typically yields tours that are only 20%-35%
worse than an optimal tour for metric or TSPLIB instances in terms of so-
lution quality, and are locally similar to optimal solutions, except for some
very expensive edges that have to be included towards the end of the con-
struction process in order to complete the tour (see Figure 8.2 for examples).
This effect is avoided to some extent by a variant of NN that penalises in-
sertions of such expensive edges [Reinelt, 1994]; compared to standard NN,
this variant requires only slightly more computation time, but applied to
TSPLIB instances, results in tours that are around 5% better.

Insertion heuristics grow tours in a different way from NN; they extend
partial tours by iteratively choosing, according to some heuristic rule, a next
vertex that is to be inserted into the current partial tour p, typically at a
position where it leads to a minimial increase in cost. Several variants of
these heuristics exist, including

(i) nearest insertion construction heuristics, where the next vertex to be
inserted is a vertex v; with minimum distance to any vertex v; in p;

(if) cheapest insertion, which inserts a vertex that leads to the minimum
increase of the weight of p for all vertices not yet in p;



82 'SIMPLE SLSALGORITHMS FOR THE TSP 311

Figure 8.2: Two examples of nearest neighbour tours for TSPLIB instances
pcb1173 with 1173 vertices (left side) and f 1 1577 with 1577 vertices
(right side). Note the long (i.e., expensive) edges contained in both tours.

(iii) farthest insertion, where the next vertex to be inserted is a vertex v;
for which the minimal distance to vertex in p is maximal.

(iv) random insertion, where the next vertex to be inserted is chosen ran-
domly.

For TSP instances that satisfy the triangle inequality, the tours con-
structed by nearest and cheapest insertion are provably at most twice as
expensive as an optimal tour [Rosenkrantz et al., 1977]; for random and
farthest insertion, the solution quality are only guaranteed to be within a
factor O(logn) of the optimum [Johnson and McGeoch, 2002]. In prac-
tice, however, the farthest and random insertion heuristics perform much
better than nearest and cheapest insertion [Johnson and McGeoch, 2002;
Reinelt, 1994], averaging between 13 to 15% above the optimum tours for
TSPLIB or RUE instances.

The Greedy, Quick-Bortvka, and Savings Heuristics

The construction heuristics discussed so far build a complete tour by itera-
tively extending a connected partial tour. An alternate approach is to itera-
tively build several partial tours that are ultimately patched together into a
complete tour. One example for a construction heuristic of this type is the



312

Greedy Heuristic, which works as follows. First all edges in the given graph
G are sorted according to increasing weight. Then, this list is scanned, start-
ing from the minimal weight edge, in linear order. An edge is added to the
current partial candidate solution p in such a way that at no point in time
the subgraph G’ of G formed by the edges in p has any vertices of degree
greater than two, or any cycles of length less than n edges.

There exist several variants of the Greedy Heuristic that use different
criteria for choosing the edge to be added in each construction step. One of
these is the Quick-Borlivka Heuristic by Applegate et al., which is inspired
by the minimum spanning tree (MST) algorithm due to Borlivka [Bortivka,
1926; Applegate et al., 1999a]. First, the vertices in G are sorted arbitrarily
(e.g., for geometric TSP instances, the vertices can be sorted according to
the first coordinate). Then, the vertices are processed in the given order.
For each vertex v; that has degree less than two, the minimum weight edge
incident to v;, which does not create a cycle of length less than n and which
does not make any vertex have a degree larger than two, is added. Hence, at
most two scans of the vertices have to be made to generate a tour.

Another construction heuristic that is based on building multiple partial
tours, is the Savings Heuristic, which was initially proposed for the vehicle
routing problem [Clarke and Wright, 1964]. It works by first choosing a
base vertex v, and n — 1 cyclic paths (v, v;, v) that consist of two vertices
each. As long as more than one cyclic path is left, at each construction step
two cyclic paths p; and p, are combined by removing one edge incident to
vy In both, p; and p,, and by connecting the two resulting paths into a new
cyclic path py, The edges to be removed in this operation are selected such
that a maximal reduction in cost of p;, compared to the total combined cost
of p, and p, is achieved.

Regarding worst case performance, it can be shown that greedy tours are
at most (1 + logn)/2 times as expensive as an optimal solution, while the
cost of a savings tour is at most a factor (1+log n) above the optimum [Ong
and Moore, 1984]; no worst case bounds on solution quality are known for
Quick-Borlivka tours. Empirically, the Savings Heuristic produces better
tours than both Greedy and Quick-Borlivka; for example, for large RUE
instances, the cost of savings tours is on average around 12% above the
Held-Karp lower bounds, while Greedy and Quick-Boriivka find solutions
around 14% and 16% above these lower bounds, respectively [Johnson and
McGeoch, 2002]. Computation times are modest, though, ranging for 1



82 'SIMPLE SLSALGORITHMS FOR THE TSP 313

million vertex RUE instances between 22 (for Quick-Borlivka) to around
100 seconds (for Greedy and Savings).

Construction Heuristics based on Minimal Spanning Trees

Yet another class of construction heuristics builds tours based on minimal-
weight spanning trees (MSTSs). In the simplest case, such an algorithm con-
sists of the following four steps: Firstly, an MST ¢ for the given graph G
is computed; secondly, by doubling each edge in ¢, a new graph G’ is ob-
tained. In the third step, an Eulerian tour p of G, i.e., a cyclic path that uses
each edge in G’ exactly once, is generated; an Eulerian tour can be found
in O(e), where ¢ is the number of egdes in the graph [Cormen et al., 2001].
Finally, p is converted into a Hamiltonian cycle in G by iteratively short-
cutting subpaths of p (see Chapter 6 in [Reinelt, 1994] for an algorithm for
this step). This last step, however, does not increase the weight of a tour, if
an instance satisfies the triangle inequality; hence, in this case, the final tour
is at most twice as expensive as an optimal solution. However, empirically
this construction heuristic performs rather poorly, with solution qualities
that are on average around 40% above the optimal tours for TSPLIB and
RUE instances [Reinelt, 1994; Johnson and McGeoch, 2002].

Much better performance is obtained by the Christofides Heuristic. The
central idea behind this heuristic is to compute a minimum weight perfect
matching of the odd degree vertices of the MST (there must be an even
number of such vertices), which can be done in time O(k?), where £ is the
number of odd degree vertices. (A minimum perfect matching of a vertex
set is a set of edges such that each vertex is incident to exactly one of these
edges; the weight of the matching is the sum of the weights of its edges).
This is sufficient for converting the MST into an Eulerian graph, i.e., a graph
containing an Eulerian tour. As described above, in a final step this Eulerian
tour is converted into a Hamiltonian cycle. Interestingly, for TSP instances
that satisfy the triangle inequality, the resulting tours are guaranteed to be at
most a factor 1.5 above the optimum solution quality.

While the standard version of the Christofides Heuristic appears to per-
form worse than both Savings and Greedy [Reinelt, 1994; Johnson and Mc-
Geoch, 2002], its performance can be substantially improved by addition-
ally using greedy heuristics in the conversion of the Eulerian tour into a
Hamiltonian cycle. This variant of the Christofides Heuristic appears to be



314

the best performing construction heuristic for the TSP in terms of the so-
lution qualities achieved; however, its run-times are higher by a factor 1.3
to 4 (depending on the implementation details) than those of Savings or
Greedy [Johnson and McGeoch, 2002].

K-Exchange Iterative Improvement Methods

Most iterative improvement algorithms for the TSP are based on the k-
exchange neighbourhood, in which candidate solutions s and s’ are direct
neighbours if s’ can be obtained from s by deleting a set of £ edges and
rewiring the resulting fragments into a complete tour by inserting a differ-
ent set of k£ edges. For iterative improvement algorithms for the TSP that
use a fixed k-exchange neighbourhood, £ = 2 and £ = 3 are the most
common choices; the respective TSP algorithms are known as 2- opt and
3- opt . Current knowledge suggests that the slight improvement in solu-
tion quality obtained by increasing & to four and beyond is not amortised by
the substantial increase in computation time [Lin, 1965].

The most straightforward implementation of a £-exchange iterative im-
provement algorithm, considers in each step all possible combinations for
the %k edges to be deleted and replaced. After deleting £ edges from a
given candidate solution s, the number of different ways of reconnecting
the resulting fragments into a candidate solution different from s depends
on k; for k = 2, after deleting two edges (v;, v;) and (v, v;), the only way
to rewire the two partial tours into a complete tour is by introducing the
edges (v;, v) and (v, v;) (a 2-exchange move is illustrated in Figure 1.4 on
page 35.) Note that after a 2-exchange move, one of the two partial tours is
reversed.

For k£ = 3, there are several ways of reconnecting the three tour frag-
ment obtained after deleting three edges, and in an iterative improvement
algorithm based on this neighbourhood, all of these need to be checked for
possible improvements. Figure 8.3 shows two of the four ways of complet-
ing a 3-exchange move after removing a given set of three edges. Further-
more, 2-exchange moves can be seen as special cases of 3-exchange moves
in which the set of removed and added edges have one edge in common. Al-
lowing overlap between these two sets has the advantage that any tour that
is locally optimal w.r.t. a k-exchange neighbourhood is also locally optimal
w.r.t. to all £’-exchange neighbourhoods with &' < k.



82 'SIMPLE SLSALGORITHMS FOR THE TSP 315

\/5/—\ vy
V%
V% Va % v,
v, % Y, v
i % L)

Figure 8.3: Two possible ways of reconnecting partial tours in a 3-exchange
move after edges (v, vs), (v3,v4), and (vs, vs) have been removed from a
complete tour. Note that in the left result, the direction of all three tour
fragments is preserved.

Based on the 2-exchange and 3-exchange neighbourhoods, various iter-
ative improvement algorithms for the TSP can be defined in a straightfor-
ward way; these are generally known as 2- opt and 3- opt algorithms,
since they produce tours that are locally optimal w.r.t. the 2-exchange and
3-exchange neighbourhoods, respectively. In particular, different pivoting
rules can be used (these determine the exact mechanism used for selecting
an improving neighbouring candidate solution; see also Chapter ??, Sec-
tion 2.1). In general, first-improvement algorithms for the TSP can be im-
plemented in such a way that the time complexity of each search step is
substantially lower than for best-improvement algorithms. But even first-
improvement 2- opt and 3- opt algorithms need to examine up to O(n?)
and O(n?) neighbouring candidate solutions in each step, which leads to a
significant amount of CPU time per search step when applied to TSP in-
stances with several hundreds or thousands of vertices. Fortunately, there
exist a number of speed-up techniques for the TSP that allow to signifi-
cantly improve the time-complexity of local search steps [Bentley, 1992;
Johnson and McGeoch, 1997; Martin et al., 1991; Reinelt, 1994]. By using



316

these techniques, which will be described in detail in the following, 2-
opt and 3- opt implementations can find local optima for instances with
several hundreds or thousands of vertices within fractions of a second on
current PCs.

Fixed Radius Search

For any improving 2-exchange move from a tour s to a neighbouring tour
', there is at least one vertex that is incident to an edge ¢ in s that is re-
placed by a different edge ¢’ with lower weight than e. This observation
can be exploited for speeding up the search for an improving 2-exchange
move from a given tour s. For a vertex v;, we consider both of its tour
neighbours as v;. Then, we search around v; for vertices v, that are closer
than w(v;, v;), the radius of the near neighbour search, to v;. This fixed
radius near neighbour search for vertex v; can be performed efficiently by
using appropriately defined candidate lists, which will be discussed in more
detail in the next section. For each vertex v, found in this search, removing
one of its two incident edges in s leads to a feasible 2-exchange move. The
first such 2-exchange move that leads to an improvement in solution quality
is applied to s and the iterative improvement search is continued from the
resulting tour s’ by performing a fixed radius near neighbour search for an-
other vertex. If fixed radius near neighbour searches for all vertices do not
result in any improving 2-exchange move, the current tour is 2- opt .

The idea of fixed radius search can be extended to 3- opt algorithms [Bent-
ley, 1992]. In this case, for each search step, two fixed radius near neigh-
bour searches are required, one for a vertex v; as in the case of 2- opt (see
above), resulting in a vertex vy, and the other for the tour neighbour v; of v,
with radius w(v;, vj) + w(vk, v;) — w(v;, vg).

Candidate Lists

In the context of identifying candidates for k-exchange moves, it is useful
to be able to efficiently access the vertices in the given graph G that are
connected to a given vertex v; by edges with low weight, e.g., in the form
of a list of neighbouring vertices v;, that is sorted according to edge weight
w((v;, vx)) in ascending order. By using such candidate lists for all vertices
in G, typical fixed radius near neighbour searches can be performed very



82 'SIMPLE SLSALGORITHMS FOR THE TSP 317

efficiently; this is exemplified by the empirical results reported in Exam-
ple 8.1 on page 319. Interestingly, the use of candidate lists within iterative
first-improvement algorithms, such as 2- opt , often leads to improvements
in the quality of the local optima found by these algorithms. This suggests
that the highly localised local search steps that are evaluated first when using
candidate lists are more effective than other k-exchange moves.

Full candidate lists comprising all n — 1 other vertices require O(n?)
memory and take O(n? log n) time to construct. Therefore, especially to re-
duce the memory requirements, it is often preferable to use bounded-length
candidate lists. When using bounded-length candidate lists, a fixed radius
near neighbour search for a given vertex v; is aborted when the candidate
list for v; has been completely examined, if the radius criterion did not stop
the search earlier. As a consequence, the tour obtained by an iterative im-
provement algorithm based on this mechanism is no longer guaranteed to
be locally optimal, because some improving moves may be missed.

Typically, candidate lists of lengths between 10 and 40 are used, al-
though lower or lower bounds are sometimes applied. Simply using that
short candidate lists comprising the vertices connected by the £ lowest weight
edges incident to a given vertex can be problematic, especially for clustered
instances, like those shown on the right side of Figure 8.1 on page 302. For
geometric TSP instances, an alternative approach to constructing bounded-
length candidate lists include so-called quadrant-nearest neighbour lists [Miller
and Pekny, 1991; Johnson and McGeoch, 1997] and candidate lists based on
Delaunay triangulations [Reinelt, 1994].

Helsgaun proposed a more complex mechanism for constructing candi-
date lists that is based on an approximation on the Held-Karp lower bounds
(see Section 8.1) [Helsgaun, 2000]. This mechanism works as follows:
Based on the modified edge weights w’((v;, v;)) obtained from the approx-
imation of the Held-Karp lower bounds, so-called «-values are computed
for each edge (v;, v;) as a((v;, v;)) == w'(t* (v;, vj)) — w'(t), where w(t) is
the weight of a minimal weight one-tree ¢ and w’(¢* (v;, v;)) is the weight of
a minimal weight one-tree ¢* (v;, v;) that is forced to contain edge (v;, v;).
For each edge a(v;,v;) > 0, and a(v;,v;) = 0 if the edge (v;, v;) is con-
tained in some minimal weight one-tree. A candidate list for a vertex v; can
now be obtained by sorting the edges incident to v; according to their a-
values in ascending order and bounding the length of the list to a fixed value
k or by accepting only edges with a-values that are below some given upper



318

bound. The vertices contained in these candidate lists are called «-nearest
neighbours.

Empirically it has been shown that compared to the candidate lists ob-
tained by the other methods mentioned above, candidate lists based on a-
values can be much smaller and still cover all edges contained in an optimal
solution. For example, for TSPLIB instance at t 532, candidate lists con-
sisting of 5 a-nearest neighbours cover an optimal solution, while list length
22 is required when using standard candidate lists based on the given edge
weights [Helsgaun, 2000].

Don’t Look Bits

Another widely used mechanism for speeding up iterative improvement
search for TSP is based on the following observation. If in a given search
step, no improving k-exchange move can be found for a given vertex v;
(e.g., in a fixed radius near neighbour search), it is unlikely that an improv-
ing move involving v; will be found in future search steps, unless at least
one of the edges incident to v; in the current tour has changed.

This can be exploited for speeding up the search process by associating
a single Don’t Look Bit (DLB) with each vertex; at the start of the iterative
improvement search, all DLBs are turned off, i.e., set to zero. If in a search
step no improving move can be found for a given vertex, the respective DLB
is turned on, i.e., set to one. After each local search step, the DLBs of all
vertices incident to edges that were modified (i.e., deleted from or added to
the current tour) in this step are turned off again. The search for improving
moves is generally restricted to only those vertices whose DLB is turned
off. In practice, the DLB mechanism significantly reduces the time com-
plexity of first—-improvement search, since after a few neighbourhood scans,
most of the DLBs will be turned on. The obtainable speed improvment is
illustrated by the empirical results for various variants of 2- opt shown in
Example 8.1.

The DLB mechanism can easily be integrated with more complex SLS
algorithms such as Iterated Local Search or Genetic Local Search: One pos-
sibility is to set only the DLBs of those vertices to zero which are deleted by
the application of a tour perturbation or a recombination operator; this ap-
proach is followed in various algorithms described in Sections 8.3 and 8.4
and typically leads to a further substantial reduction of computation time



82 'SIMPLE SLSALGORITHMS FOR THE TSP 319

2- opt -std 2- opt -fr+cl | 2- opt -fr+cl+dlb | 3- opt -fr+cl+dlb
instance Aavg tavg | Davg  tavy | Davg tavg | Davg t
kr oA100 8.9 16 6.4 05 6.6 0.4 2.4 4.3
d198 5.7 6.4 42 12 4.3 0.8 14 30.1
lin318 10.6 22.1 7.5 21 7.9 15 34 65.5
pch442 12.7 55.7 71 29 7.6 2.2 3.8 63.4
rat 783 13.0 239.7 75 75 8.0 5.8 4.2 213.8
pr 1002 128 4195 84 132 9.2 9.7 4.6 357.6
pcb1173 | 145 603.1 85 167 9.3 12.4 5.2 372.3
d1291 16.8 770.3 10.1 169 111 12.4 55 377.6
fl 1577 136 12511 79 258 9.0 19.2 4.0 506.8
pr2392 15.0 2962.8 88 655 | 101 49.1 53 878.1

Table 8.1: Computational results for different variants of 2- opt and 3- opt .
Aavg denotes the average percentage deviation from the optimum solution quality
over 1000 runs per instance, and ¢, isthe average run-time for 1000 local searches
in CPU milliseconds on a Pentium 111 500 MHz CPU. (For further details, seetext.)

when compared to re-setting all DLBs to zero. Furthermore, DLBs can be
used to speed up first-improvement local search algorithms for combinato-
rial problems other than TSP.

Example 8.1: Effects of Speed-Up Techniques for 2-opt

To illustrate the effectivenes of the speed-up techniques, we empirically
evaluated three variants of 2- opt : a straight-forward implementation that
in each search steps evaluates every possible 2-exchange move (std); a fixed
radius near neighbour search that uses candidate lists of unbounded length
(fr+cl); and a fixed radius near neighbour search that uses candidate lists of
unbounded length as well as DLBs (fr+cl+dlb). For all variants, the search
process was initialised at a random permutation of the vertices and it was
terminated when no improving search step could be found within a given
iteration.

These algorithms were run 1000 times on each of a number of standard
benchmark instances from TSPLIB; the machine used is a Pentium 111 500MHz
with 128 MB RAM running Suse Linux 7.3. (The 2- opt implementation
used for these experiments is available from the SLS webpage.)



320

The results reported in Table 8.1 show that the speed-up techniques achieve
substantial decreases in run-time; furthermore, the speed-up strongly in-
creases with instance size. As noted before, candidate lists also result in
a significant improvement in the solution quality obtained by 2- opt ; the
additional use of DLBs diminishes this effect only slightly.

Using bounded length candidate lists resulted in very similar results for most
instances (not shown here); only on the pathologically clustered instance
f 1 1577 the solution quality decreased to an average of almost 60% above
the optimum, while the computation was reduced by about 10%.

3- opt achieves much better quality solutions than the 2- opt variants at
the cost of substantially higher computations times; this is illustrated by the
results shown for 3- opt with a fixed radius search using candidate lists and
DLBs in the last column of Table 8.1. Interestingly, using bounded-length
candidate lists leads to significant speedups for 3- opt : Using candidate
lists of length 40, the computation time of our 3- opt implementation is
reduced by a factor between five to seven, depending on the particular in-
stance.

The Lin-Kernighan (LK) Algorithm

Empirical evidence suggests that iterative improvement algorithms based on
k-exchange neighbourhoods with £ > 3 return better tours, but the compu-
tation times required for searching these large neighbourhoods render this
approach ineffective. Variable-depth search algorithms overcome this prob-
lem by partially exploring larger neighbourhoods (see also Chapter 2).

The best-known variable-depth search method for the TSP is the Lin-
Kernighan algorithm (LK) described in Chapter 2, Section 2.1 (page ??ff.); it
is an iterative improvement method that uses complex search steps obtained
by iteratively concatenating a variable number of elementary 1-exchange
moves. In each complex step, a set of edges X = {z;,...,x,} is deleted
from the current tour, and another set of edges Y = {y1, ..., y,} is added to
it. The number of edges that are exchanged, r, is determined dynamically
and can vary for each complex search step. (This is explained in more detail
below.)



82 'SIMPLE SLSALGORITHMS FOR THE TSP 321

The two sets X and Y are constructed iteratively, element by element,
such that edges z; and y; as well as y; and x;,; must share an endpoint,
respectively; a complex step that satisfies this criterion is called sequen-
tial. Based on this criterion, the edges in X and Y can be represented
as x; = (vo;_1,v9) and y; = (ve;,ve;41), respectively. Furthermore, at
any point during the iterative construction of a complex step, i.e., for any
X = {z,...,5} and Y = {yi,...,y}, there needs to be an alternate
edge y; such that the complex step defined by X = {z,...,z;} and Y’ =
{v1,...,y}} applied to the current tour yields a valid tour, (i.e., a Hamilto-
nian cycle in the given graph G); there is only one exception to this rule for
the case ¢ = 2, which is treated in a special way [Lin and Kernighan, 1973].

To bound the length of the search for an improving complex step, the sets
X and Y are required to be disjoint in the original Lin-Kernighan algorithm;
this means that an edge that has been selected for removal cannot be added
back later in the same complex search step and vice versa. Finally, complex
steps are only executed if they result in a net improvement of the current
tour.

The LK algorithm initialises the search process at a randomly chosen
Hamiltonian cycle (i.e., vertex permutation) of the given graph G. The
search for each improving (complex) LK step starts with selecting a ver-
tex vy; next, an edge x; = (vy,vq) is selected for removal, then an edge
y1 = (vq, v3) is chosen to be added, etc. At each stage of this construction
process, the cost w(p;) of the tour p; obtained by applying the constructive
search step defined by X = {z1,...,z;}and Y’ = {y1,...,y!} (as defined
above) is computed as well as g; = 37, w(y;) — w(z;), the total gain for
X ={z,...,z;}andY = {1, ..., y;}. The construction process is termi-
nated whenever the total gain g, is smaller than w(p) — w(p;-), where p is
the current tour and p;- is the best tour encountered during the construction,
i.e., i* = argmin{i | w(p;)}. Atthis point, if the complex step correspond-
ingto X = {zy,...,z;x}and Y’ = {y1,...,y..} leads to an improvement
in solution quality, this step is executed and p;- becomes the current tour.

A limited amount of backtracking is allowed if a sequence of elementary
moves does not yield an improved tour. In the LK, backtracking is triggered,
when during the construction of an LK step no improving complex search
step could be found and it is only applied at the first two levels, i.e., for
the choices of x4, 31, x2, and y,. During backtracking alternatives for edge
yo are considered in order of increasing (or equal) weight w(y,). If this is



322

unsuccessful, the alternate choice for x5 is considered; since this leads to
a temporary violation of the sequentiality criterion (see above), it needs to
be handled in a specific way. If none of these alternatives for x5 and 5
can be extended into an improving complex step, backtracking is applied to
the choice of ;. When all alternatives for y; are exhausted without finding
an improving complex step, the other edge incident to the starting vertex
vy 1S considered as a choice for ;. Only after all these attempts at finding
an improving step by a search centred at vertex v, have failed, an alternate
choice for v, is considered. This backtracking mechanism ensures that all
2- and 3-exchange moves are checked when searching for improving search
steps; consequently, the tours obtained by LK (when run to completion) are
locally optimal w.r.t. to the 2- and 3-exchange neighbourhoods.

In addition to the complex LK steps, Lin and Kernighan also proposed
to consider some specially structured, non-sequential 4-exchange moves as
candidates for improving search steps. (An example of a non-sequential 4-
exchange move is the double-bridge move which is illustrated in Figure 2.7
on page 79.) However, Lin and Kernighan noted that the improvement ob-
tained by the additional check of these moves depends strongly on the par-
ticular instance.

The LK algorithm uses several techniques for pruning the search. Firstly,
the search for edges (v, v') to be added to Y is limited to the five cheapest
edges incident to vertex v. Secondly, for £ > 4 no edge in the current tour
can be removed if it was contained in a collection previously found high
quality tours. Furthermore, several mechanisms are provided for guiding
the search. These include a rule that the edges to be added to Y are chosen
such that w(z;41) —w(y;) is maximised (a limited form of lookahead) and a
preference for the more expensive of two alternative edges in the context of
choosing edge x4, one of the edges that is removed from the current tour.

Lin and Kernighan applied LK to various TSP instances ranging from
20 to 110 vertices. For all of these instances, LK found optimal solutions;
however, the success probability, i.e., the probability that one run of LK
finds an optimal solution, dropped from 1 for small instances with approx.
20 cities to 0.2-0.3 for instances with around 100 cities.



82 'SIMPLE SLSALGORITHMS FOR THE TSP 323

Variants of the LK Algorithm

The details of the original LK algorithm can be varied in many ways, and
the design choices made by Lin and Kernighan do not necessarily lead to
optimal performance. These design choices include the depth and the width
of backtracking, the rules used for guiding the search (look-ahead etc.), the
use of a bound on the length of complex LK steps, and the choice of 2-
exchange moves as elementary search steps. Additional room for variation
exists w.r.t. algorithmic details that are not specific to LK, such as the type
and length of neighbourhood list, or the search intialisation procedure.

Some of these design choices are realised in the four well-known LK
variants by Johnson and McGeoch [Johnson and McGeoch, 1997; 2002],
Applegate et al. [Applegate et al., 1999a], Neto [Neto, 1999], and Hels-
gaun [Helsgaun, 2000]. For a detailed discussion of these LK algorithms
and their performance we refer to the original papers.

A particularly noteworthy LK variant is Helsgaun’s LK (HLK), which
differs from the original LK algorithm in several key features and typically
performs substantially better. In HLK, the complex moves correspond to
sequences of sequential 5-exchange moves; these are iteratively built using
candidate lists based on «-values (see page 317). If at any point during
the construction of a complex step a tour improvement can be achieved, the
corresponding search step is executed immediately. In some sense this cor-
responds to a first-improvement search mechanism within the construction
sequence for a single complex search step, while the original LK algorithm
uses a best-improvement strategy in this context. Finally, HLK uses only
backtracking on the choice of the first edge, =, to be removed from the
current tour.

The performance of LK algorithms varies substantially between different
variants and depends strongly on the efficiency of the respective implemen-
tation. The LK algorithm by Johnson and McGeoch (JM-LK) is an example
of a very efficient implementation of an LK variant that differs only in few
(high-level) details from the original algorithm by Lin and Kernighan. On
RUE, RCE and TSPLIB instances, JM-LK typically obtains tours within
1% to 2.5% from the optimum (see [Johnson and McGeoch, 1997; 2002]
and [Johnson et al., 2002a]) in relatively short computation times; for ex-
ample, on 100,000 vertex RUE instances JM-LK takes about 23 seconds on
a Compac ES40 machine with a 500 MHz Alpha processor and 2GB RAM,



324

however, the computation times increase for the same size RCE instances to
about 173 seconds, which is due to the appearance of clusters in that latter
type of instances. HLK finds even higher-quality tours: For RUE instances
of 1,000 and 3,162 vertices it was shown to find tours within 0.03% to 0.5%
from the optimum, and on TSPLIB instances with n > 1,000 it reaches so-
lution qualities within less than 1% of the optimum, except for three highly
clustered instances [Johnson et al., 2002a]. However, this comes at the price
of substantially higher run-times than, for example JM-LK, especially for
large instances.

In Depth: Efficiently Implementing SLS Algorithms for TSP

In order to obtain the performance results reported in most empirical studies on
SLS algorithms for the TSP, efficient implementations are required that make use
of fairly sophisticated data structures. This is particularly true for state-of-the-art
LK variants. In general, data structures used within SLS algorithms for the TSP
need to support the following operations:

(i) determine the successor and the predecessor of a vertex within a given tour;

(if) check whether a vertex vy, is visited between vertices v; and v; for a given
tour orientation; and

(iii) execute a k-exchange move, which includes swaps and inversions of tour
segments.

For TSP instances between 1,000 and about 10,000 vertices, the standard ar-
ray representation for tours appears to be most efficient [Applegate et al., 1999a;
M.L. Fredman and Ostheimer, 1995]. It uses two arrays for representing a cyclic
path (vr(1),---;Vr(n); Vx(1)) in the given graph G to represent the permutation of
vertex indices 7 = (v (1),...,m(n)) and its inverse, p = (p(i), ..., p(n)), where p(n)
is the position of vertex index i in 7. Clearly, the predecessor, successor, and be-
tween queries can be answered in constant time. The time-complexity of the move
operation, however, has been empirically determined as O(n%7) (where n is the
number of vertices in the given graph G); this operation is therefore a bottleneck
for large instances, and more advanced data structures are required to reduce its
time complexity.

One widely used alternative to the array representation is based on two-level
trees [Chrobak et al., 1990; M.L. Fredman and Ostheimer, 1995]. In this represen-
tation, a tour is divided into roughly /n segments of length between /n/2 and
24/n each; these segments are represented by vertices at the first level of a tree
whose root corresponds to the entire tour, while the leaves are the vertices of G.
(For details on the implementation of this data structures we refer to [M.L. Fredman
and Ostheimer, 1995; Applegate et al., 1999a].) When using two-level trees, the



82 'SIMPLE SLSALGORITHMS FOR THE TSP 325

successor and predecessor of a vertex can be determined in constant time and
the same holds for answering between queries; the respective constants, however,
are slightly larger than for the array representation. The worst-case complexity of
the move operation, on the other hand, is only O(y/n). Based on extensive com-
putational experiments, Fredman et al. [M.L. Fredman and Ostheimer, 1995] rec-
ommend the use of the two-level tree representation when solving TSP instances
with up to a few million vertices. For even larger instances, they recommend to use
a tour representation based on splay-trees [Sleator and Tarjan, 1985], which allow
each operation to be performed in O(logn) in the worst case.
It should be noted that LK algorithms are not easy to implement efficiently. Neto
estimated that the development of a high performing LK implementation that uses
most of the techniques described here requires around eight man-months [Neto,
1999]; this estimate has been confirmed by other researchers [Merz, 2002]. For-
tunately, at least three very efficient implementations of LK variants are publically
available. These are the LK implementation by Applegate, Bixby, Chvatal, and
Cook, which is a part of the Concorde library accessible at http://www.math.princeton.edu/tsp/concorde.html,
Helsgaun's LK variant, which can be downloaded from http://www.dat.ruc.dk/keld/research/LKH,
and Neto’s LK implementation, which is accessible at http://www.cs.toronto.edu/ neto/research/lk/index.html.

Local Search for the asymmetric TSP

ATSP algorithms are generally much less studied than algorithms for sym-
metric TSP instances; in particular, this is true for construction heuristics
as well as for “simple” local search methods. Although most construc-
tion heuristics are directly applicable to the ATSP, few computational re-
sults are available [Johnson et al., 2002b]. Empirical results show that for
the ATSP, different from what is observed on symmetric TSP instances,
the Nearest-Neighbour Heuristic typically performs much better than the
Greedy Heuristic. However, for many classes of ATSP instances, even bet-
ter results (in terms of solution quality) are obtained by construction heuris-
tics that are based on the Assignment Problem lower bound for the ATSP;
these constructive search methods obtain a tour by iteratively merging a set
of vertex-disjoint simple directed cycles forming a minim cost vertex cover
of the given graph G that is obtained as a side product of the computation of
the AP lower bound. An early heuristic for the merging step by Karp [Karp,
1979]; a variant of this approach has been recently proposed by Glover et
al. [Glover et al., 2001].



326

When applying iterative improvement algorithms to the ATSP, a slight
complication arises from the fact that sub-tour reversals lead to changes in
solution quality. While 2-exchange moves always involve sub-tour rever-
sals, there are 3-exchange moves that preserve the direction of all partial
tours. The iterative improvement methods based on these moves are called
reduced 3- opt algorithms; these are amongst the simplest iterative im-
provement algorithms for the ATSP. The speed-up techniques described
above for symmetric TSP algorithms can be directly applied to r educed
3-opt.

A variable-depth search algorithm for the ATSP has been developped by
Kanellakis and Papadimitriou (KP) [Kanellakis and Papadimitriou, 1980].

The KP algorithm can be seen an adaptation of the LK algorithm to the ATSP

case; it makes use of double-bridge moves, a special type of non-sequential
4-exchange moves. An implementation of this method by Cirasella et al. [Cirasella
et al., 2001] was shown to yield significantly better solution qualities than
reduced 3- opt,although at the cost of substantially increased run-times [John-
son et al., 2002b].

8.3 Iterated L ocal Search Algorithmsfor the TSP

Iterated Local Search (ILS), as introduced in Chapter 2, Section 2.3, offers
a straight-forward, yet flexible way of extending simple local search algo-
rithms (see also the algorithm outline on page 2.6 and the GLSM model on
page 3.16). Some of the hybrid SLS algorithms thus obtained are amongst
the best performing TSP algorithms currently known.

Iterated Descent

Historically, the Iterated Descent algorithm by Baum [Baum, 1986a; 1986b]
was the first ILS algorithm for the TSP. Within this algorithm, several dif-
ferent first-improvement methods were used as the underlying local search
procedure, including 2- opt local search, a limited form of 3- opt local
search that examines only a part of the 3-exchange neighbourhood, and a
first improvement search based on a 2-exchange neighbourhood on vertices,
under which two candidate solutions are direct neighbours if and only if the
corresponding vertex permutations differ in exactly two positions. The per-



8.3. ITERATED LOCAL SEARCH ALGORITHMS FOR THE TSP 327

turbation phase of Iterated Descent consists of a random 2-exchange step,
and its acceptance criterion always selects the candidate solution with the
better solution quality.

From today’s perspective, the performance of these first ILS algorithms
is not impressive; however, improved performance when compared to a pure
2-opt or 3- opt local search were obtained. Most likely, the most sub-
stantial weakness of Iterated Descent is its perturbation mechanism. It is
also now known that the underlying 2- opt and 3- opt local search proce-
dures used in Iterated Descent perform poorly on the RDM instances used
in Baum’s empirical evaluation.

Large-Step Markov Chains (LSMC)

The Large-Step Markov Chains (LSMC) algorithm by Martin, Otto, and
Felten is the first well performing ILS algorithm for the TSP [Martin et
al., 1991; 1992]. The name of this approach reflects the fact that the be-
haviour of LSMC (and that of many other ILS algorithms) can be modelled
as a Markov chain on the locally minimal candidate solutions obtained at
the end of each local search phase, where the segment of the search trajec-
tory between any two such subsequent local minima corresponds to a “large
step”.

Probably the most important contribution of the LSMC approach is the
introduction of a particular 4—exchange step, the so-called double-bridge
move, for the perturbation phase. A double-bridge move first removes
four edges from the tour, resulting in a decomposition into four segments
A, B,C, D. Then, these segments are reconnected in the order A, D,C, B
by adding four new edges (for a graphical illustration, see Figure 2.7 on
page 79). In LSMC, only double-bridge moves are considered in which the
combined weight of the four new edges is shorter than a constant £ times
the average edge weight in the current locally optimal candidate solution.
Originally, a value of £ = 10 was used, but experimental results suggest
that the performance of the algorithm is not very sensitive to the value of £,
as long as it is not too small [Martin et al., 1992].

As the underlying local search procedure, LSMC initially used a 3- opt
first-improvement search, which was later replaced by the more powerful
LK algorithm. By using several speed-up techniques, each step of the 3-
opt local search procedure is performed in sub-quadratic time (w.r.t. the



328

number of vertices in the given problem instance) [Martin et al., 1991].
These speed-up techniques include (i) a type of fixed radius search, which
uses the minimal and the maximal weight edge in the current candidate
solution for pruning the search for improving 3-exchange steps; (ii) a so-
called change list, an idea that is equivalent to the use of don’t look bits; and
(iii) a hash table for storing 3- opt candidate solutions, which is consulted
for checking whether a tour was previoulsy identified to be locally optimal.

The acceptance criterion used in LSMC is taken from Simulated An-
nealing: If the candidate solution that is returned after a perturbation and
the subsequent local search, s”, improves over the incumbent solution, s, s”
is always accepted; otherwise, it is accepted with a probability exp(f(s) —
f(s")/T), where T is a parameter called temperature, which may change
at run time. Later, it was found that for several TSP instances best perfor-
mance is obtained by accepting only better quality candidate solutions s”.
This zero-temperature LSMC algorithm is also known as Chained Local
Optimisation (CLO) [Martin and Otto, 1996].

LSMC with a subsidiary 3- opt local search procedure was shown to
solve small random Euclidean TSP instances with up to 200 cities in less
than one hour on a SUN SPARC 1 workstation (a very slow machine com-
pared to nowadays PCs). Relatively good performance was also observed
on several TSPLIB instances. For example, LSMC could find an optimal
solution of instance | i n318 in about four CPU hours on the SUN SPARC
1; by using an LK local search algorithm as the subsidiary local search pro-
cedure, the time required for solving this instance optimally was reduced by
a factor of about four. In this particular case, however, it was shown to be
essential to use non-zero temperatures in the LSMC acceptance criterion.
LSMC with the LK subsidiary local search procedure also solved several
larger TSPLIB instances optimally, including at t 532 and r at 783.

Iterated Lin-Kernighan

Following preprints of Martin, Otto and Felten’s work on LSMC, John-
son developed his Iterated Lin-Kernighan (ILK) algorithm [Johnson, 1990;
Johnson and McGeoch, 1997]. There are a few differences between the
details of the LSMC algorithm and Johnson’s ILK. Firstly, the acceptance
criterion used in ILK always selects the better of the two locally optimal
candidate solutions. Secondly, the perturbation phase does not make use of



8.3. ITERATED LOCAL SEARCH ALGORITHMS FOR THE TSP 329

the limiting condition on the edge weight of a double-bridge move imposed
in the LSMC approach, but it applies random double-bridge moves instead,
i.e., the four cut-points are randomly chosen according to a uniform dis-
tribution. Thirdly, the local search is initialised with a randomised greedy
construction heuristic; in the randomized version instead of selecting deter-
ministically the least weight feasible edge, among the two cheapest edges,
the one with less weight is chosen with a probability of 2/3. Early results
for ILK were quite promising: Applied to sample TSPLIB instances with
318 to 2392 vertices, optimal solutions were obtained (for the 2392 vertex
city in about 55 hours on a Sequent computer).

The ILK algorithm was further fine-tuned and extensively tested in a
1997 overview article on the state-of-the-art in approximate TSP algorithms [John-
son and McGeoch, 1997]. The main differences between the 1997 variant
and the earlier ILK implementation appears to be the exploitation of don’t
look bits after the double-bridge move and the use of a bound on the depth
of the LK search. This “production—-mode ILK” was shown to achieve al-
most optimal solutions on a variety of random Euclidean instances and a
few TSPLIB instances. Major difficulties in finding solutions within less
than one percent of the optimum solution quality were only reported on the
strongly clustered TSPLIB instance f | 3795. Running times were mod-
est, for example on 10,000 vertex RUE instances ILK took approx. 1,570
seconds on a SGI Challenge 196 MHz machine [Johnson and McGeoch,
1997].

Based on its excellent performance, ILK has also been used for the em-
pirical analysis of the quality of the Held-Karp lower bound for several
classes of TSP instances [Johnson et al., 1996]. In this context, ILK was run
for a large number of iterations to obtain upper bound estimates of the opti-
mal solution quality for TSP instances ranging in size from 100 to 100,000
vertices.

Chained Lin-Kernighan

Like ILK, the Chained Lin-Kernighan (CLK) algorithm, developped by Ap-
plegate, Bixby, Chvatal, and Cook [Applegate et al., 1999a], uses the LK
algorithm as its subsidiary local search procedure. CLK differs from ILK
in various implementation aspects of the LK local search, including its use
of smaller candidate sets (by default it uses quadrant nearest neighbour sets



330

of size 12); it also uses a different perturbation mechanism that affects only
a locally restricted part of a candidate solution, and initialises the search
using the Quick-Borlivka construction heuristic (see Section 8.2). For de-
tails on the implementation of the LK local search used in CLK we refer
to [Applegate et al., 1999a] and to the original CLK code that is available
at www.math.princeton.edu/tsp. In the following, we focus on some of the
other algorithmic features of CLK, particularly the perturbation mechanism.

The standard CLK algorithm uses so-called geometric double-bridge
moves as perturbation steps; these are based on the following method for
selecting the four edges to be removed from the current candidate tour s. In
afirst step, aset U of min{0.001-n, 10} vertices are randomly sampled from
the given graph G = (V, E, w). Then, among the edges (u, ') contained in
s with u € U, the one with the maximal difference w((u,v")) — w((u, u*)),
where u* is the nearest neighbour of « (i.e. the vertex in V' that minimises
w((u, u*))), is removed from s. In a second step, the other three edges to
be removed from s are then chosen uniformly at random from the edges
connecting vertex u with its £ nearest neighbours in V. The four edges
thus selected uniquely determine the double-bridge move used for perturba-
tion. The value of k£ controls the locality of the perturbation: For small £,
a geometric double bridge move results in a localised perturbation that only
affects edges close to one specific vertex, while for large %, less localised
perturbations are obtained.

As said in Section 8.2, one reasonable strategy is to set only the DLBs
of vertices to zero that are incident to edges changed by the perturbation.
In fact, such a strategy is followed in the LSMC and the ILK algorithm.
Then, only these vertices are considered as start vertices of the search for
an improving move. In CLK, several other resetting strategies for the DLBs
have been studied, including randomised schemes as well as mechanisms
which additionally reset the DLBs of vertices that are at most 10 away from
the end-points of the changed edges in the current tour as well as the end-
points’ neighbour sets. Experimental results suggest that this latter approach
leads to the best performance of CLK. (Similar observations were also made
independently by Stitzle in the context of Iterated 2- opt and 3- opt al-
gorithms for the TSP [Stiitzle, 1998].)

The original CLK and a CLK variant by Applegate, Cook, and Rohe
(CLK-ACR) that uses a different mechanism for selecting the double bridge
moves used as perturbation steps and slightly different implementation choices



8.3. ITERATED LOCAL SEARCH ALGORITHMS FOR THE TSP 331

for the LK were tested on a large number of TSP instances [Applegate et al.,
1999a; 1999b]. A comparison of the two CLK algorithms in the context of
the 8th DIMACS Implementation Challenge on the TSP revealed better per-
formance for CLK-ACR on most of the instances tested (see [Johnson and
McGeoch, 2002] and the challenge web-pages at http://www.research.att.com/ dsj/chtsp).
When compared to ILK, no fully conclusive results can be drawn from the
Challenge results: When running both algorithms for » iterations, on most
instances ILK returns better quality solutions than CLK-ACR, however at
run-times that are several times larger than those of CLK-ACR (for RUE in-
stances a factor between 2 and 5; for TSPLIB and RCE the run-time penalty
of ILK is several times larger). The CLK-ACR code is also capable of han-
dling extremely large TSP instances and has been applied to instances up to
25 million vertices, where it reached a solution within 1% of the estimated
optimum in 24 CPU hours on a IBM RS6000, Model 43-P 260 workstation
with 4 GB RAM and a solution within an estimated 0.3% of the optimum in
8 CPU days.

Iterated Helsgaun (IHLK)

Given the excellent performance of HLK, Helsgaun’s variant of the LK al-
gorithm (see also Section 8.2), using this local search procedure as the core
of an ILS algorithm is a fairly obvious idea. This leads to the Iterated Hels-
gaun algorithm (IHLK), which is one of the best SLS algorithms for TSP
currently known, particularly w.r.t. to the solution quality obtained for large
run-times [Helsgaun, 2000; Johnson and McGeoch, 2002].

Since HLK potentially uses double-bridge moves within its search, a
perturbation mechanism based on this move can be expected to be insuf-
ficient. Instead, the perturbation mechanism used in IHLK is based on a
construction heuristic that is strongly biased by the incumbent candidate so-
lution. This constructive search procedure, shown in Figure 8.4, iteratively
builds a candidate solution for a given TSP instance in a manner similar to
the nearest neighbour construction heuristic: Starting from a randomly se-
lected vertex, in each step the partial tour is extended with a vertex v; that is
not contained in the current incomplete path p and that is connected by an
edge to v;, the current endpoint of p.

In this process, a vertex v; is always chosen for extending the partial tour
p if (i) the edge (v;, v;) is contained in the incumbent candidate solution, (ii)



332

procedure ConstrHLK (7')
input problem instance 7’ € IT’, candidate solution §
output candidate solution s € S(n’)
v; := chooseRandom Vertex
p:=]
while p isnot atour do
C := {v; | (v;,v;) isacandidate edge A a((v4,v;)) = 0 A (v;,v;) € 8}

ifC =0
C :={v; | (v;,v;) isacandidate edge}
end

ifC =0
C := {v; | v; not chosen yet}
end

v; = chooseRandomVertex(C);

p = [plv;];
UV 1= Uy,
end
return 3

end ConstrHLK

Figure 8.4: The construction procedure used in the perturbation
phase of the IHLK algorithm. (For details, see text.)

(vi, ;) is contained in the candidate list for vertex v;, and (iii) a((v;, v;)) =
0 (see Section 8.2 on page ?? for the definition of a((v, v"))). If at any stage
of the search process no such vertex exists, a vertex v; contained in v;’s
candidate list is chosen, if feasible. This is done by traversing the candidate
list until a vertex is found that is not contained in the current partial tour p.
If no such vertex can be found, a list of all vertices is traversed until a vertex
v; Is found that is not contained in p.

The acceptance criterion used in IHLK only accepts better tours than
the best seen so far as the incumbent solution. In addition to standard
speedup techniques such as don’t look bits, IHLK uses hashing techniques
(originally described by Lin and Kernighan [Lin and Kernighan, 1973])
to check whether a solution was already earlier found to be a local op-
timum and to, thus, reduce the check-out time. Further details of IHLK



8.3. ITERATED LOCAL SEARCH ALGORITHMS FOR THE TSP 333

can also be directly checked at the source code, which is available from
http://www.dat.ruc.dk/keld/research/LKH.

IHLK finds optimal solutions for many TSPLIB instances with up to a
few thousands of vertices within relatively short CPU times of some min-
utes on modern PCs as of 2002. Longer runs of IHLK found new best
upper bounds on the largest, still unsolved TSPLIB instances and for the
World TSP instance mentioned in Section 8.1; in the latter case, lower bound
computations have shown that the solution found by IHLK deviates at most
0.17% from the optimal solution quality (see www.math.princeton.edu/tsp/world/index.html).
However, the running times of IHLK increase very strongly with instance
size.

Other Perturbation Mechanisms

The perturbation mechanism and its relation to the subsidiary local search
procedure can have a significant impact on the performance of an ILS al-
gorithm; consequently, a wide range of perturbation mechanisms have been
proposed and studied in the context of ILS algorithms for TSP.

Hong, Kahng, and Moon studied ILS algorithms based on 2- opt , 3-
opt, and LK local search that use single random k-exchange steps with
fixed values of k& between 2 and 50 for perturbation [Hong et al., 1997].
More specifically, the k-exchange moves they use are determined by dis-
connecting the current tour at £ randomly chosen positions. The resulting
sub-tours are then reconnected according to a specific, fixed template; only
for k = 3 one of the several possible ways of reconnecting the sub-tours is
chosen randomly and for £ = 4 a random double-bridge move is applied.
The resulting algorithms were empirically evaluated on TSPLIB instances
[ 1 n318 and att 532 as well as on a RDM instance with 800 vertices.
Their results suggest that on the TSPLIB instancs, using their random k-
exchange perturbation with & > 4 results in better solution qualities after
a fixed number of local search steps than a perturbation based on a random
double-bridge move. On the RDM instance, the best results were obtained
for £ = 3, independent of the subsidiary local search procedure used. It
is not clear whether these results also hold when measuring time complex-
ity in terms of CPU time rather than local search steps, or whether these
observations generalise to other TSP instances.

Perturbations can be more complex than simple (random) k-exchange



334

steps. One example for a complex perturbation is the mechanism proposed
by Codenotti et al. which involves the modification of the instance data [Co-
denotti et al., 1996]. Their perturbation procedure works as follows: First,
the given a geometric TSP instance G is slightly modified by introducing
small perturbations in the edge weights. (For Euclidean TSP instances this
is achieved by changing the coordinates of the vertices.) The current locally
optimal tour s is not necessarily a local minimum w.r.t. to this modified
instance G'. Thus, the subsidiary local search procedure is run on G’ un-
til a local minimum s’ is found. At this point the modified instance G’ is
discarded and the candidate solution s’ is returned as the overall result of
the perturbation, which provides the starting point of the subsequent local
search phase. Codenotti et al. gave some indication that this perturbation
despite its relatively high time-complexity can achieve slightly better per-
formance than a more standard ILK implementation using double-bridge
perturbations. However, state-of-the-art ILS algorithms for the TSP, such as
CLK typically achieve much better performance [Applegate et al., 1999b].
(It should be noted that this general perturbation approach has been pro-
posed and successfully applied in the context of a very early ILS algorithm
for a location problem [Baxter, 1981].)

Another interesting perturbation mechanism is the genetic transforma-
tion (GT) introduced by Katayama and Narisha, which introduces ideas
from evolutionary algorithms into ILS [Katayama and Narihisa, 1999] (see
also Section 2.3). The GT procedure is based on the intuition that sub-tours
that are common between the best tour found so far, s, and the current lo-
cally optimal tour, ¢, should be preserved, and works as follows: First, all
common sub-tours between § and ¢ are determined; this can be achieved in
time O(n), where n is the number of vertices in the given TSP instance.
Then, the perturbation result is obtained by connecting these sub-tours us-
ing a procedure that is closely related to the nearest neighbour construction
heuristic. The overall Genetic Iterated Local Search (GILS) algorithm for
the TSP is outlined in Figure 8.5, where the function GT implements the
GT perturbation mechanism. Computational experiments with an iterated
LK algorithm that uses the GT perturbation instead of the standard double-
bridge move have shown that the approach is very effective [Katayama and
Narihisa, 1999].



8.3. ITERATED LOCAL SEARCH ALGORITHMS FOR THE TSP 335

procedure GILS (")
input problem instance 7’ € TI’, objective function f ()
output solution 5 € S(x’) or 0
s := init(n'), t := init(x")
s := localSearch(n’, s), t := localSearch(r’',t)

it (f(s) < f(2))
§:=s

else
§:=1

end

while not terminate(w’, ) do
t' = GT(n',8,1)

t" := localSearch(n’,t")
(/) < /(3))
§:=1t"
end
t — t”
end
return §
end GILS

Figure 8.5: Algorithmic outline of the Genetic Iterated Local
Search (GILS) for the TSP. (For details, see text.)

Other Acceptance Criteria

While various possibilities for the local search or the perturbation step are
well examined, the acceptance criterion was largely neglected, although it
is known that it can have a strong impact on the balance between diversifi-
cation and intensification of the search. In fact, most ILS implementations
accept only better quality solutions. However, some few exceptions exist. A
first one is the LSMC algorithms of Martin, Otto, and Felten, where a simu-
lated annealing (SA) type acceptance criterion is used (see Equation 2.1 on
page 64 for a possible SA acceptance criterion). Using non-zero tempera-
tures in the acceptance criterion actually improved the performance of their
algorithms on a few instances. Simulated annealing type acceptance crite-



336

ria were also examined by Rohe [Rohe, 1997]. For one TSPLIB instance
(d18512) he found that with a carefully tuned annealing schedule for long
computation times slight improvements over a standard ILK were possible.

Hong, Kahng and Moon studied variants of ILS algorithms using what
they called an hierarchical LSMC algorithm. The hierarchical LSMC ac-
cepts by default only better quality solutions. However, if it is deemed that
the ILS is stuck (this is the case after 2n iterations without accepting an
improved solution when using a 2- opt or a 3- opt local search, after 100
iterations when using LK local search), they set the temperature in the SA
acceptance criterion to f(s;)/200 for 100, i.e., a deterioration of the tour
length by 0.5 percent is accepted with a probability of 1/e; after this 100
iterations, again only better quality solutions are accepted. This diversifi-
cation is invoked, if for 7, no improved solution is found by the ILS; when
using 2- opt or 3- opt local search they set i, = 2n, when applying LK,
they set 7, = 100. Some limited experiments with that approach on three
TSP instances and a 2- opt, 3- opt, and a LK local search showed that
on the two instances | i n318 and at t 532 improvements were possible;
however, from the paper it is not clear whether these improvements are sta-
tistically significant.

A more detailed study of different acceptance criteria was undertaken by
Stutzle [Stutzle, 1998; Stutzle and Hoos, 2001]. He compared the standard
better acceptance criterion for ILS with two acceptance criteria, which intro-
duce diversification features in the ILS. The first is a simple soft restart cri-
terion (see also Section 4.4), which restarts ILS from a new initial solution,
if no improved solution was found for i, iterations. The restart of the algo-
rithm can easily be modelled by the acceptance criterion Restart(s, s”, history),
where the history component captures, e.g., the very simple use of search
history underlying the soft restart criterion. Let 7j54 be the most recent
iteration in which a better solution has been found since the last restart
and 7 be the iteration counter. Then Restart(s, s”, history) returns s”, if
w(s") < w(s), so, ifw(s") > w(s)and i —ij5¢ > i, Where s, is SOMe new
initial solution, or s, otherwise.

Fitness-distance-based Diversification

A disadvantage of restarting ILS from new initial solutions is that previously
obtained high quality solutions are lost. Additionally, ILS algorithms need



8.3. ITERATED LOCAL SEARCH ALGORITHMS FOR THE TSP 337

some initial, instance dependent time ¢;j; before effectively very high qual-
ity solutions can be identified, a time which is “wasted” with each restart.
To avoid these disadvantages, a less radical and more directed diversification
is used. The basic idea of the method is to attempt to find a good quality
solution beyond a certain minimal distance from the current search point
without using restart and it is implemented as follows. Let s’ be the current
candidate solution from which the search should escape, and let d(s, s") be
the distance between two tours s and s’ measured as the number of edges
that differ between s and s’. Then the following steps are repeated until we
obtain a solution beyond a minimal distance d,;, from s:

1) Generate p copies of s.

2) To each of the p solutions, apply Perturbation followed by LocalSearch.

3) Choose the best ¢ solutions, 1 < ¢ < p, as candidate solutions.

(1)
(2)
(3)
(4) Let s be the candidate solution with maximal distance to s?.

If d(s, s%) < dmin, then goto (2); otherwise return s.

The goal of step (3) is to obtain good quality solutions, while the goal
of step (4) is to choose a candidate solution at a maximal distance from the
current solution. The steps (2) to (4) are then iterated until a solution s* is
found for which the requirement in step (4) is satisfied. To avoid getting
stuck in infinite loops, this iterative process is stopped if after a maximal
number of iterations no solution s* beyond d..;, is found. In [Stutzle and
Hoos, 2001], the parameter d..;, is estimated by first computing the average
distance Aayg between an number of local optima w.r.t. the local search
algorithm applied in the ILS. Then d..;, is set alternatingly to 0.25Aayg and
0.5Aavg; s; Is always taken as the best solution found since the start of the
algorithm.

Example 8.2: Effectiveness of acceptance criteria

We exemplify influence of acceptance criteria on the computational results
when applying an iterated 3- opt algorithm. The computational results are
given in Table 8.2, more complete results including the use of 2- opt and
a LK local search can be found in [Stiitzle and Hoos, 2001]. We refer with



338

ILS-Descent to the ILS accepting only improved solutions, ILS-Restart to
the ILS plus soft restart and ILS-FDD to the ILS plus distance-based diversi-
fication; the maximum computation times ranged from 120 seconds on the
smallest instance d198 to 7200 seconds for the largest instance f | 3795
on a Pentium 1l 266MHz CPU. Generally, the experimental results show
that ILS-Restart and ILS-FDD can improve significantly over ILS-Descent:
Both find optimal solutions much more frequently and on average achieve
much better solution quality. Only on instance r at 783 the frequency of
finding the optimum is lower with ILS-Restart than with ILS-Descent. In
addition, the advantage of the most complex algorithm, ILS-FDD over ILS-
Descent but also over ILS-Restart becomes more and more noticeable with
increasing instance size.

It should be noted that the performance of ILS-FDD is particularly good on
instances which are known to be difficult for several other algorithms. This
is the case for f | 1577 and f | 3795 which show a pathological clustering
of cities. On these instances, also ILS-restart performs surprisingly well;
this is probably due to the fact that they contain deep local minima from
which the standard ILS algorithm has strong difficulties to escape. Also
note that on these instances it often appears preferable to run 3- opt instead
of LK, because the run-time of most LK variants increases very strongly
on highly clustered instances (see also the discussion in [Johnson and Mc-
Geoch, 1997]).

Tour Merging

The tour merging approach by Applegate, Bixby, Chvatal, and Cook uses
an ILS algorithm as a subroutine of a more complex, hybrid search algo-
rithm [Applegate et al., 1999a]. It is based on the observation that high
quality tours typically have many edges in common; furthermore, the num-
ber of shared edges increases with solution quality, and close-to-optimal
tours share many edges with optimal tours (see also Chapter 5). Hence,
given a TSP instance G, the edges from a few close-to-optimal tours, which
can be found using a high performance ILS algorithm, induce a subgraph
G' with the following properties: (i) G’ is a sparse graph with low branch-



8.3. ITERATED LOCAL SEARCH ALGORITHMS FOR THE TSP 339

Table 8.2: Comparison of ILS-Descent, ILS-Restart, and ILS-FDD on symmetric
TSPs. For each instance (the number in the instance identifi er is the problem size),
we report the frequency of fi nding the known optimal solution (fopt), the average
percentage deviation from the optimum (A avg), the average CPU-time ¢ ayg to fi nd
the best solution in arun, and the maximally allowed computation time ¢ ,,. The
algorithms were run on a 266MHz Pentium 11 CPU.

Instance ILS-Descent ILS-Restart ILS-FDD
fopt Aavg tavg fopt Davg tavg fopt Aavg tavg

d198 1.0 0.0 11 10 0.0 0.8 10 0.0 15
lin318 0.65 0.10 13.9 1.0 0.0 7.1 10 0.0 13.7
pch442 056 0.12 349 | 10 0.0 465 | 10 0.0 30.8
att 532 0.22 0.055 916 | 0.74 0009% 2146 | 0.96 0.002 202.3
rat 783 0.71 0.029 238.8 | 0.51 0018 3849 | 10 0.0 1595
pr 1002 056 011 389.7 10 0.0 5782 1.0 0.0 207.2
pcb1173 0.0 0.26 461.4 | 0.0 0.040 680.2 | 056 0.011 652.9
d1291 0.08 0.29 191.2 | 0.68 0.012 4108 1.0 0.0 2454
fl1577 0.12 0.52 4946 | 092 0.00008 4776 | 1.0 00 2941
pr 2392 00 023 15385 | 0.0 0.22 20085 | 0.3 0.027 2909.1
pcb3038 00 022 36876 /| 0.0 020 48243 | 0.0 0.099 55359
f13795 02 036 3601.9| 02 0.0035 30809 | 0.9 0.0003 3506.7

width [Robertson and Seymour, 1991] and (ii) there is a reasonably high
chance that G’ contains at least one optimal tour.

Based on these considerations, the tour merging procedure works as fol-
lows: Given a TSP instance G = (V, E, w), first a set S of close-to-optimal
tours is generated. This can be done by applying any of the very effec-
tive ILS algorithms like ILK, CLK or IHLK. From these tours, a subgraph
G' = (V,FE',w') of G is formed, where E’ is the set of all edges which
are contained in at least one of the tours in .S, and w’ is the original weight
function w restricted to those edges. In a second step, the objective is then
to find an optimal tour w.r.t. the TSP instance defined by G’. This can be
achieved by means of a complete TSP algorithm. Alternatively, Applegate
et al. have proposed a dynamic programming algorithm that determines an
optimal solution for a (heuristically determined) branch-width decomposi-
tion of G'.

The tour merging approach was empirically evaluated on a large num-
ber of TSPLIB instances [Applegate et al., 1999a]. For medium size in-



340

stances with up to 5,000 vertices, it found optimal solutions for each of the
tested instances, on the largest (f nl 4461) taking about 90,000 CPU sec-
onds on a 500MHz Alpha 21164a processor; most of this computation time
was used by the optimisation algorithm applied in the second step. Further
experiments indicated the following tradeoffs between the two steps of the
tour merging approach: As can be expected, given a fixed number of CLK
runs for the first step, the computation time needed by the second step de-
creases when increasing the length of each CLK run; this is mainly caused
by the fact that for increased tour quality, the graph G’ contains fewer edges.
Furthermore, if the length of the individual CLK runs is kept constant, the
overall solution quality improves when the number CLK runs (and hence
the number of tours generated) is increased. This, however, also leads to an
increase in overall run-time because of the higher time-consumption in step
one and due to the increased number of edges in G’, which leads to higher
computation times in step two.

Iterated Local Search for the Asymmetric TSP

Most of the research efforts on designing efficient ILS algorithms has fo-
cussed on the symmetric TSP and much less work has been done for the
asymmetric TSP (ATSP). algorithms for the ATSP are typically very similar
to ILS algorithms for symmetric TSP instances; the main difference lies in
the use of an ATSP specific subsidiary local search procedures, suchas r e-
duced 3-opt or the Kanellakis—Papadimitriou variable depth heuristic
(KP), in order to avoid the high overhead involved in computing the effects
of sub-tour reversals (see Section 8.2). Since double-bridge moves do not
involve any sub-tour reversals, they can be used for perturbation exactly as
in ILS algorithms for symmetric TSP.

Only few ILS algorithm have been developed for the ATSP. These in-
clude iterated r educed 3-opt (I red3-opt) algorithms by Johnson
et al. [Johnson et al., 2002b] and Stiitzle & Hoos [Stutzle, 1998; Stiitzle
and Hoos, 2001] as well as an iterated KP (IKP) algorithm by Johnson et
al. [Johnson et al., 2002b]. Experimental results suggest that IKP finds
better quality solutions than the Johnson version of | r ed3- opt, how-
ever at the cost of substantially higher run-times on certain classes of in-
stances [Johnson et al., 2002b]. In fact, for some types of large ATSP
instances, n iterations of IKP take up to 100 times more CPU time 10n



8.4. POPULATION-BASED SLSALGORITHMSFOR THETSP 341

iterations of | r ed3- opt . Published results for an ILS algorithms using
HyperOpt local search by Burke et al. [Burke et al., 2001] suggest that in
most cases the solution qualities reached by this algorithm are worse than for
| r ed3- opt while requiring larger computation times [Burke et al., 2001;
Johnson et al., 2002b].

Somewhat surprisingly, in a recent comparative study of several ATSP
algorithms the best quality tours were obtained by first transforming ATSP
instances into symmetric TSP instances (see also Section 8.1) and then
to apply state-of-the-art SLS algorithms for the symmetric TSP, such as
IHLK [Johnson et al., 2002b]. In fact, for various classes of ATSP instances
this approach produced the best solutions known todate; however, the com-
putation times required in this context are in the range of several hours for
the largest ATSP instances with 3,162 vertices (which corresponds to an
symmetric TSP instance with 6,324 vertices).

8.4 Population-based SL SAlgorithmsfor the TSP

Maintaining a population of candidate solutions within an SLS algorithm
provides natural means of search diversification, which can help to avoid
or overcome search stagnation and improve the robustness of SLS perfor-
mance. In the following, we present several population-based SLS meth-
ods for the TSP, ranging from simple extentions of Iterated Local Search
to inherently population-based approaches, such as Genetic Local Search
and Ant Colony Optimisation (see also Chapter 2. Given the large number
of TSP algorithms based on the latter two approaches, we focus on some
prominent algorithms that illustrate the main considerations arising in the
context of applying these methods to efficiently solve TSP instances.

Population-based ILS

Iterated Local Search can be easily extended into a population-based SLS
method by independently applying a standard ILS algorithm to to popula-
tion, i.e., a set of candidate solutions, and allowing some limited interaction
between the population elements. Such extensions have strong similari-
ties to well-known population-based search metaphors such as Evolutionary
Algorithms [Béck, 1996; Mitchell, 1996] and, in particular, Genetic Local



342

Search (see Chapter 2, page ??ff.). Both approaches make use of selection
mechanisms in order to focus the search on promising regions of the search
space. Furthermore, the perturbation mechanism used in ILS can be seen as
a (sometimes very complex) mutation operator. Different from Evolution-
ary Algorithms, however, population-based extensions of ILS do not use
recombination mechanisms to generate new candidate solutions from two
or more elements of the population.

Generally, the interaction between population elements is fairly lim-
ited in population-based ILS algorithms, which facilitates rather straight-
forward and efficient parallel implementations. Martin and Otto described
a parallel implementation of a population-based extension of their Chained
Local Optimisation (CLO) algorithm for the TSP, in which a single ILS
process (which runs the CLO algorithm on an individual candidate solu-
tion) runs on each processor, and a simple selection mechanism is used to
guide the search [Martin and Otto, 1996]. In particular, infrequently, i.e.,
after around 10 to 100 CLO steps per processor, the best tour within the
current population is broadcast to all processore and replaces all other pop-
ulation elements the solutions kept on the other processors. Martin and Otto
reported that this “winner-take-all” strategy [Aldous and Vazirani, 1994]
achieved good solution qualities for high run-times; however, they did not
present empirical results for this population-based CLO algorithm.

Hong, Kahng, and Moon introduced a similar population-based ILS al-
gorithm that uses a slightly more complex selection mechanism [Hong et
al., 1997]. After every I ILS iterations, where I is a parameter of the al-
gorithm, one candidate solution s; is probabilistically selected based on its
solution quality; in particular, the best tour in the current population is four
times as likely to be selected as the currently worst tour. Perturbation and
local search are then applied to s;, resulting in a new tour s7. If s7 is better
than the best tour found so far during the search, it replaces s;, otherwise,
s replaces the worst tour s in the current population, unless s’ has lower
quality than s, in which case s7 is discarded. Note that for I = oo this
algorithm is equivalent to performing m independent runs of standard ILS,
where m is the population size, i.e., the number of candidate solutions in the
population.

Similar population-based extensions were studied by Stitzle, who exam-
ined three population-based ILS algorithm for the TSP with varying degrees
of interaction between the members of the population [Stiitzle, 1998]:



8.4. POPULATION-BASED SLSALGORITHMS FOR THE TSP

procedure ssILS
Generate initial population p
sp := init(w")
§:= best(n’, sp)
while (not terminate(n’, sp)) do
s := select(n’, sp)
50:= 8
fori=1tojdo
s' := perturb(n’, s)
s" := localSearch(r’', s")
it (/") < 1(3))
§:=4"
end
s := accept(n’, s, s")
end
if (f(s) < f(s0) then
sp := replace(n’, sp, s)
end
end
if $ € 5" then
return s
else
return ()
end
end ss-ILS

Figure 8.6: Algorithm outline for ss-ILS. best(n’, sp) denotes
the individual from population sp with the best objective func-
tion value; select(n’, sp) selects a candidate solution from sp
based on its objective function value; and replace(n’, sp, s) re-
turns the result of replacing one individual in sp with candidate
solution s. (For details, see text.)

343



344

(i) A variant that does not use any interaction within the population and
effectively performs a fixed number of independent ILS runs.

(if) A variant called Replace-Worst, in which after every [ iterations the
best tour within the current population replaces the currently worst
tour. This approach gradually focusses the search around the best
found tours, where the parameter I controls the rate of this process.

(iii) A variant ss-1LS, in wich standard ILS is only applied to one tour s,
selected from the current population sp; if after j iterations of ILS an
improvement over s, has been achieved, this improved tour replaces
one of the tours in sp (see Figure 8.6.) Different choices of the func-
tions select and replace will lead to different search behaviour.

Computational experiments with the population-based ILS algorithms for
the TSP by Hong et al. and Stitzle suggest that they achieve substan-
tial performance improvements over conventional ILS algorithms using the
better acceptance criterion, in particular ILS-Descent [Hong et al., 1997;
Stiitzle, 1998]. For fixed run-time, the population-based algorithms have
been shown to obtained solution qualities whose average deviation from the
optimum is roughly half of that obtained by ILS-Descent on a number of
TSPLIB instances [Stiitzle, 1998]. Suprisingly, the variants without inter-
action within the population were often found to be as effective as variants
with interaction; further experimentation is required to see whether interac-
tion within the population is more advantageous for larger TSP instances.
Furthermore, current empirical evidence suggests that when using standard
ILS algorithms with more complex acceptance criteria, such as ILS-FDD
(see Section 8.3, page ??), all current population-based ILS extensions ap-
pear to be inferior in performance.

Evolutionary Algorithms for the TSP

The TSP has been the target of a large amount of research on Evolutionary
Algorithms, and many EAs for the TSP have been proposed and studied
in the literature. An important general issue in the design of EAs for the
TSP is the representation of candidate solutions. Most commonly, tours are
represented as permutation of the vertex indices. Several other representa-
tions have been studied [Homaifar et al., 1993; Whitley et al., 1989; Walters,



8.4. POPULATION-BASED SLSALGORITHMSFOR THE TSP 345

1998], but it is not clear whether any of these has particular advantages when
compared to the permutation representation. Most research efforts on EAs
have been focussed on the design of recombination operators [Potvin, 1996;
Merz and Freisleben, 2002] and the development of hybrid EAs that include
efficient subsidiary local search algorithms to improve candidate solutions
—so-called Memetic Algorithms (see Chapter 2, page ??ff.).

If one general conclusion can be drawn from all these research efforts,
then it is that Memetic Algorithms (MAS), i.e., combinations of EAs with
efficient subsidiary local search algorithms, are generally superior to EAs
that do not use a subsidiary local search. A second general conclusion is
that different types of recombination operators can result in significant per-
formance differences; yet, in Memetic Algorithms for the TSP, the influence
of the recombination operator diminishes as higher performance subsidiary
local search procedures are used. One very important property of recom-
bination operators for the TSP is its respectfulness [Radcliffe and Surry,
1994; Merz and Freisleben, 2002]: respectful recombination operators en-
sure that solution components (here: edges) that are common to all parents
are present in any offspring. Intuitively, the importance of respectful re-
combination is tightly connected to the typical search space structure for
TSP instances, which is characterised by high fitness-distance correlation
values (see also Section ?? in Chapter 5).

The Memetic Algorithm by Merz and Freisleben

The memetic algorithm by Merz and Freisleben (MA-MF) is probably one
of the best studied and most effective MAs for the TSP. Initially proposed
in 1996 [Freisleben and Merz, 1996], MA-MF has been continuously im-
proved through the incorporation of more efficient subsidiary local search
procedures and better recombination operators, as well as through the addi-
tion of restart mechanisms [Merz and Freisleben, 1997; Merz, 2000; Merz
and Freisleben, 2002]. In the following, we describe the main features of
the latest and best performing MA-MF variant [Merz and Freisleben, 2002].

The initial population in MA-MF is generated by a randomised vari-
ant of the Greedy construction heuristic (see Section 8.2). This constructive
search procedure first iteratively inserts n./4 edges which are selected as fol-
lows: after choosing uniformly at random a vertex v of the given graph G
that is not contained in the current partial tour, the cheapest feasible edge in-



346

cident to v is selected with probability 2/3 and the second-cheapest feasible
edge otherwise; edges are feasible, if one of their endpoints is not contained
in the current partial tour. The partial tour obtained after this initial random
edge selection is then completed using the standard construction mecha-
nism of the Greedy Heuristic. As usual in MAs, the search initialisation is
completed by applying the subsidiary local search procedure (here: an LK
variant) to all tours in the population.

Various recombination operators are used in different variants of MA-
MF; of these, a greedy recombination operator GX, which is based on ideas
from the Greedy construction heuristic, achieves the best performance. The
GX procedure generates one offspring from two parent tours and consists of
four phases:

1. Copy some or all edges common to the two parents to the offspring.
(A parameter p, gives the fraction of common edges to be copied.)

2. Add new short edges that are not contained in any of the parents.
For a node v; one of the five nearest neighbours is chosen such that
edge (v;, v,) is not contained in any of the parents and edge (v;, v;) is
feasible; the number of edges to be chosen in this way is determined
by a parameter p,,.

3. Copy edges from the parents, where edges are ordered according to
increasing length. Only edges that do not lead to a violation of the
TSP constraints are considered and edges not common in the parents
may be included; the number of edges included in this way is deter-
mined by a third parameter p..

4. If necessary, the candidate tour is completed using a randomised greedy
construction heuristic.

Experimental results show that the best performance is obtained when GX
is maximally respectful, i.e., for p, = 1 [Merz and Freisleben, 2002]. Good
settings for the parameters p,, and p. very between TSP instances. Recombi-
nation is applied to n/2 pairs of tours which are chosen uniformly at random
from the current population.

The mutation operator used in MA-MF is the standard double-bridge
move that is also used in most ILS algorithms. The candidate solutions to



8.4. POPULATION-BASED SLSALGORITHMSFOR THETSP 347

which mutation is applied are chosen uniformly at random. MA-MF uses a
(u+\) selection strategy for determining the new population after each gen-
eration. The new population consists of the x best tours among the . from
the current population plus the A new tours obtained from the application
of recombination, mutation, and local search but avoiding duplicate tours.
Finally, an additional restart operator is applied conditionally, to maintain a
certain diversity of the population: If the average distance between the tours
in the population (measured as the number of different edges) falls below
ten or if the average solution quality of the population did not change for
30 iterations, a random k-exchange move, with £ = 0.1n, and subsequent
local search is applied to all tours in the population except for the one with
the best solution quality.

Computational results confirm that MA-MF is amongst the best per-
forming MAs for the TSP [Merz and Freisleben, 2002]. For TSPLIB in-
stances with up to 1,002 vertices, the known optimal solutions could be
consistently identified within an average time of about two CPU minutes on
a Pentium 111 500 MHz processor. When applied to instances with up to
3,795 vertices, the probability for finding optimal solutions dropped signif-
icantly, although still very good average solution qualities with a deviation
of less than 0.08% from the optimum could be achieved. Additional exper-
iments showed that high quality solutions could also be identified for the
largest TSPLIB instances; except for the largest instance with 85,900 ver-
tices, solution qualities within 1% of the optimum were reached within an
average computation time of one CPU hour on a Pentium 111 500 MHz pro-
cessor. However, for some instances, MA-MF does not reach the solution
qualities obtained by Helsgaun’s LK variant (HLK); generally, it is not clear
whether using a similarly efficient LK variant for the subsidiary local search
in MA-MF (or any other MA) could lead to competitive performance with
state-of-the-art SLS algorithms for the TSP, such as IHLK.

The Repair-based MA by Walters

The memetic algorithm by Walters (MA-W) differs in several key aspects
from most recent MA approaches to the TSP. Firstly, MA-W uses a solu-
tion representation that is based on a nearest neighbour indexing. Let nn?
be the kth nearest neighbour of vertex v;, i.e., nn} is the nearest neighbour
to vertex v;, nn? is the second nearest neighbour, etc.. Then, for a given



348

tour orientation, the successor of v; is encoded by its index in v;’s nearest
neighbour list. A tour p is represented by a vector s = (si,...,s,) such
that s; = k if and only if the successor of v; in p is the kth nearest neigh-
bour of v;. As a side-effect, this representation leads to some redundancy
because of the directionality imposed by the encoding of successors: For
symmetric TSP the direction in which a tour is traversed does not matter,
but if we would encode the predecessor relationship in the tour, a different
representation of the same tour is obtained.

Secondly, MA-W uses an ingenious repair mechanism to transform in-
feasible paths, which may be generated by applying standard recombination
operators, into valid tours. This repair mechanism preserves as many edges
of the infeasible tour as possible; if for some vertex, an outgoing edge e
needs to be replaced in order to obtain a valid tour, it is replaced by an edge
¢’ that is as close as possible in weight to e.

In more detail, the repair process works as follows: First, a working list
of edges is created that comprises all edges contained in the infeasible path
p. Next, this list is sorted according to edge weight plus a small amount
of random noise (about 20% of the edge weight); the use of the noise ran-
domises the order and thus helps to prevent domination of the end result,
i.e., the feasible tour returned by the repair process, by specific short edges.
Then, the working list is traversed in ascending order, and edges are in-
cluded into the new path p’ to be constructed if they do not lead to any cycle
with less than n edges. If an edge e cannot be included into p’, it is replaced
in the working list by another edge ¢’ that is incident to the same vertex and
whose weight is as close as possible to that of e, while e is moved to a list
of failed edges. If after a full traversal of the working list, p’ is not a valid
tour, the repair process is repeated starting with path p'. This repair mech-
anism allows MA-W to use generic recombination and mutation operators
that are not guaranteed to produce valid tours. In particular, MA-W uses
a modified two-point recombination operator [Walters, 1998]. The muta-
tion operator modifies the nearest neighbour indices of randomly selected
vertices. The new index is selected according to a probability distribution
which is also used to initialise the population: The indices corresponding
to the three nearest neighbours are selected with a probability of 0.45, 0.25,
and 0.15 respectively; in the remaining cases, an index between four and
ten is chosen uniformly at random. (For further details on MA-W, including
parameter settings, we refer to Walter’s original paper [Walters, 1998].)



8.4. POPULATION-BASED SLSALGORITHMSFOR THETSP 349

MA-W uses an efficient implementation of the 3- opt local search as
its subsidiary local search procedure. Compared to state-of-the-art TSP al-
gorithms that are based on variants of the LK algorithm, the empirical per-
formance results for MA-W are promising [Walters, 1998; Stiitzle et al.,
2000]. For example, the MA-W algorithm requires an average run-time of
572.7 CPU seconds on a Pentium 11 450 MHz processor for finding an opti-
mal solution to TSPLIB instance pr 2392, a result that is only surpassed by
the best performing SLS algorithms for the TSP known todate. However, on
other instances, MA-W performs is significantly weaker than current state-
of-the-art algorithms and it is not clear how its performance scales to large
instances.

ACO algorithms for the TSP

The TSP has played a central role in the development of ACO algorithms,
because the first ACO algorithm, Ant System [Dorigo et al., 1991; Dorigo,
1992; Dorigo et al., 1996] and most of its successors, including Ant Colony
System [Dorigo and Gambardella, 1997], M AX-MZIN Ant System [Stiitzle
and Hoos, 1997; Stiitzle and Hoos, 2000], Rank-based Ant System [Bullnheimer
etal., 1999], and Best-Worst Ant System [Cordon et al., 2000] were first ap-
plied to the TSP. All these algorithms follow the same basic outline shown
in Figure 2.10 on page 89, but they differ in several important algorithmic
details.

The currently most successful ACO algorithms for the TSP share two
important features: (i) they include effective mechanisms for achieving a
good balance between intensification and diversification of the search [Dorigo
and Gambardella, 1997; Stiitzle and Hoos, 2000] and (ii) before updating the
pheromone trails, a subsidiary local search procedure is applied to the tours
constructed by the ants [Dorigo and Gambardella, 1997; Stiitzle and Hoos,
2000; Stiitzle, 1998; Stiitzle and Hoos, 1997]. Hence, these ACO algorithms
are hybrid SLS techniques that combine probabilistic solution construction
with standard local search techniques.

Max-Min Ant System

One of the most effective ACO algorithms for the TSP is MAX-MIN
Ant System (MMAS). MMAS is closely related to Ant System (AS) [Dorigo



350

etal., 1991; Dorigo, 1992; Dorigo et al., 1996] (see Chapter 2, Section 2.3);
in particular, the same mechanism for constructing candidate solutions is
used: Starting from a randomly chosen vertex v, in each construction step,
the current partial tour p is extended with avertex v; that is adjacent to its
endpoint v;; v; is chosen probabilistically from the set of all vertices not
contained in p; the probability of choosing vertex v; is computed from
the pheromone trail strength 7;;(¢) for edge (v;,v;) and a heuristic value
ni; = 1/w((vs, v;)) according to Equation 2.2 on page 86.

MMAS introduces four major modifications to AS. Firstly, it strongly
exploits the best solutions found during the search — a feature it has in
common with a variety of other ACO algorithms [Dorigo and Gambardella,
1997; Bullnheimer et al., 1999; Cordon et al., 2000]. MMAS uses the
modified pheromone update rule

best
Tij < Tij + AT,

where AP = 1/ (pP®) and only one ant is allowed to update the

pheromone trail levels according to its tour, PPt this may either be the
“globally best” ant, i.e., the ant corresponding to the best candidate solu-
tion found since the start of the algorithm, or the “iteration-best” ant, i.e.,
the ant that represents the best tour obtained in the current iteration. The
choice between the use of the iteration-best and the globally best ant in-
fluences the greediness of the search: When the globally best ant always
deposits pheromone, the search focuses quickly around the best tour found
so far, while when allowing the iteration-best ant to deposit pheromone, over
time, a larger number of edges are reinforced and resulting in a less directed
search. Empirical results indicate that while for rather small TSP instances
it may be best to use iteration-best pheromone update only, for large TSPs
with several hundreds of vertices the best performance is obtained by giv-
ing a stronger emphasis to the globally best ant. This can be achieved, for
example, by choosing the globally best ant for trail update with a frequency
that gradually increasing over time [Stiitzle, 1998].

One disadvantage of the greedier trail update procedure is an increased
danger of search stagnation. Therefore, a second important feature of MMAS
is its use of strict lower and upper limits 7yjn and 7max on the pheromone
trail level for each individual edge, which effectively avoids search stagna-
tion. In particular, these limits have the effect of bounding the probability



8.4. POPULATION-BASED SLSALGORITHMSFOR THETSP 351

pi; of selecting a vertex j when an ant is in vertex < according to Equa-
tion 2.2 to an interval [pmin, Pmax), With 0 < pmin < pij < Dmax < 1. Only
if an an ant has visited all but one vertices in the given graph, it will deter-
ministically choose that vertex for its next and penultimate step, such that
Pmin = Pmax = 1.

It is easy to show that in the limit, the pheromone trail level on any
edge is bounded from above by w(p*)/p, where w(p*) is the weight of an
optimal tour for the given TSP instance. Based on this result, MAMAS uses
an estimate of this value, w(p?®)/p, to define Tmax. In fact, each time a
new globally best tour is found, the value of rmax is adapted. The lower
pheromone trail limit is set t0 7njn = 7max/a, Where a is a parameter of
the algorithm [Stiitzle, 1998; Stiitzle and Hoos, 2000]. Experimental results
[Stiitzle, 1998] suggest that for effectively avoiding search stagnation, the
Tmin Plays a more important role than 7max.

Thirdly, at the start of the algorithm, MM AS sets the initial pheromone
trails to an estimate of rmax = w(p;)/p, Where tour p; is obtained by ap-
plying local search to a nearest neighbour tour. Together with small val-
ues for the pheromone evaporation parameter p, this ensures that during its
initial search phase, MMAS is very explorative. As a further means for
increasing the exploration of paths that have only a small probability of be-
ing chosen, MMAS occasionally re-initialises the pheromone trails; trail
re-initialisation is triggered when stagnation behaviour is detected (as mea-
sured by some statistics on the pheromone trails or the number of iterations
during which no improvement of the incumbent tour occurred [Stiitzle and
Hoos, 2000])).

While early versions of MMAS used 2- opt as a subsidiary local
search procedure [Stuitzle and Hoos, 1996; 1997], more recent variants use
an efficient 3- opt procedure [Stiitzle, 1998; Stiitzle and Hoos, 2000]. Re-
sults for these latter variants suggest that M MAS can find optimal solu-
tions for TSP instances with a few hundred vertices up slightly more than
1,000 vertices rather efficiently, i.e., in a few CPU minutes to around one
CPU hour on a UltraSparc | 167 MHz processor). Limited experiments
indicate that by using an LK algorithm as an subsidiary local search proce-
dure, the performance of MMAS can be significantly improved. However,
probably because the LK implementation used for these experiments was
not efficient enough, of this lates M MAS algorithm did not reach the per-
formance of the currently best SLS algorithms for the TSP.



352

Population-based Algorithms for the ATSP

All previously described population-based algorithms for the symmetric
TSP can be extended to the ATSP in a rather straightforward way. In most
cases, the only major difference lies in the use of a different subsidiary lo-
cal search procedure that is suitable for the ATSP, such as r educed 3-
opt . Additionally, some of the operators used in the context of Evolution-
ary Algorithms require adaptations, and for ACO algorithms, asymmetric
pheromone trail levels need to be supported.

Empirical results suggest that the ATSP algorithms thus obtained can
typically find optimal solutions of asymmetric TSPLIB instances with up
to 170 vertices within reasonable run-times [Merz and Freisleben, 1997;
Stiitzle and Hoos, 2000; Stiitzle, 1998; Walters, 1998]. When taking into
account the differences between the machines that were used for these ex-
periments, the best performance is probably achieved by the ATSP version
of Walter’s repair-based MA, followed by the population-based ILS variants
and MAX-MIN Ant System. Recently, very good results were also re-
ported for the memetic algorithm of Buriol, Franca, and Moscato [Buriol et
al., 2002], which uses a specialised local search algorithm for the ATSP as
its subsidiary local search procedure. However, there is some indication that
none of these population-based algorithms reaches the performance of the
best known SLS algorithms for the ATSP [Johnson et al., 2002b], but further
empirical analysis is required for a conclusive performance comparison.

8.5 Further Readingsand Related Work

The literature on the TSP is vast and it is practically impossible to ade-
quately cover in a single book chapter all relevant work on SLS algorithms
for the TSP, not even to mention other types of TSP algorithms. ¢From
this perspective, it is not surprising that there are a number of books that
are entirely devoted to the TSP. A classic in the TSP literature the book by
Lawler, Lenstra, Rinnooy Kan, and Shmoys (editors) [Lawler et al., 1985]
which covers many aspects of TSP research up to the year 1985. The book
by Reinelt [Reinelt, 1994], published in 1994, provides an extensive and in-
depth computational study of construction heuristics and local search algo-
rithms. The recently published book by Gutin and Punnen (editors) [Gutin



8.5. FURTHER READINGS AND RELATED WORK 353

and Punnen, 2002] covers many aspects of the TSP and TSP solving, in-
cluding exact algorithms, SLS methods, empirical analysis of heuristic TSP
algorithms, and problems related to the TSP.

In the following, we provide a few selected references to important work
related to the SLS methods covered in this chapter, starting with iterative
improvement algorithms. The 2. 5- opt algorithm enhances 2- opt by
additionally checking whether a tour can be improved by inserting a ver-
tex between the two vertices incident to the first edge that is removed in
a 2-exchange move. 2. 5- opt was shown to obtain substantially better
tours than 2- opt at only a slight increase of computation time [Bentley,
1992]. The Or - opt algorithms generalises 2. 5- opt by allowing the
tour segment that is inserted between two tour neighbours to be of maximal
length three (the length of the segment is one in the case of 2. 5- opt ) [Or,
1976]; however, no results for Or - opt using current speed-up techniques
are available and therefore its performance potential is unclear.

The Generalised Insertion Procedure (GENI) combines a construction
heuristic with a local search algorithm that is applied each time after adding
a vertex to the current partial tour [Gendreau et al., 1992]. This procedure
is extended by a post-optimisation phase, during which iteratively the fol-
lowing steps are applied: remove a vertex, apply a local search and then
re-insert the vertex into the tour [Gendreau et al., 1992]. The Hyperopt
algorithm combines enumerative algorithms with local search. It is based
on the deletion of a set of edges and then enumerating all possible ways
of reconnecting the resulting tour segments and individual vertices [Burke
et al., 2001]. However, the computational results obtained so far are not
promising, neither for symmetric TSP [Johnson et al., 2002a] nor for AT-
SPs [Johnson et al., 2002b].

There are several other SLS algorithms for the TSP that are based on (ex-
ponentially) large neighbourhoods. Computational results for Dynasearch
extensions (see Section 2.1 of Chapter 2) of the 2-exchange, 2.5-exchange
and 3-exchange neighbourhoods and iterated versions of Dynasearch show
promising performance of this approach, although they do not appear to be
competitive with LK or iterated LK [Congram, 2000]. Ejection chains are
another type of variable-depth search algorithms, which is closely related to
LK [Glover, 1996a; Rego and Glover, 2002]. Compared to LK they allow
more flexibility in building complex search steps (for more details we refer
to [Rego and Glover, 2002]).



354

Apart from tour-merging (see Section 8.3), two further approaches make
use of ILS algorithms as a sub-routine. These are the dynamic programming
algorithm of Balas an Simonetti [Balas and Simonetti, 2001], which tries to
find a best way of locally reordering a tour, and the multi-level approach by
Walshaw [Walshaw, 2002].

Basically all of the ‘simple’ SLS techniques covered in Chapter 2, Sec-
tion 2.2, have been applied to the TSP. Although in some cases, reasonably
good performance was reported (mainly for TSPLIB instances), none of
these SLS algorithms appears to be competitive with the best performing
ILS or population-based algorithms [Johnson and McGeoch, 1997; Johnson
et al., 2002a]. However, the interested reader may learn more about these
TSP algorithms from the following references.

Simulated Annealing is mainly covered in the book chapter by Johnson
and McGeoch [Johnson and McGeoch, 1997], although also several ear-
lier approaches exist. Tabu Search algorithms based on short term tabu
memory are described by Knox [Knox, 1994] and Malek et al. [Malek
et al., 1989], while more advanced Tabu Search strategies are applied by
Fiechter [Fiechter, 1994] and Dam and Zachariason [Zachariasen and Dam,
1996]. Among the Dynamic Local Search methods, two approaches were
applied to the TSP: Guided Local Search by Voudouris and Tsang [Voudouris
and Tsang, 1999b] and the Noising Method by Charon and Hudry [Charon
and Hudry, 2000].

There is a large body of literature on population-based SLS algorithms
for the TSP, in particular on Evolutionary Algorithms. In addition to the
two Evolutionary Algorithms presented in Section 8.4, a few other recent
algorithms are worth mentioning (for an overview of earlier approaches we
refer to [Johnson and McGeoch, 1997; Merz and Freisleben, 2002; Potvin,
1996]). Nagata and Kobayashi [Nagata and Kobayashi, 1997] presented
an EA with edge assembly crossover, which constructs offspring based on
the union of the edge sets of the two parents and then applies a greedy
construction algorithm to merge sub-tours. This EA does not use explicit
local search, however, the recombination operator incorporates some local
search features. Very good performance is reported for the GA of Seo and
Moon [Seo and Moon, 2002], which uses a particular recombination opera-
tor called Voronoi Quantised Crossover.

There are a number of other population-based algorithms that share
some connection to Evolutionary Algorithms, but introduce additional ideas.



8.5. FURTHER READINGS AND RELATED WORK 355

One is the Iterative Partial Transcription (IPT) approach by Maobius et al. [Mdbius
et al., 1999], which can be seen as a local search method that is based

on information exchanges between pairs of solutions. Houdayer and Mar-

tin [Houdayer and Martin, 1999] propose a population-based algorithm that
iteratively generates offspring by choosing k& parents, freezing the common
edges among the % parents, and solving a TSP in which only edges that

are not frozen may be changed. For the various Ant Colony Optimisa-

tion applications to the TSP we refer to the overview article by Stitzle and
Dorigo [Stiitzle and Dorigo, 1999].

A number of extensive computational studies on heuristic TSP algo-
rithms are now available. First and foremost, the 8th DIMACS Implementa-
tion Challenge on the TSP [Johnson et al., 2002a] provides an online collec-
tion of empirical results for a large variety of implementations of construc-
tion heuristics, local search algorithms, and more complex SLS algorithms.
A summary of the results as of July 1, 2001 is available in a book chapter by
Johnson and McGeoch [Johnson and McGeoch, 2002]; the same book also
includes a chapter on computational results with SLS algorithms for the
ATSP [Johnson et al., 2002b]. [ mention forthcoming DIMACS report
if it appears before book deadline — TODO(ts). ] For the most recent
results, we refer the interested to the web-pages, which provide pairwise
performance comparisons of algorithms on sets of TSP instances as well
as results for all algorithms on each single instance available for the imple-
mentation challenge. However, the way in which the challenge results are
presented makes it difficult to draw final conclusions regarding the relative
advantages of many advanced SLS algorithms, whose performance is often
not dominated by any other algorithm on every single instance. This situa-
tion may be improved by using some of the empirical methods presented in
Chapter 4.

Although the 8th DIMACS Implementation Challenge on the TSP pro-
vides extensive empirical results, there are a number of earlier, extensive
studies that are quite relevant. These include the study of construction
heuristics and local search algorithms by Bentley [Bentley, 1992], the pre-
viously mentioned book by Reinelt [Reinelt, 1994], and a book chapter on
local search for the TSP again by Johnson and McGeoch [Johnson and Mc-
Geoch, 1997].



356

8.6 Summary

The TSP is a central problem in combinatorial optimisation with many the-
oretical and practical applications; it also was and still is at the core of at-
tempts to push permanently further the boundary on the size of practically
tractable optimisation problems. State-of-the-art complete TSP algorithms
can solve instances up to several thousand vertices in reasonable computa-
tion times (CPU hours to several CPU days), while the best SLS algorithms
can find solutions whose quality is within fractions of a percent of the opti-
mum for much larger instances with up to millions of vertices.

Construction heuristics can find reasonably good solutions for TSP in-
stances extremely fast. They also play an important role as initialisation pro-
cedures for various SLS algorithms. 2- opt and 3- opt are most prominent
iterative improvement algorithms based on k-exchange neighbourhoods. Var-
ious speed-up techniques, including fixed-radius searches, candidate lists
and don’t look bits, play a crucial role in the design of efficient SLS al-
gorithms for the TSP, particularly in the case of iterative improvement al-
gorithms. Variable-depth search methods, such as the Lin-Kernighan al-
gorithm, can find higher-quality solutions, but typically require longer run-
times. They also require considerable fine-tuning and are substantially harder
to implement than simpler iterative improvement algorithms, such as 2-
opt and 3- opt .

Somewhat surprisingly, current empirical evidence suggests that one of
the conceptually simplest hybrid SLS methods, Iterated Local Search, gives
rise to some of the best performing TSP algorithms currently known. Only
if extremely high solution qualities are required, other approaches may be
preferable, such as the tour merging approach, which uses an ILS algorithm
as a subroutine in a more complex, hybrid search algorithm. Population-
based extensions of ILS or slightly more complex SLS algorithms, such
as Memetic Algorithms or Ant Colony Optimisation also achieve very high
performance; however, there is currently no strong evidence that these population-
based algorithms achieve any performance advantage over conceptually more
simple state-of-the-art ILS algorithms for the TSP.

The TSP is an ideal playground for the design and analysis of SLS
algorithms. Firstly, there is substantial evidence that the SLS techniques
underlying the best-performing TSP algorithms often achieve excellent or
even state-of-the-art performance for many other combinatorial optimisa-



8.7. EXERCISES 357

tion problems. This is the case for many ACO algorithms as well as Evo-
lutionary Algorithms (in particular, for Memetic Algorithms). Secondly,
because the TSP is easy to understand and does not involve side constraints
that complicate algorithm design, it is particularly well suited for gaining
practical experience in the design and implementation of high performance
SLS algorithms for combinatorial optimisation problems.

8.7 Exercises

Exercise 8.1 (Medium) In Section 8.1 we stated that adding penalties
p; to each vertex v; and defining modified edge weights w'((v;,v,)) =
w((vi, vj)) + p; + p; preserves optimality of tours, but it may result in dif-
ferent one trees. Show that the optimality of tours is preserved. Give an
example of a weighted graph, where the optimum one-tree changes after the
addition of appropriate vertex penalites.

Exercise 8.2 (Easy) Specify all the possible ways of re-wiring the tour
segments in a 3-exchange algorithm after 3 edges were deleted. How many
possibilities to exist when applying a 4-exchange algorithm?

Exercise 8.3 (Implementation, easy) The power of the pruning achieved
by fixed-radius search around a vertex v; depends strongly the nearest neigh-
bour indices of v;’s tour neighbours. For example, when edge (v;, v;) is bro-
ken and v; is the closest vertex to v; no search at all is done. Analyse the
distribution of the nearest neighbour indices for RUE, RCE, TSPLIB, and
RDM instances.

Exercise 8.4 (Easy) Prove the following statement. If fixed radius near
neighbour searches for all vertices do not result in any improving 2-exchange
move, the current tour is 2- opt .

Exercise 8.5 (Medium) Explain how the complex steps in the Lin-Kernighan
algorithm, which were introduced as sequences of 1-exchange moves, can
also be interpreted as sequences of 2-exchange moves.



358

Exercise 8.6 (Medium) In the original Lin-Kernighan algorithm the set of
deleted edges X and the set of added edges Y is required to be disjoint. Why
may the variable depth search be unbounded, if this criterion is dropped?

What if we require instead that “no deleted edge can be added subse-
quently” or “no added edge can be deleted subsequently”? Can either of
these criteria lead to unbounded searches?

Exercise 8.7 (Implementation; easy) Study the influence of the don’t look
bit resetting strategy after a perturbation in ILS. Consider the following
three re-setting strategies: (i) reset all don’t look bits to zero, (ii) reset only
don’t look bits of end-points of broken edges, and (iii) reset don’t look bits
of the end-points of broken edges plus the 25 tour neighbours.

Exercise 8.8 (Implementation; medium) One possibility to obtain a stochas-
tic local search procedure from an, at least in principle, deterministic k-opt
algorithm is to generate a random permutation of the vertex indices and to
choose starting vertices for the searches of improving moves according to
this random order. (This is a possibility also considered in the accompany-
ing code). Study the cost distribution of the local optima returned by such a
randomised local search procedure by following these steps:

1. Generate one nearest neighbour tour, one greedy tour and one tour by
random insertion.

2. Apply to each of these tours 10,000 times a randomised 2- opt al-
gorithm, which includes all the available speed-up techniques on in-
stances from TSPLIB that are larger than 500 vertices.

3. Generate the resulting empirical distributions and try to approximate
these with known distributions from statistics.

4. Compare the cost distributions regarding location and shape to a ran-
dom restart heuristics that starts a deterministic local search from
10,000 random initial solutions.

[ The implementation exercises above make use of TSP solvers that will
be provided on the companion webpage for SLS book. ]



