MAX-SAT and MAX-CSP

MAX-SAT and MAX-CSP are the optimisation variants of SAT and CSP.
These problems are theoretically and interesting, because they are among
the conceptually simplest combinatorial optimisation problems, yet instances
of optimisation problems from many application domains can be repre-
sented as MAX-SAT or MAX-CSP in an easy and natural way. SLS algo-
rithms are amongst the most powerful and successful methods for solving
large and hard MAX-SAT and MAX-CSP instances.

In this chapter, we first introduce MAX-SAT. Next, we present some of
the most powerful SLS algorithms for solving various types of MAX-SAT
instances and give an overview of results on their behaviour and relative
performance. In the second part of this chapter, we introduce MAX-CSP
and discuss SLS methods for solving the general problem as well as the
closely related overconstrained pseudo-Boolean and Integer Optimisation
problems.

7.1 TheMAX-SAT Problem

MAX-SAT can be seen as a generalisation of SAT for propositional formu-
lae in conjunctive normal form in which, instead of satisfying all clauses of
a given CNF formula F' with nvariables and m clauses (and hence F' as a
whole), the objective is to satisfy as many clauses of F' as possible. A solu-
tion to an instance of this problem is a variable assignment, i.e., a mapping

261

262

of variables in I to truth values, that satisfies a maximal number of clauses
in I

Definition 7.1 ((Unweighted) MAX-SAT)

Given a CNF formula F' = A", \/%_ 1;; let f(F,a) be the
number of clauses in F' that are unsatisfied under variable as-
signment a. The (Unweighted) Maximum Satisfiability Problem
(MAX-SAT) istofind a* € argmin{f(F,a) | a € Assign(F)} =
argmax{m — f(F,a) | a € Assign(F)}, i.e., a variable assign-
ment «* that maximises the number of the satisfied clauses in
F. O

Remark: Maximising the number of satisfied clauses in F’
is equivalent to minimising the number of unsatisfied clauses.
Although MAX-SAT is intuitively defined as a maximisation
problem, it is often formally more convenient to consider the
equivalent minimisation problem; this is the reason for using
the objective function f(F, a), whose value is to be minimised,
in our definition of MAX-SAT. In the following we will con-
sider MAX-SAT as a minimisation problem.

This definition captures the search variant of MAX-SAT; the evaluation
variant and associated decision problems can be defined in a similar way.
Given a CNF formula F', in the evaluation variant, the objective is to de-
termine the minimum number of clauses unsatisfied under any assignment;
The associated decision problem for a given solution quality bound b is to
determine whether there is an assignment that leaves at most b clauses in
F unsatisfied. Note that SAT is equivalent to the decision variant of un-
weighted MAX-SAT with solution quality bound b = 0, i.e., to deciding
whether for a given CNF formula F' an assignment a exists such that the
number of clauses in F' unsatisfied under «a is equal to zero.

Example 7.1: A Simple MAX-SAT Instance

7.1. THE MAX-SAT PROBLEM 263

Let us consider the following propositional formula in CNF:

N (_'1'2 V 1'1)
N (_'1'1 V) V _|1‘3)

The minimum number of clauses in F' that are unsatisified under any as-
signment, f(F,a*), is one; two of the (many) assignments that achieve
this optimal solution quality are 1 = z9 = 23 = 24, = x5 = L and
=1, xo=x3=x4=25=TT.

It may be noted that while the SAT problem is defined for arbitrary propo-
sitional formulae, the definition of MAX-SAT is restricted to formulae in
CNF. Furthermore, different from SAT, MAX-SAT is not invariant under
certain logical equivalence transformations, i.e., there exist MAX-SAT in-
stances whose underlying CNF formulae are logically equivalent but whose
solutions are different. In particular, the solutions of a MAX-SAT instance
can change when introducing multiple copies of clauses in the given CNF
formula; in unweighted MAX-SAT the number of copies of a clause can be
used to express its importance relative to other clauses. As a consequence,
standard simplification techniques for SAT are not applicable to MAX-SAT,
including unit propagation and pure literal reduction.

Weighted MAX-SAT

In many applications of MAX-SAT, the constraints represented by the CNF
clauses are not all equally important. These differences can be represented
explicitly and compactly using weights associated with each clause of a
CNF formula.

Definition 7.2 (Weighted CNF Formulae)

A weighted CNF formula is a pair (F,w) where F' is a CNF

formula FF = A, ¢; with ¢; = \/52 1y, and w : {¢; | i €

264

[1...m]} — R" isa function that assigns a positive real value
to each clause of F'; w(c;) is called the weight of clause ¢;. O

Intuitively, the clause weights in a weighted CNF formula reflect the relative
importance of satisfying them; in particular, appropriately chosen clause
weights can indicate the fact that satisfying a certain clause can be more
important than satisfying several other clauses. Weighted MAX-SAT is a
straightforward generalisation of unweighted MAX-SAT in which the ob-
jective is to minimise the total weight of the unsatisfied clauses rather than
just their number.

Definition 7.3 (Weighted MAX-SAT)

Given a clause weighted CNF formula F' = (F, w), let f(F", a)

be the total weight of the clauses of F' unsatisfied under assign-
menta, i.e., f(F',a) = > {w(c) | ¢; is aclause of F that is
unsatisfied under a}. The Weighted Maximum Satisfiability Prob-

lem (Weighted MAX-SAT) is to find a variable assignment a*

that maximises the total weight of the satisfied clauses in F,

i.e., a* € argmin{f(F',a) | a € Assign(F)} = argmax{f —
f(F',a) | a € Assign(F)},where f = Y {w(¢;) | ¢; is a clause of F'}.
O

Although the definition allows for real-valued clause weights, it is easy to
show that integer clause weights are sufficient for expressing arbitrary rel-
ative importance relations between clauses. Primarily for historically mo-
tivated efficiency reasons, many implementations of MAX-SAT algorithms
support only integer clause weights. (Many older types of microprocessors
performed integer operations substantially faster than floating point oper-
ations; this is not the case for modern CPUs.) However, because in most
programming languages the range of integer data types is very limited com-
pared to floating point data types, such implementations can sometimes not
handle certain types of MAX-SAT instances.

Many combinatorial optimisation problems contain logical conditions
that have to be satisfied for any feasible solution; these conditions are often
called hard constraints, while constraints whose violation does not preclude

7.1. THE MAX-SAT PROBLEM 265

feasibility are referred to as soft constraints. When representing such prob-
lems as weighted MAX-SAT instances, the hard constraints can be captured
by choosing the weights of the corresponding CNF clauses high enough
that no combination of soft constraint clauses can outweigh a single hard
constraint clause. The decision problem with solution quality bound b asso-
ciated with such a weighted MAX-SAT instance, where b is lower than the
weight of a single hard constraint clause, but at least as high as the com-
bined weight of any set of soft constraint clauses, then accurately represents
the given problem; in particular, any solution to such a weighted MAX-SAT
instance corresponds to a feasible solution of the underlying combinatorial
optimisation problem.

Example 7.2: A Simple Weighted MAX-SAT Instance

Consider the formula F' from Example 7.1 with the following clause weights:

w(c1) = w(—xq) = 2
w(cy) = w((—zyV 1) =1
w(es) = w(—x V-V -oxg) = 7
w(cy) = w(zy V) = 3
w(cs) = w(—xyVx3) = 7
w(cg) = w(—xsV x3) = 7

The total weight of the clauses unsatisfied under assignment z; = L, x5 =
x3 = x4 = x5 = 1 IS 1, which is the optimal solution quality for this
weighted MAX-SAT instance (F, w).

Furthermore, when considering this weighted MAX-SAT instance with so-
lution quality bound 6, clauses cs, c5, and cq can be seen as hard constraints
while all other clauses represent soft constraints. The assignmentz; = xy =
x3 = x4 = x5 = L, which was optimal for the unweighted MAX-SAT in-
stance F', has objective function value 7 and is hence not a feasible solution
in this context.

266

Complexity and Approximability Results

MAX-SAT (unweighted as well as weighted) is an A/P-hard optimisation
problem, since SAT can be reduced to MAX-SAT in a straight-forward way.
Interestingly, while 2-SAT, the restriction of SAT to CNF formulae with
clauses of length 2, can be solved in polynomial time, MAX-2-SAT, the
corresponding restriction of MAX-SAT, is known to be N“P-hard, as is
MAX-3-SAT, i.e., MAX-SAT for CNF formulae with clause length 3.

However, there are polynomial-time algorithms for MAX-SAT that are
guaranteed to find solutions within a certain range of the optimum for ar-
bitrary MAX-SAT instances. The first such approximation algorithm is a
relatively simple greedy construction method that was proposed and shown
to solve any weighted MAX-SAT instance within a factor (approximation
ratio) of at most 2 from the respective maximum total weight of the clauses
satisfied under any variable assignment [Johnson, 1974]. (More recently, it
has been shown that Johnson’s algorithm guarantees an approximation ratio
of 1.5 [?].)

Since 1994, a series of polynomial-time algorithms with substantially
improved approximation ratios has been introduced [?; Goemans and Williamson,
1994; 1995; Feige and Goemans, 1995; ?; ?; Asano and Williamson, 2000];
the most recent of these guarantees an approximation ratio of 1.275 [Asano
and Williamson, 2000]. (Assuming the correctness of a conjecture by Uri
Zwick [?], that is supported by numerical evidence, this latter result can be
improved to 1.201 [Asano and Williamson, 2000].) For the special cases
MAX-3-SAT and MAX-2-SAT, the best approximation algorithms guaran-
tee solutions within 8/7=1.1429 [?] and 1.075 [Feige and Goemans, 1995;
2], respectively. It is interesting to note that a simple iterative improvement
algorithm with a non-oblivious evaluation function (see Section 7.2) has
been proven to achieve a worst-case approximation ratio of 2% /(2% — 1) for
MAX-k-SAT [Khanna et al., 1994b].

There are limitations on the theoretical performance guarantees that can
be obtained from polynomial-time algorithms for MAX-SAT: If P £ NP,
there exists no polynomial-time approximation algorithm for MAX-3-SAT,
and hence for MAX-SAT, with a (worst-case) approximation ratio lower
than 8/7=1.1429; for MAX-2-SAT, an analogous result holds rules out ap-
proximation ratios lower than 1.0472 [Hastad, 1997; 2001]. Arbitrarily im-
proved approximation ratios « can be obtained at the cost of run-times that

7.1. THE MAX-SAT PROBLEM 267

are exponential in the size of MAX-SAT instance and depend on the desired
value of o [Dantsin et al., 1998]. It is worth noting that approximation algo-
rithms for MAX-SAT such as the ones mentioned above can be empirically
shown to achieve much better solution qualities for many types of MAX-
SAT instances; however, their performance is usually substantially inferior
to that of state-of-the-art SLS algorithms for MAX-SAT (see, e.g., [Hansen
and Jaumard, 1990]).

Randomly Generated MAX-SAT Instances

As in the case of SAT, various classes of randomly generated problem in-
stances play a prominent role in the empirical analysis of the performance
and the behaviour of MAX-SAT algorithms. Uniform Random-3-SAT in-
stances have been used in many studies; typically, the respective test-sets are
sampled from overconstrained distributions, i.e., the clauses per variable ra-
tio is larger than the critical value of approximately 4.3 and the instances
are unsatisfiable with very high probability (see also Chapter ??, page ??).

A number of empirical studies have used test-sets obtained from the ran-
dom clause length model, in which each of the possible 2n literals over n
variables is included with a fixed probability in any clause (see Chapter ??,
page ??). A well-known set of such instances is part of the DIMACS col-
lection of SAT benchmark instances; these j nh instances have 100 clauses
and between 800 and 900 clauses each, including satisfiable and unsatis-
fiable instances. Sets of weighted MAX-SAT instances have been derived
from test-sets of random clause length formula, including the j nh instances,
by determining for each clause an integer weight between 1 and 1,000
uniformly at random [Resende et al., 1997; Yagiura and Ibaraki, 1998;
2001]. Particularly the weighted j nh (wj nh) instances have been widely
used for evaluating the performance of MAX-SAT algorithms.

A range of test-sets of weighted MAX-SAT has been introduced by Hoos
etal.; these consist of Uniform Random-3-SAT instances with truncated dis-
cretised Gaussian clause weight distributions [Hoos et al., in preparation].
The weight distributions are characterised by three parameters p, o’, and 4,
where 1 is the mean, ¢’ the standard deviation (before truncation), and ¢
the granularity of the underlying Gaussian probability distribution, which
is symmetrically truncated to the interval [1,2u — 1] (see Figure ??); the
granularity specifies the minimum difference between non-identical clause

268

max-cwds-1.eps max-cwds-2.eps

Figure 7.1: Truncated discretised Gaussian distributions used for generat-
ing clause weights for Weighted Uniform Random-3-MAXSAT test-sets;
distributions for x = 500 and various values of ¢’ (left) and § (right).

weights and hence together with the range [1, 2« — 1] the number of values
that clause weights can take. It may be noted that for o/ = 0 or 6 > 2y, all
clause weights are identical, which renders the respective instances equiva-
lent to unweighted MAX-SAT instances. Furthermore, for very large values
of o'/, the clauese weight distributions approach a uniform distribution
over the interval [1,2u — 1]. These test-sets have been designed and used
for investigating the impact on the variance and granularity on the perfor-
mance of MAX-SAT algorithms.

MAX-SAT Encodings of Other Combinatorial Problems

Many AP-hard combinatorial optimisation problems can be quite easily
and naturally encoded into MAX-SAT. A good example for this is the fol-
lowing Minimum-Cost Graph Colouring Problem (Min-Cost GCP): Given
an (undirected) edge-weighted graph G = (V, E, w) and an integer k, de-
termine a minimum cost k-colouring of GG, where a k-colouring of G is a
mapping a that assigns an integer from the interval [1..%] to each vertex in V'
and the cost of a colouring a is the sum of all edge weights w(e) for which
e is an edge whose two incident vertices are assigned the same colour under
Qa.

Any instance G of this problem can be transformed into a weighted
MAX-SAT instance F'(G) as follows: For each edge e = {v, v’} and colour

7.1. THE MAX-SAT PROBLEM 269

¢, we create a clause ¢, = -z, V -z, With weight w(e) (the weight
of edge e in GG). Furthermore, for each vertex v in G, we create a clause
¢, = V| 2,0 With weight & = max{w, | v € V} + 1, where w, =
Y {w(e) | e € Eand e isincident to v}; intuitively, @ is defined in such a
way that it just exceeds the maximum total weight of all edges incident to
any particular vertex in . It is easy to see that the optimal solution of the
weighted MAX-SAT instance F'(G) thus obtained corresponds exactly to
the optimal solution of the given Min-Cost GCP instance GG. Furthermore,
under the 1-flip neighbourhood, the locally optimal candidate solutions of
F(@G) correspond exactly to the k-colourings of G. MAX-SAT-encoded
Min-Cost GCP instances with integer weights have been used in some stud-
ies on SLS algorithms for MAX-SAT [Yagiura and Ibaraki, 1998; 2001;
Hoos et al., in preparation].

Another problem that can be easily encoded into weighted MAX-SAT is
the Minimum-Cost Set Covering Problem (Min-Cost SCP), in which given
a set .S, a collection C' = {Sy,...,5,} of subsets S; C S, and a weight
function w : C' — R". The objective is to find a minimal cost set cover of
S, where a vertex cover of S is a subset C’ of C such that the sets in C’ cover
all elements of S, i.e., | J{C'} = S, and the cost of C" is the total weight of
its elements, i.e., > {w(S") | S’ € C'}. This problem is N'P-hard and has
applications, e.g., in Boolean circuit optimisation. MAX-SAT encodings of
Min-Cost SCP instances from the ORLIB benchmark library [?] have been
used for evaluating the performance of MAX-SAT algorithms [Yagiura and
Ibaraki, 1998; 2001; Hoos et al., in preparation].

Other hard combinatorial optimisation problems that have been encoded
into MAX-SAT and used in the context of various studies on MAX-SAT al-
gorithms include time-tabling problems (including a real-world university
class scheduling problem [Cha et al., 1997]) [Yagiura and lbaraki, 1998;
2001; Hoos et al., in preparation], the problem of finding most probable
explanation in Bayesian networks (MPE) [Park, 2002], and the problem
of minimising the crossings that arise when embedding level-graphs into a
plane [?; Hoos et al., in preparation]. In almost all cases, these problems
contain hard and soft constraints, which are captured by appropriately cho-
sen weights of the respective CNF clauses. Furthermore, all of these prob-
lems have real-world applications in diverse areas, such as system diagnosis
and database design.

270

[hh/ts: Space permitting, we’d like to add one more section on the
search space structure of various types of MAX-SAT instances.]

7.2 SLSAlgorithmsfor MAX-SAT

Many SLS methods have been applied to MAX-SAT leading to a large num-
ber of algorithms for unweighted and weighted MAX-SAT. In this section,
we present some of the most prominent and best-performing algorithms,
including straightforward applications of SLS algorithms for SAT to un-
weighted MAX-SAT, variants of WalkSAT, Dynamic Local Search, and
Tabu Search, and Iterated Local Search algorithms. Additionally, we dis-
cuss some SLS algorithms that are based on larger neighbourhoods and non-
oblivious evaluation function; these approaches are rather specific to MAX-
SAT. Other MAX-SAT algorithms based on other SLS methods, such as
Simulated Annealing, GRASP, or Ant Colony Optimisation, will be briefly
mentioned in Section 7.4.

Solving MAX-SAT Using SL S Algorithmsfor SAT

Any SLS algorithm for SAT can be applied to unweighted MAX-SAT in a
straightforward way. The only modification required in this context is the
addition of a simple mechanism that keeps track of the incumbent candidate
solution and returns it at the end of the search process, provided its solution
quality meets a given bound, if such a bound has been specified as an input
to the algorithm. Hence, in principle any of the SLS algorithms for SAT
described in Chapter 6 can be used for solving unweighted MAX-SAT.

Itis not clear that SLS algorithms that are known to perform well on SAT
can be expected to show equally strong performance on unweighted MAX-
SAT. There is some empirical evidence that for long run-times, GWSAT ob-
tains consistently higher solution qualities than a number of earlier SLS al-
gorithms for MAX-SAT, including algorithms based on Simulated Anneal-
ing and Tabu Search, when applied to Uniform Random-3-SAT instances of
varying constrainedness [Selman et al., 1994b; Hansen and Jaumard, 1990];
however, the different termination criteria used in these comparative studies
render these results somewhat inconclusive (see also ??). Similar results

7.2. SLSALGORITHMS FOR MAX-SAT 271

have been obtained for GSAT/TABU [Battiti and Protasi, 1997b]; these will
be discussed below in more detail.

More recent results show that Novelty™, one of the best-performing SLS
algorithms for SAT known to-date, performs poorly compared to state-of-
the-art SLS algorithms for MAX-SAT (which will be discussed below) on
Uniform Random-3-SAT instances; this is particularly the case for highly
constrained instances [Hoos et al., in preparation]. Intuitively, WalkSAT
algorithms such as Novelty™ have difficulties in selecting effective search
steps in situations where a relatively large number of clauses is unsatisfied:
In each search step they select the variable to be flipped from an unsatis-
fied clause that is uniformly chosen at random; but with many unsatisfied
clauses, only few of which contain variables whose flip leads to improved
candidate solutions, selecting an unsatisfied clause from which such a vari-
able can be selected becomes rather unlikely, particularly for highly con-
strained instances in which all candidate solutions, including optimal qual-
ity solutions, have a high number of unsatisfied clauses. GSAT algorithms,
on the contrary, do not suffer from this problem, since they allow the vari-
able whose flip achieves the maximal improvement in solution quality to be
chosen with a probability that is independent from the number of unsatisfied
clauses and instance constrainedness.

There are very few results on the performance of dynamic local search
algorithms for SAT for unweighted MAX-SAT; recent empirical results sug-
gest that SAPS, a state-of-the-art SAT algorithm (see Chapter 6, page ??),
outperforms GLS [Mills and Tsang, 2000] in terms of the CPU time re-
quired for finding quasi-optimal (best known) solutions for overconstrained
Uniform Random-3-SAT instances, but does not reach the performance of
ILS-HSS (a state-of-the-art Iterated Local Search algorithm for MAX-SAT
described later in this section) on these instances [Tompkins and Hoos, in
preparation]. Interestingly, an RTD analysis suggests that GLS tends to suf-
fer from search stagnation, whereas this is not the case for SAPS, which
shows regular exponential RTDs.

WalkSAT Algorithmsfor Weighted MAX-SAT

GSAT and WalkSAT algorithms can be generalised to weighted MAX-SAT
by using the objective function for weighted MAX-SAT, i.e., the total weight
of the clauses unsatisfied under a given assignment, as the evaluation func-

272

tion based on which the variable to be flipped in each search step is selected.

A WalkSAT variant for weighted MAX-SAT with explicit hard and soft
constraints was proposed by Jiang, Kautz, and Selman in 1995 [Jiang et al.,
1995]. Applied to standard weighted MAX-SAT, this algorithm closely re-
sembles WalkSAT/SKC, but differs in that it allows random walk steps even
in situations where “zero damage” flips are available (see Chapter 6, Sec-
tion ??). When hard constraints are explicitly identified (via a lower bound
on the weights of CNF clauses that are to be treated as hard constraints),
this WalkSAT algorithm restricts the clause selection in the first stage of
the variable selection mechanism to unsatisfied hard constraint clauses un-
less all hard constraints are satisfied by the current candidate assignment.
This WalkSAT algorithm for weighted MAX-SAT achieved impressive re-
sults on various sets of MAX-SAT-encoded Steiner tree problems [Jiang et
al., 1995]; it should be noted, however, that these results crucially rely on
a particularly effective encoding of the original Steiner tree problems into
MAX-SAT.

In principle, the 2-stage variable selection mechanism underlying all
WalkSAT algorithms can be extended to MAX-SAT in two different ways:
by using the objective function for weighted MAX-SAT in the second stage
as in the WalkSAT variant by Jiang et al. (we mechanism), and by con-
sidering clause weights in the selection of an unsatisfied clause in the first
stage (wcs mechanism) [Hoos et al., in preparation]. The motivation behind
the latter mechanism is based on the following observations: In situations
where many clauses are unsatisfied, the probability for selecting the best
clause, i.e., the unsatisfied clause that contains one of the variables whose
flip leads to a maximal improvement in the objective function value, can
be very small when basing this selection on a uniform distribution as in
standard WalkSAT. By selecting an unsatisfied clause ¢ with a probability
proportional to the weight of ¢, the WalkSAT search process becomes more
focused on satisfying clauses with high weights. (This probabilistic clause
selection method is analogous to the well-known roulette-wheel selection
used in many Evolutionary Algorithms; see also Chapter 2, Section ??.)

The we and wcs mechanisms can be used individually or combined,
yielding three weighted MAX-SAT variants of any WalkSAT algorithm for
SAT. A recent empirical study indicates that these variants of WalkSAT/SKC
are typically outperformed by the respective Novelty™ variants (note that
an analogous situation holds for the SAT versions of these WalkSAT algo-

7.2. SLSALGORITHMS FOR MAX-SAT 273

rithms). Furthermore, Novelty*/wcs+we typically performs better than the
two other variants and standard Novelty™*, except for satisfiable weighted
MAX-SAT instances (i.e. instances (F,w) where F' is a satisfiable CNF
formula), for which standard Novelty™ tends to outperform the wcs and we
variants [Hoos et al., in preparation]. (On the wj nh instances, Novelty*/wcs
also tends to perform better than Novelty"/wcs+we.) Noveltyt/wcs+we
tends to find optimal solutions to the wj nh instances faster (both in terms
of CPU time and search steps) than other state-of-the-art algorithms for
weighted MAX-SAT, including the GLS and ILS-HSS algorithms described
below. On other types of weigthed MAX-SAT instances, including Weighted
Uniform Random-3-SAT instances of various constrainedness, none of the
Novelty™ variants appears to reach state-of-the-art performance.

However, for various types of MAX-SAT-encoded instances of other
problems, including minimum-cost graph colouring or minimal crossing
level graphs, Novelty */wcs+we appears to find quasi-optimal (i.e., best known)
solutions in significantly less CPU time than other high-performance algo-
rithms for MAX-SAT, such as ILS-HSS or GLS, and appears to be the best-
performing MAX-SAT algorithm known todate [Hoos et al., in preparation].

Dynamic L ocal Search Algorithmsfor Weighted MAX-SAT

Generalising DLS algorithms for SAT to weighted MAX-SAT raises an
interesting issue: how should the dynamically changing clause penalties
used within DLS interact with the fixed clause weights that are part of
any weighted MAX-SAT instance? The first DLM algorithm for weighted
MAX-SAT, proposed by Yi Shang and Benjamin Wah, used an evaluation
function of the form ¢’((F, w), a) = > {clIp(i)+w(i) | clause 7 is unsatisfied by a},
where cIp(i), the penalty associated with clause i, is dynamically adjusted
during the search process as in the basic DLM algorithm for SAT, and w (i)
is the clause weight as specified in the given weighted MAX-SAT instances
(F,w) [Shang and Wah, 1997]. Different from Basic DLM for SAT, the
local search procedure underlying this first DLM algorithm for weighted
MAX-SAT is a iterative first improvement algorithm (based on the standard
1-flip neighbourhood relation). There is some evidence that this algorithm
performs better than the WalkSAT variant by Jiang et al., but does not reach
the performance of the Novelty*/wsc variants on the wj nh instances w.r.t.
to the solution quality reached after a fixed number of search steps [Mills

274

and Tsang, 1999a].

Another approach for integrating clause penalties and clause weights
has been followed in a straight-forward generalisation of DLM-99-SAT to
weighted MAX-SAT [?]; this variant of DLM differs from the SAT version
only in the initialisation of the clause penalties and in the parameter settings
o+, 67, and ¢*. The weighted MAX-SAT variant initialises the clause penal-
ties to w(i) + 1 (where i is the weight of the respective clause), and chooses
the parameters 6, 6, and 6%, which control the modification of the clause
penalties during the search, individually for each clause i proportional to its
weight w(7). This approach for handling clause weights in the context of a
dynamic local search algorithm differs notably from the one followed in the
first DLM algorithm for weighted MAX-SAT. When applied to the wj nh
instances, DLM-99-SAT for weighted MAX-SAT appears to perform better
than the earlier DLM algorithm by Shang and Wah [Wu and Wah, 1999],
but it typically fails to reach the performance of the Novelty*/wsc variants.

Like DLM, GLSSAT, another high-performance dynamic local search
algorithm for SAT, has been extended to weighted MAX-SAT [Mills and
Tsang, 1999a; 2000]. The resulting GLSSAT variant considers the clause
weights of the given weighted MAX-SAT instance only in the utility value
of a clause, defined as util(a,i) = w(i)/(1 + clp(3)) if clause ¢ is unsat-
isfied under assignment a and zero otherwise. Otherwise, the algorithm is
identical to GLSSAT (see also Chapter ??, page ?7?). It is worth noting that
this approach for handling clause weights is conceptually similar to the one
underlying the WalkSAT/wsc: in both cases, the clause weights are not re-
flected directly in the evaluation function underlying the search process, but
influence the search trajectory in a different way. In GLS for MAX-SAT,
only the penalty values of clauses with maximal utility are increased af-
ter each local search phase; hence, clauses with high weights will typically
receive high penalties, which biases the subsidiary local search algorithm
towards preferentially satisfying them.

On the w nh instances, this GLS variant performs substantially bet-
ter than the previously discussed DLM and WalkSAT algorithms in terms
of solution quality reached after a fixed number of iterations [Mills and
Tsang, 1999a; 2000]. However, when comparing the CPU time required for
finding optimal solutions, both Novelty*/wsc and Novelty*/wsc+we typi-
cally show better performance [Hoos et al., in preparation]. For Weighted
Uniform Random-3-SAT instances, GLS for MAX-SAT generally outper-

7.2. SLSALGORITHMS FOR MAX-SAT 275

forms Novelty*/wsc+we in terms of search steps required for finding quasi-
optimal solutions; but in many cases this performance advantage is insuf-
ficient to amortise the substantially higher time-complexity of search steps
in GLS. For certain types of weighted MAX-SAT instances, such as Uni-
form Random-3-SAT instances with low variance clause weight distribu-
tions, GLS appears to be the best-performing MAX-SAT algorithms known
todate [Hoos et al., in preparation].

However, GLS for MAX-SAT does not reach the state-of-the-art per-
formance of Novelty/wcs+we on various types of MAX-SAT-encoded in-
stances of other problems, such as minimum-cost graph colouring or min-
imal crossing level graphs. Furthermore, limited RTD analyses indicate
that, different from other state-of-the-art MAX-SAT algorithms, such as
Novelty*/wcs+we and ILS-HSS (described below), GLS for MAX-SAT
tends to suffer from stagnation behaviour, which often compromises the ro-
bustness of its performance; this appears to be even the case when all penalty
values are regularly decayed, as in GLSSAT2 [Hoos et al., in preparation].
[hh: We could include illustrative performance results for GLS vs
Novelty™/wcs+we, Noveltyt/wcs on wj nh test-set as an example.]

Tabu Search Algorithmsfor MAX-SAT

Hansen and Jaumard’s Steepest Ascent Mildest Descent (SAMD) algorithm
for unweighted MAX-SAT can be seen as one of the earliest applications
of Tabu Search to MAX-SAT or SAT [?; Hansen and Jaumard, 1990]. (The
name of the algorithm is derived from a formulation of MAX-SAT as a max-
imisation problem.) SAMD can be seen as a variant of GSAT/TABU that
imposes a tabu tenure of t/ steps only on variables flipped in non-improving
steps; variables flipped in improving steps are not declared tabu. Further-
more, SAMD terminates if after a fixed number of search steps no improve-
ment in the objective function value has been achieved. SAMD has been
shown to outperform a standard SA algorithm for MAX-SAT as well as vari-
ous approximation algorithms with theoretical performance guarantees (see
also Section ??) on a number of Uniform Random-£-SAT instances with
k € {2, 3,4} and varying constrainedness [Hansen and Jaumard, 1990]. Al-
though GWSAT has been reported to achieve better solution qualities than
SAMD [Selman et al., 1994b], the differences in the underlying termination
criteria and run-times make a meaningful comparison very difficult [Hansen

276

and Jaumard, 1990; Battiti and Protasi, 1997c].

A tabu-search algorithm that is equivalent to GSAT/TABU without ran-
dom restart has been applied to unweighted MAX-SAT; experimental re-
sults on Uniform Random-3-SAT instances suggest that this variant, per-
forms slightly better than SAMD and might exceed the performance of
GWSAT [Battiti and Protasi, 1997b]. There is also some indication that a
variant of this tabu search algorithm that uses an aspiration criterion (which
allows a search step to be performed regardless of the tabu status of the
corresponding variable if it achieves an improvement in the incumbent can-
didate solution) and a slightly modified tie-breaking rule for choosing one
of several search steps that lead to an identical improvement in objective
function value, achieves further slight performance improvements.

A further variant of tabu search for MAX-SAT, TS-YI, is based on a
first improvement search strategy [Yagiura and Ibaraki, 1998; 2001]. Like
all SLS algorithms for MAX-SAT discussed so far, it is based on the 1-flip
neighbourhood relation and uses the objective function for evaluating the
search steps. The search is started from a randomly chosen assignment,
and none of the variables are tabu. Then, in each step, the neighbourhood
of the current variable assignment is scanned in random order and the first
variable flip that leads to an improving neighbouring variable assignment is
executed. If no improving search step is possible, a minimally worsening
step (w.r.t. to the standard evaluation function) is performed. Any variable
that is flipped is declared tabu for a fixed number t/ of subsequent search
steps. The search process is terminated after a fixed CPU time or a fixed
number of search steps.

TS-YI has been applied to various types of unweighted and weighted
MAX-SAT instances. There is some empirical evidence that for unweighted
MAX-SAT instances generated according to the random clause length model,
this tabu search algorithm appears to perform better than WalkSAT/SKC
(with optimal noise parameter setting) and substantially better than basic
GSAT. For various test-sets of weighted MAX-SAT instances, particularly
MAX-SAT-encoded minimum cost graph colouring, set cover, and time
tabling problems, its performance appears to be worse than that of Walk-
SAT/SKC but substantially better than that of basic GSAT [Yagiura and
Ibaraki, 2001]. While it is not clear how its performance compares to that of
the previously discussed tabu search algorithms for MAX-SAT, there is no
evidence that this algorithm generally reaches or exceeds the performance

7.2. SLSALGORITHMS FOR MAX-SAT 277

of GLS or of the wcs variants of Novelty .

Finally, Robust Tabu Search (RoTS; see also Chapter 2, page ??) has
recently been applied to MAX-SAT [Hoos et al., in preparation]. The RoTS
algorithm for MAX-SAT is closely related to GSAT/TABU for weighted
MAX-SAT. In each search step, one of the non-tabu variables that achieves a
maximal improvement in the total weight of the unsatisfied clauses is flipped
and declared tabu for the next t/ steps. Different from GSAT/TABU, RoTS
uses an aspiration criterion which allows a variable to be flipped regardless
of its tabu status if this achieves an improvement in the incumbent candidate
solution. Additionally, RoTS forces any variable whose value has not been
changed over the last 10n search steps to be flipped (where n is the number
of variables appearing in the given MAX-SAT instance). This diversifica-
tion mechanism helps to avoid stagnation of the search process. Finally,
instead of using a fixed tabu tenure, every n search steps, RoTS randomly
chooses the tabu tenure t/ from an interval [¢/nin, tlmax] according to a uni-
form distribution. The tabu status of variables is determined by comparing
the number of search steps that have been performed since the most recent
flip of a given variable with the current tabu tenure; hence, changes in t/
immediately affect the tabu status and tenure of all variables. An outline of
RoTS for MAX-SAT is given in Figure 7.2. Note that if several variables
give the same best improvement for the evaluation function, one of these
variable is randomly chosen.

Limited empirical results indicate that on the wj nh instances, RoTS re-
quires generally more search steps but in many cases less CPU time than
the weighted MAX-SAT version of GLS for finding optimal solutions; but
it does not reach the performance of the wsc variants of Novelty™ on these
instances. On Weighted Uniform Random-3-SAT instances, RoTS typi-
cally shows significantly better performance than Novelty*/wsc+we, both
in terms of search steps and CPU time required for finding quasi-optimal so-
lutions. In terms of CPU time, it typically also exceeds the performance of
GLS for MAX-SAT for both weighted and unweighted Uniform Random-
3-SAT instances; this performance advantage appears to be particularly pro-
nounced for highly constrained instances [Hoos et al., in preparation].

278

procedure RoTS(F', tlyin, tlmax, maxNolmpr)
input weighted CNF formula F’,
positive integers tlmin, t!max, maxNolmpr
output variable assignment a
n := number of variablesin F';
:= randomly chosen assignment of variablesin F”;

a

a:=a,
k:=0;
repeat

if (k modn = 0) then
tl := random([t!mjn - - - tlmax])
end
v := randomly selected variable whose fip results
in the maximal decreasein g(F’, a)
if g(F', a with v fipped) < g(F’,a) then
a := a with v fipped
elseif 3 variable v that has not been fipped for > 10n steps then
a := a with v fipped
else
v := randomly selected non-tabu variable whose fip results
in the maximal decreasein g(F’, a)
a = a with v fipped

end
if g(F',a) < g(F',a) then a := q;
k:=k+1;
until no improvement in @ for > maxNolImpr steps
return a
end RoTS

Figure 7.2: Algorithmic outline of the Robust Tabu Search for
MAX-SAT. g(F’, a) denotes the total weight of the clauses in
F' unsatisfied under a; a variable is tabu if and only if it has
been flipped during the last t/ search steps. (For details, see
text.)

7.2. SLSALGORITHMS FOR MAX-SAT 279

Iterated Local Search for MAX-SAT

Yagiura and Ibaraki proposed and studied a simple ILS algorithm for MAX-
SAT, ILS-YI, which initialises the search at a randomly chosen assignment,
uses a subsidiary iterative first improvement search procedure, and a per-
turbation phase that consists of a fixed number of (undirected) random walk
steps; the acceptance criterion always selects the better of the two given can-
didate solutions [Yagiura and Ibaraki, 1998; 2001]. While ILS-Y| generally
appears to perform better than GSAT in terms of solution quality reached
after a fixed amount of CPU time, for various sets of benchmark instances,
including MAX-SAT-encoded minimum cost graph colouring problems, its
performance is weaker than that of WalkSAT/SKC or TS-YI. There are
some cases, in particular a large MAX-SAT encoded real-world time-tabling
instance, for which ILS-Y1 appears to perform better than TS-Y| and Walk-
SAT/SKC [Yagiura and Ibaraki, 2001].

Another ILS algorithm for MAX-SAT was recently proposed by Hoos,
Smyth, and Stiitzle [Hoos et al., in preparation]. This algorithm, ILS-HSS,
uses the same random initialisation as most other SLS algorithms for SAT
and MAX-SAT. Its subsidiary local search and perturbation phases are both
based on the RoTS algorithm described above. Each local search phase ex-
ecutes RoTS steps until no improvement in the incumbent solution has been
achieved for a given number of steps. The perturbation phase consists of a
fixed number of ROTS search steps with tabu tenure values that are substan-
tially higher than the ones used in the local search phase. In both phases,
ROTS returns the highest quality assignment encountered since the begin-
ning of the respective search phase. At the beginning of each local search
and perturbation phase, all variables are declared non-tabu, irrespectively
of their previous tabu status. If applying perturbation and subsequent local
search to a candidate solution s results in a candidate solution s’ that is bet-
ter than the best candidate solution accepted since the search was initialised,
the search is continued from s’. If s and s’ have the same solution quality,
one of them is chosen uniformly at random. In all other cases, the worse of
the two candidate solutions s and s’ is chosen with probability 0.9, and the
better one otherwise.

Empirical results show that when comparing the CPU time required
for finding optimal or quasi-optimal solutions, ILS-HSS typically performs
significantly better than GLS and Novelty"/wsc+we on weighted and un-

280

weighted Uniform Random-3-SAT instances; the performance advantage
of ILS-HSS is particularly large for highly constrained instances with low-
variance clause weight distributions. Overall, ILS-HSS appears to be the
best-performing MAX-SAT algorithm for these types of instances. On the
wj nh instances, ILS-HSS does not reach the performance of the wsc vari-
ants of Novelty™, but finds optimal solutions for a significant fraction of
the unsatisfiable instances faster (in terms of CPU time) than GLS. On the
satisfiable wj nh instances, however, it does not reach the performance of
GLS or Novelty™. Similarly, for several classes of MAX-SAT-encoded in-
stances of other combinatorial optimisation problems, such as minimal cost
graph colouring problems and set covering problems, ILS-HSS performs
significantly worse than GLS for weighted MAX-SAT.

Limited experimentation suggests that using a perturbation phase con-
sisting of a sequence of random walk steps instead of the Robust Tabu
Search procedure described above results in a decrease in performance.

MAX-SAT Algorithms Based on Larger Neighbour hoods

While all prominent and high-performance SLS algorithms for SAT are
based on the 1-flip neighbourhood, there are very successful SLS algo-
rithms for MAX-SAT that are based on larger neighbourhoods. Yagiura and
Ibaraki studied various such algorithms, ranging from simple iterative first
improvement to iterated local search methods [Yagiura and Ibaraki, 1998;
1999; 2001]. The key to the success of these algorithms is a combination
of a clever reduction of the 2- and 3-flip neighbourhoods with an efficient
caching scheme for evaluating moves in these larger neighbourhoods. This
reduction is done in such a way that no possible improving neighbour is
lost, i.e., local optimality remains invariant under the neighbourhood re-
duction. Furthermore, under realistic assumptions, each local search step
requires time O(n + m) for the 2-flip neighbourhood and time O(m + ?n)
for the 3-flip neighbourhood in the average case given an input formula with
n variables, m clauses, and no more than ¢ occurrences of each variable; this
result was empirically confirmed for a range of Weighted Uniform Random-
3-SAT test-sets [Yagiura and Ibaraki, 1998; 1999]. [hh: We could add an
add in-depth section to explain the details of the reduction and efficient
implementation.]

Empirical results for variants of TS-Y1 and ILS-Y| that use the reduced

7.2. SLSALGORITHMS FOR MAX-SAT 281

2- and 3-flip neighbourhoods indicate that on various test-sets of weighted
MAX-SAT instances, these larger neighbourhoods lead to significant per-
formance improvementsin terms of the solution quality reached after a fixed
amount of CPU time.Particularly for MAX-SAT-encoded minimum-cost
graph colouring and set covering instances,as well as for a big, MAX-SAT-
encoded real-world time-tabling instance,the 2-flip variant of ILS-Y|I per-
forms better than the other versions of ILS-Y1 and any of the TS-Y| variants.
Itis presently not clear whether other, state-of-the-art MAX-SAT algorithms
can reach or exceed the performance of ILS-YI (or TS-YI) on these types
of instances. It is also unclear whether the use of larger neighbourhoods
might lead to performance improvements in state-of-the-art SLS algorithms
for MAX-SAT, such as Novelty/wcs+we, GLS, or ILS-HHS.

Non-oblivious SL S Algorithms for MAX-SAT

All SLS algorithms for SAT and MAX-SAT discussed so far use evaluation
functions that are oblivious in the sense that they are not affected by the de-
gree of satisfaction of any given clause ¢, i.e., by the number of literals that
are satisfied in ¢ under a given assignment. Non-oblivious evaluation func-
tions, in contrast, reflect the degree of satisfaction of the clauses satisfied by
a given variable assignment.

Theoretical analyses have shown that iterative improvement local search
achieves better worst-case approximation ratios for unweighted MAX-SAT
when using non-oblivious evaluation functions than when the standard, obliv-
ious evaluation function is used which counts the number of clauses unsatis-
fied under a given assignment [Alimonti, 1994; 1996; Khanna et al., 1994b;
?]. In particular, using the non-oblivious evaluation functions g»(F, a) =
3/2-w(S1)+2-w(Ss) and g3(F,a) = w(S1) +9/7-w(Sz) +10/7 - w(Ss),
where w(S;) is the total weight of the set of all clauses satisfied by ex-
actly ¢ literals under assignment a, in conjunction with iterative improve-
ment algorithms leads to worst-case approximation ratios of 4/3 and 8/7 for
MAX-2-SAT and MAX-3-SAT, respectively. (Similar non-oblivious evalu-
ation functions and respective approximation results exist for MAX-£-SAT,
k> 3.

Battiti and Protasi proposed and studied a number of SLS algorithms-
for MAX-SAT that make use of these non-oblivious evaluationfunctions
[Battiti and Protasi, 1997c; 1997b]. The simplest of these is aniterative

282

best improvement algorithm; it can be seen as a variant of basic GSAT
that terminates as soon as a local minimum state isreached. For this al-
gorithm (applied to MAX-3-SAT), using thenon-oblivious evaluation func-
tion g5 instead of the standardGSAT evaluation function leads to improved
solution qualities;however, both of these algorithm perform significantly
worse thanGWSAT and SAMD, except when applied to weakly constrained
UniformRandom-3-SAT instances. Furthermore, GSAT, GWSAT and GSAT/TABUperforn
significantly worse when using a non-oblivious evaluationfunction [Battiti
and Protasi, 1997b].and oblivious evaluation functions have different lo-
cal minima. Based on this observation, Battiti and Protasi designed a hy-
brid SLS algorithm that first performs non-oblivious iterative best improve-
ment until a local minimum w.r.t. to the non-oblivious evaluation function
is reached, followed by an oblivious iterative best improvement phase that
is continued beyond its first local minimum. This hybrid SLS algorithm
reaches better solution qualities than SAMD for various Uniform Random-
3-SAT test-sets, but its performance is inferior to GWSAT for long run-times
[Battiti and Protasi, 1997c].

Better performance is achieved by H-RTS, a complex hybrid SLS algo-
rithm that combines non-oblivious and oblivious iterative best improvement
with an oblivious reactive tabu search procedure [Battiti and Protasi, 1997b].
H-RTS starts the search from a randomly chosen variable assignment; next,
non-oblivious iterative best improvement steps are performed until a local
minimum (w.r.t. the non-oblivious evaluation function) is reached. Then,
phases of oblivious iterative best improvement (OIBI) search and reactive
tabu search (RTS) are alternated until the total number of variable flips per-
formed since initialising the search reaches 10n, where n is the number
of variables in the given MAX-SAT instance, at which point the search is
re-initialised (see Figure 7.3). Each OIBI search phase ends when a local
minimum w.r.t. the standard oblivious evaluation function is reached. The
subsequent RTS phase performs 2(tI + 1) steps of oblivious iterative best
improvement tabu search with fixed tabu tenure t/.

When the search is initialised (or restarted), tl is set to a fixed value t/-
init. After each RTS phase, t/ is adjusted based on the Hamming distance
covered within that search phase (i.e., the number of variables that are as-
signed different truth values immediately before and after the 2t + 1 RTS
steps): if that distance is small, the tabu tenure is increased in order to diver-
sify the search; if the distance is big, the tabu tenure is decreased to keep the

7.3. SLSALGORITHMS FOR MAX-CSP 283

glsm-hrts.eps

Figure 7.3: GLSM representation of the H-RTS algorithm; ... (explanation
of GLSM states and transition types) ... (For details, see text.)

search process focused on promising regions of the search space. Addition-
ally, an upper and lower bound on the tabu tenure are imposed (for details,
see [Battiti and Protasi, 1997b]).

H-RTS has been applied to various sets of unweighted Uniform Random-
3-SAT and Uniform Random-4-SAT instances. In terms of solution quality
achieved after a fixed number of search steps (variable flips), H-RTS per-
forms significantly better than basic GSAT, GWSAT, and GSAT/TABU, es-
pecially for large, highly constrained problem instances [Battiti and Protasi,
1997b]. Furthermore, H-RTS shows substantially more robust performance
w.r.t. to the initial tabu tenure setting tl-init than GSAT/TABU w.r.t. to its
tabu tenure parameter, tl. When it was first proposes, H-RTS was one of
the best-performing algorithms for unweighted MAX-SAT; to date, it is un-
clear whether H-RTS reaches the performance of GLS, Novelty*/wcs, or
ILS-HSS. Interestingly, there is some evidence that the performance of H-
RTS does not significantly depend on the initial non-oblivious local search
phase, but is rather due to the (oblivious) RTS procedure.

7.3 SLSAlgorithmsfor MAX-CSP

MAX-CSP generalises CSP analogous to the way in which MAX-SAT gen-
eralises SAT: given a CSP instances, the objective is to satisfy as many con-
straints as possible. The importance of MAX-CSP resides in the fact that it

284

is one of the simplest extensions of CSP to constrained optimisation prob-
lems; as such it is typically used as a first step for extending algorithmic
CSP techniques to optimisation problems. As in Chapter 6, we will focus
on finite discrete MAX-CSP, where the domains of all CSP variables are
finite and discrete.

The MAX-CSP Problem

The simplest case of MAX-CSP gives all constraints the same importance
and the goal is to maximise the number of satisfied constraints.

Definition 7.4 ((Unweighted) MAX-CSP)

Given a CSP instance P = (V, D, C), let f(P, a) be the number
of constraints satisfied under variable assignment a. The (Un-
weighted) Maximum Constraint Satisfaction Problem (MAX-
CSP)isto find a* € argmax{m — f(P,a) | a € Assign(P)} =
argmin{ f(P,a) | a € Assign(P)}, i.e., a variable assignment
a* that maximises the number of the satisfied constraints in P.
O

As in MAX-SAT, maximising the number of satisfied constraints is equiv-
alent to minimising the number of unsatisfied constraints; in the follow-
ing we consider MAX-CSP as a minimisation problem. Note that CSP is
the decision variant of MAX-CSP in which the objective is to determine
whether there is a CSP variable assignment that simultaneously satisfies all
constraints. The evaluation and search variant are defined as in the case of
MAX-SAT.

The MAX-CSP problem arises in the context of over-onstrained CSP in-
stances, in which it is typically impossible to satisfy all given constraints si-
multaneously; to deal with this situation, some of the constraints are marked
as “soft” and the objective becomes to find a CSP variable assignment that
maximises the number of satisfied soft constraints. MAX-CSP is a partic-
ular case of overconstrained problems, where each constraint is handled as
a soft constraint and all constraints are given the same importance. Sim-
ilar to the MAX-SAT case, it is straightforward to extend the MAX-CSP
formalism to include constraint weights, which indicate the importance of

7.3. SLSALGORITHMS FOR MAX-CSP 285

satisfying specific constraints. A weighted MAX-CSP instance can be de-
fined as follows.

Definition 7.5 (Weighted CSP instance)

A weighted CSP instance is a pair (P, w), where P is CSP in-
stance and w : {C; | i € [1...m]} — R" is a function that
assigns a positive real value to each constraint C; of P; w(C;)
is called the weight of constraint C;. O

The objective in weighted MAX-CSP is to find a CSP variable assignment
that minimises the total weight of the unsatisfied constraints.

Definition 7.6 (Weighted MAX-CSP)

Given a weighted MAX-CSP instance P’ = (P, w), let f(P’, a)
be the total weight of the constraints of P satisfied under CSP
variable assignmenta, i.e., f(P',a) = >_" {w(C;) | C; is a constraint of
P and ¢ satisfies C;}. The Weighted Maximum Constraint Sat-
isfaction Problem (Weighted MAX-CSP) is to find a variable as-
signment a* that maximises the total weight of the satisfied con-
straints in P, i.e., a* € argmin{f(P',a) | a € Assign(P)} =
argmax{f—f(P',a) | a € Assign(P)}, where f = > {w(C;) |
C; is a constraint of P}. O

The constraint weights reflect the different priorities in satisfying the re-
spective constraints. They can be used to encode problems that involve hard
constraints that must be satisfied in any feasible solution as well as soft con-
straints that represent an optimisation goal.

MAX-CSP is an N'P-hard problem, since generalises CSP, which it-
self is N'P-complete. As might be expected, even finding high-quality
suboptimal solutions for MAX-CSP is difficult in the worst case: for k-
ary MAX-CSP with domains of size d, achieving approximation ratios of
dF-2VE+1HL _ ¢ is AP-hard for any constant ¢ > 0 is A/P-hard [Engebret-
sen, 2000]. The efficient approximation algorithm with provably worst-case
performance guarantees is based on linear programming and randomized
rounding and achievs an approximation ratio of d*~' [Serna et al., 1998].

286

Randomly Generated and Structured MAX-CSP Instances

Algorithms for MAX-CSP have been mostly evaluated on instances that
are randomly generated according to the Uniform Random Binary CSP
model described in Chapter 6, Section 6.5. This generative model has
four parameters: the number of CSP variables, n; the domain size for each
CSP variable, k; the constraint graph density, «; the constraint tightness,
S. In the context of MAX-CSP, these parameters are typically chosen in
such a way that the resulting instances are unsatisfiable [Wallace, 1996b;
Galinier and Hao, 1997]. Random weighted MAX-CSP instances are ob-
tained by assigning randomly chosen weights to the constraints, these are
typically sampled from a uniform distribution over a given range of inte-
gers [Lau, 2002].

Other combinatorial optimisation problems from a wide range of appli-
cation areas can be encoded into MAX-CSP in a straightforward way. One
example for such a problem is university examination timetabling: Given a
set of examinations and a set of time-slots as well as a set of students and
for each student the set of examinations that student needs to take, the ob-
jective is to assign a set of of examinations to a set of time slots such that
certain hard constraints are satisfied and additional criteria are optimised.
(To keep things simple, this version of the problem does not capture room
assignments.) A typical hard constraint is to forbid a any temporal over-
laps between the examinations taken by the same student; a typical example
of a soft constraint is to maintain a minimum temporal distance between
any pair of examinations for the same student (see [Burke et al., 1996] for
an extensive list of possible constraints found in real life exam timetabling
problems).

A set of benchmark instances that has been commonly used to evalu-
ate algorithms for examination timetabling with exactly these two types of
constraints was defined by Carter et al. [Carter et al., 1996]. In particular,
the soft constraints penalise timetables in which the temporal distance ¢ be-
tween two exams taken by the same student is less than six time slots; the
penalty is 6 — ¢ if ¢ < 6 and zero otherwise. In the weighted MAX-CSP
formulation, this penalisation is represented by five constraints for every
student; each of these is violated if teh temporal distance between two ex-
aminations is equal to ¢ time slots, where 0 < ¢ < 6, and has a weight of
6 — t. The hard constraints, which forbid overlapping time slots for exams

7.3. SLSALGORITHMS FOR MAX-CSP 287

taken by the same student, are assigned weight larger than the sum of the
weights of all soft constraints.

Another example of a problem that can be easily represented as MAX-
CSP arises in the context of the Radio Link Frequency Assignment Problem
(RLFAP). In RLFAP, the objective is to assign a limited number of available
frequencies to each cell in a radio network such that the electromagnetic
interferences is minimised. There exist a number of variants of this problem
(see [Aardal et al., 2001] for an extensive overview), the simplest being the
following. Given are:

e aset of radio links
¢ a fixed set of frequencies available for each link

e a set of frequency separation constraints that state for each pair of
links (4, j) the minimum difference d,; between the frequencies as-
signed to the pair of links

e a cost ¢;; for violating a frequency separation constraint for a pair of
links (i, 7).

[ts: We could add an explicit RLFAP example here.]

In this variant, the objective is simply to assign frequencies to links such
that the total cost of violated frequency separation constraints is minimised.
Instances of this problem can be easily represented as a weighted MAX-CSP
instances, where the frequency separation constraint for each pair of links
(4,7) is captured by a binary constraint with weight ¢;;. Some extensions
of this simple RLFAP, such as problems with pre-assigned frequencies that
have high modification costs, can be encoded easily as weighted MAX-CSP
by using additional unary constraints.

SL S Algorithmsfor Unweighted MAX-CSP

Because of the way SLS algorithms for CSP evaluate and minimise con-
straint violations in order to find solutions to a given CSP instance, these
algorithms can generally be applied directly to unweighted MAX-CSP in-
stances.

Variants of the Min-Conflicts Heuristic (MCH; see Chapter 6, Section 6.6)
were amongst the first SLS algorithms applied to unweighted MAX-CSP.

288

Empirical results on a set of randomly generated MAX-CSP instances show
that WMCH performs better than Basic MCH and Basic MCH with ran-
dom restart [Wallace and Freuder, 1995]. Interestingly, a parametric study
of WMCH’s performance indicates that the performance-optimising setting
of wp (the probability for executing random walk steps rather than basic
MCH steps) depends on the number of constraints violated in the optimal
solutions to the MAX-CSP: larger optimal solution quality values require
smaller wp settings.

In a further experimental study, the performance of the same three MCH
variants was compared to three additional CSP algorithms:

e the Breakout Method [Morris, 1993] (see Chapter 6, page ??);

e EFLOP, a hybrid SLS algorithm that combines iterative improvement
with value propagation techniques [?];

e weak commitment search, a method that starts from a complete CSP
variable assignment and then tries to iteratively build sets variables
that are not involved in any constraint violations [?].

On a set of randomly generated MAX-CSP instances, While on sets of small
instances (with 30 variables and domain size 5) WMCH did not perform sig-
nificantly better than these three methods, it did achieve better performance
on larger instances [Wallace, 1996b].

Probably the best results for randomly generated MAX-CSP so far were
reported for the Tabu Search algorithm by Galinier and Hao (TSGH) [Galin-
ier and Hao, 1997]. (In fact, TSGH was applied to MAX-CSP before it
was evaluated on soluble CSP instances.) Different from MCH variants,
which in each step choose a variable involved in a conflict and then consid-
ers changing the value of this variable, TSGH determines each search step
by considering the set of all variable-value pairs (v, y) for which v occurs in
a currently violated constrain (see Chapter 6, page ??).

On randomly generated MAX-CSP instances with up to 500 CSP vari-
ables and domain sizes 30, TSGH has been shown to outperform WMCH:
TSGH reached the same solution quality as WMCH in about three to four
times less search steps and found better quality solutions when allowed the
same run-time (in terms of search steps). It should be noted that due to the
speed-up techniques used in TSGH, its search steps are only slightly more

7.3. SLSALGORITHMS FOR MAX-CSP 289

expensive than those of WMCH; the difference in CPU time was measured
at about 15% [Galinier and Hao, 1997].

One may conjecture that the better performance of TSGH when com-
pared to WMCH is a result of the the larger neighbourhood searched by
TSGH in each single step. However, limited empirical results indicate that
a variant of TSGH that uses random walk instead of tabu search for escap-
ing from local optima performs significantly worse than WMCH [Galinier
and Hao, 1997]. On the other hand, it is known that the restriction of the
neighbourhood to variables involved in conflicts is important to reach high
performance for TSGH. There is some empirical evidence that suggests that
if all variable—value pairs (including those variables that are not involved in
constraint conflicts) are searched, the performance of TSGH drops signifi-
cantly [Hao and Pannier, 1998].

SL S Approachesto Weighted MAX-CSP

The previously described algorithms for unweighted MAX-CSP can be eas-
ily extended to weighted MAX-CSP. Somewhat surprisingly, so far this ap-
proach has remained largely unexplored. An exception is the work of Lau,
who developed an approximation algorithm for weighted MAX-CSP based
on semidefinite programming and randomised rounding; For domain sizes
two and three, this algorithm has a fixed approximation ratio [Lau, 2002].

A variant of this algorithm that applies iterative improvement to the so-
lution obtained from the approximation algorithm (APII) has been empiri-
cally compared to (i) an SLS algorithm that consists of a greedy construction
heuristic followed by an iterative improvement procedure (Gll), and (ii) an
extension of MCH to weighted MAX-SAT. Applied to “forced” instances,
which are randomly generated in a way that guarantees their solubility, APII
achieved substantially better solution qualities than GII and MCH; on ran-
domly generated instances that were not soluble by construction, the per-
formance advantages observed for APII were less pronounced [Lau, 2002].
In these experiments, MCH and APII were alotted approximately the same
run-time, while GII terminated within roughly 5% of this time. Further-
more, for the forced instances the approximation algorithm without the sub-
sequent local search phase performed better than GlI; this suggests that the
excellent performance of APII on forced instances may be an artifact of the
instance generation.

290

Pseudo-Boolean Optimisation

Pseudo-Boolean CSP can be seen as a restriction of CSP in which all vari-
ables have domains {0, 1}, but more expressive constraints are supported
than the CNF clauses used in SAT or MAX-SAT. The Pseudo-Boolean CSP
formalism can be extended to consider optimisation objectives in addition to
the conventional, hard constraints. In the resulting over-constrained Pseudo-
Boolean problems (OCPBP), optimisation goals are encoded as competing
soft constraints. The general form of a over-constrained Pseudo-Boolean
problems can be written as

Ax > b
Cx > d (soft (7.1)
Ty € {071}a

where A and C are real valued coefficient matrices, b and d are real valued
vectors and x is the variable vector [Walser, 1998; Walser et al., 1998].
From an optimisation perspective, the formulation 7.1 is interpreted as

min [|[Cx — d||

subjectto: Ax > b (7.2)
T; € {07 1}5

where the metric ||y || = i, max{0,y;} measures the degree of violation
of the soft constraints.

SLS algorithms for this optimisation problem need to make use of a
suitable evaluation function. In WSAT(PB), a well-known SLS algorithm
for Pseudo-Boolean CSP (see Chapter 6, page ?7?), the evaluation function
value for a given variable assignment x is defined as:

f(x) = [Ax = b|lw + [|Cx —d]], (7.3)

where w is a vector of positive weights that is assigned to the hard con-
straints. (Similarly, also the soft constraints could be assigned additional
weights to distinguish their importance.)

A major difference between the weighted MAX-CSP formalism and
OCPBP using evaluation function 7.3 lies in the fact that in the latter case,
the degree to which constraints are violated is taken into account. This is

7.3. SLSALGORITHMS FOR MAX-CSP 291

possible because in OCPBP the constraints are defined as algebraic equa-
tions, while in the more general weighted MAX-CSP no assumption on
the structure of the constraints is made. Furthermore, it can be shown
that every OCPBP can be converted into integer linear programming prob-
lems [Walser, 1998].

To handle hard constraints efficiently, the WSAT(PB) variable selection
strategy is extended by first randomly selecting an unsatisfied hard con-
straint with probability wpy, while a violated soft constraint is chosen with
probability 1—wpjy,, and then selecting the from this constrained the variable
to be flipped, according to the strategy described in Section 6.6.

OCPBP can be extended by allowing ranges of integers instead of {0, 1}
as variable domains. The resulting overconstrained integer programs (OIPs)
can be solved using WSAT(OIP), a generalisation of the WSAT (P B) algo-
rithm that can handle integer variables. Different from WSAT(PB), WSAT(OIP)
allows modifications of the current value y of a given integer variable to
values ' with |y — y| < 2. An executable of WSAT(OIP) is available
at http://www.ps.uni-sh.de/ walser/wsatpb/wsatpb.html; this supersedes the
earlier implementation of WSAT(PB), which can be seen as a restricted
variant of WSAT(OIP).

A large number of practically relevant problems can be formulated eas-
ily and naturally within the Pseudo-Boolean CSP framework. WSAT(OIP)
was tested on a variety of problems that can be encoded using Boolean
variables. These problems include radar surveillance problems (which in-
clude soft constraints) and the Progressive Party Problem [Smith et al.,
1996]. For both problems, WSAT(PB) showed significantly improved per-
formance over a state-of-the-art commercial integer programming package
(CPLEX) and other methods for solving these problems. WSAT(OIP) also
achieved excellent performance on capacitated production planning and Al
planning problems, which were represented using non-Boolean integer vari-
ables [Walser et al., 1998; Kautz and Walser, 1999].

[ts/hh: The description of computational results for pseudo-Boolean
CSP in Chapter 6 is partially subsumed here and will be shortened ac-
cordingly.]

292

7.4 Further Readingsand Related Work

MAX-SAT is one of the most widely studied simple combinatorial optimisa-
tion problems, and a wide range of SLS algorithms for MAX-SAT have been
proposed and evaluated in the literature. Hansen and Jaumard studied a Sim-
ulated Annealing algorithm that uses the Metropolis distribution as an ac-
ceptance criterion and a standard geometric annealing schedule [Hansen and
Jaumard, 1990]. This algorithm was found to perform worse than SAMD on
various sets of unweighted Uniform-Random-£-SAT instances; however, in
some cases, it reaches better quality solutions than SAMD with substantially
higher run-times (both algorithms are terminated when no improvement in
the incumbent solution has been ovserved for a specified number of search
steps).

GRASP was one of the first SLS algorithms for weighted MAX-SAT
[Resende et al., 1997]. It was originally evaluated on the wj nh instances
described in Section 7.1, but was later found to be substantially outper-
formed by the first DLM algorithm for weighted MAX-SAT [Shang and
Wah, 1997] and other state-of-the-art SLS weighted MAX-SAT algorithms.
Recently, Variable Neighborhood Search (VNS) [Hansen and Mladenovic,
1999] has been applied to weighted MAX-SAT [Hansen et al., 2000; Hansen
and Mladenovic, 1999]. A variant called skewed VNS, which accepts worse
solutions depending on the amount of deterioration and the distance from
the incumbent solution, was shown to perform much better than a basic ver-
sion of VNS and a basic Tabu Search algorithm. However, it is not clear how
skewed VNS performs compared to state-of-the-art algorithms for weighted
MAX-SAT, such as GLS or ILS-HSS.

Roli, Blum, and Dorigo have studied various Ant Colony Optimisa-
tion algorithms for CSP and MAX-CSP. They mainly investigated differ-
ent ways of using pheromones and presented limited computational results
for their algorithms on a small set of MAX-SAT instances. These results
indicate that their ACO algorithms (without using local search) perform
substantially worse state-of-the-art algorithms for MAX-SAT [Roli et al.,
2001]. Evolutionary Algorithms can be easily applied to MAX-SAT be-
cause the candidate solutions can naturally be represented as binary strings
and all the standard crossover and mutation operators can be applied in a
straightforward way. Although some insights into the behavior of genetic al-
gorithms for MAX-SAT have been obtained, pure genetic algorithms (with-

7.4. FURTHER READINGS AND RELATED WORK 293

out local search) perform relatively poorly [Rana, 1999; Rana and Whitley,
1998; Bertoni et al., 2000].

Most complete algorithms for MAX-SAT are based either on Branch &
Bound type extensions of backtracking algorithms derived from the Davis-
Logeman-Loveland procedure (DLL) [Davis et al., 1962] or on Branch-
and-Cut approaches. A comparison of an algorithm based on DLL and a
Branch-and-Cut algorithm by Joy, Mitchell and Borchers [Joy et al., 1997]
showed that the DLL-based approach performed significantly better than
the Branch-and-Cut algorithm on MAX-3-SAT, while the Branch-and-Cut
algorithm was found to be superior on MAX-2-SAT problems MAX-SAT-
encoded Steiner tree problems. Hence, none of the currently exisiting exact
algorithms is dominating over the whole set of benchmark problems. It may
be noted that the wj nh instances as well as some weighted MAX-SAT in-
stances with up to 500 variables that were used to evaluate VNS [Hansen
et al., 2000] were solved to optimality with CPLEX, a well known general-
purpose integer programming software. However, all of these methods ap-
pear to be substantially less efficient in finding high-quality solutions for
large and hard MAX-SAT instances than state-of-the-art SLS algorithms
[Resende et al., 1997; Hoos et al., in preparation].

MAX-CSP has received considerable attention from the constraint pro-
gramming community as a straightforward extension of CSP to optimisa-
tion problems. MAX-CSP is a special case of partial constraint satisfaction,
which involves finding values for a subset of variables satisfying only a
subset of the constraints [Freuder, 1989; Freuder and Wallace, 1992]. More
recently, two general framewworks for constraint satisfaction and optimi-
sation were introduced, semi-ring based CSPs [Bistarelli et al., 1997] and
valued CSPs [Schiex et al., 1995]. So far, most research concentrated on
establishing formal comparisons of these frameworks or adapting propaga-
tion techniques or complete algorithms to solve problems formulated with
these frameworks; we are not aware of SLS algorithms for the latter two
frameworks.

For MAX-CSP, significant research efforts were directed to the develop-
ment of efficient complete algorithms. Since the first Branch-and-Bound al-
gorithm for unweighted MAX-CSP [Freuder and Wallace, 1992], especially
the lower bounds were enhanced significantly by more refined techniques,
leading to much better performing Branch-and-Bound algorithms [Wallace,
1994; 1996a; Larrosa et al., 1999; Kask and Dechter, 2001; Larrosa and

294

Dechter, 2002; Larrosa and Meseguer, 2002].

Only few results are available for SLS algorithms for MAX-CSP other
than the ones described in this chapter. Kalev Kask compared the per-
formance of an implementation of the Breakout Method to a state-of-the-
art Branch-and-Bound algorithm and found that Breakout outperforms the
Branch-and-Bound algorithm for Random MAX-CSP with dense constraint
graphs, while for sparse constraint graphs, the complete algorithm was slightly
faster [Kask, 2000]. Hao and Pannier compared TSGH to a Simulated
Annealing algorithm for MAX-CSP [Hao and Pannier, 1998]; their com-
putational results suggest that Simulated Annealing is clearly inferior to
TSGH. Battiti and Protasi [Battiti and Protasi, 1999] extended H-RTS to the
Maximum k-Conjunctive Constraint Satisfaction problem (MAX-£-CCSP),
where each constraint consists of the conjunction of up to % literals and the
goal is to satisfy as many conjunctive clauses as possible.

As previously stated, the overconstrained integer programs (OIP) model
introduced by Walser is a special case of integer linear programming (ILP).
There exist several SLS algorithms for 0-1 ILP (i.e., Pseudoboolean op-
timisation) and ILP with general integer variables. Computational results
by Walser [Walser, 1998] suggest that the “general-purpose” Simulated An-
nealing stratey (GPSIMAN) by Conolly [Connolly, 1992] is outperformed
by WSAT(OIP) on a variety of problems [Walser, 1998]. Extensions of
GPSIMAN were later applied by Abramson et al. to set partitioning prob-
lems [Abramson et al., 1996]. Abramson and Randall applied Simulated
Annealing to encodings of optimisation problems into general ILP prob-
lems [Abramson and Randall, 1999] and later introduced a modelling en-
vironment based on dynamic list structures [Randall and Abramson, 2001].
Recently, adaptations of evolutionary algorithms and GRASP for integer
linear programming were proposed [Pedroso, 1999; Neto and Pedroso, 2001].

Several SLS algorithms were developped to tackle the more general
mixed integer linear programming problem (MILP), that allow {0, 1} vari-
able domains as well as continuous intervals domains. Obviously, these
algorithms can also be applied to pure ILP problems, which can be seen
as a special case of MILP in whitch no continuous variables occur. For an
overview of SLS algorithms for MILP we refer to [kketangen, 2002].

7.5. SUMMARY 295

7.5 Summary

MAX-SAT is the optimisation variant of SAT in which the goal is to find a
variable assignment that maximises the number or total weight of satisfied
clauses. As one of the conceptuallly simplest hard combinatorial optimi-
sation problems, MAX-SAT is of considerable theoretical interest. Further-
more, a diverse range of hard combinatorial optimisation problems, many of
which have direct real-world applications, can be encoded into MAX-SAT
efficiently and naturally. By using appropriately chosen clause weights and
solution quality bounds, combinatorial optimisation problems with hard and
soft constraints can be represented by weighted MAX-SAT instances.

Considerable effort has been spent in designing efficient (i.e., polynomial-
time) approximation algorithms for MAX-SAT that have certain worst-case
performance guarantees. For widely used benchmark problems for MAX-
SAT, including test-sets of randomly generated MAX-SAT instances as well
as encodings of other combinatorial optimisation problems, such as set cov-
ering and time-tabling, into MAX-SAT, these approximation algorithms do
not reach the performance of even relatively simple SLS algorithms. Fur-
thermore, different from the situation for SAT, systematic search algorithms
for MAX-SAT are substantially less efficient that SLS algorithms in finding
high-quality solutions to typical MAX-SAT instances.

The most successful SLS algorithms for MAX-SAT fall into four cat-
egories: Tabu Search algorithms, in particular Robust Tabu Search (RoTS)
and Reactive Tabu Search (H-RTS); Dynamic Local Search algorithms, par-
ticularly Guided Local Search (GLS); Iterated Local Search algorithms, par-
ticularly the ILS algorithm by Hoos, Smyth, and Stitzle (ILS-HSS); and
generalisations of high-performance SAT algorithms, in particular Novelty *
with weighted clause selection (wcs). Some of these algorithms reach state-
of-the-art performance on mildly overconstrained instances whose optimal
solutions leave relatively few clauses unsatisfied (GLS as well as Novelty*
and its variants for weighted MAX-SAT seem to fall into this category),
while others, such as ILS-HSS, appear to be state-of-the-art for highly over-
constrained instances.

All of these algorithms make use of information on the search history,
mainly in form of a tabu list or dynamically adjusted clause penalties. There
is some evidence that by using large neighbourhoods, such as reduced ver-
sions of the 2-flip and 3-flip neighbourhoods, high-performance ILS and

296

Tabu Search algorithms for MAX-SAT can be further improved; these im-
provements, however, critically rely on efficient mechanisms for searching
these larger neighbourhoods. On the other hand, although the use of non-
oblivious evaluation functions, i.e., evaluation functions that are not indiffer-
ent w.r.t. to the number of literals that are simultaneously satisfied in a given
clause, leads to theoretical and practical improvements in the performance
of simple iterative improvement methods for unweighted MAX-SAT, there
is little evidence that non-oblivious evaluation functions are instrumental in
reaching state-of-the-art SLS performance on MAX-SAT instances of any

type.

Although a wide range of other SLS methods have been applied to
MAX-SAT, including Simulated Annealing, GRASP, ACO, and Evolution-
ary Algorithms, there is currently no evidence that any of these can achieve
state-of-the-art performance.

MAX-CSP can be seen as a generalisation of CSP where the objective is
to find a CSP variable assignment that maximises the number or total weight
of satisfied constraints. Current empirical results suggest that the best per-
forming SLS algorithms for CSP are also best for MAX-CSP; in particular,
the Tabu Search algorithm by Galinier and Hao (TSGH) appears to be the
most efficient algorithm for unweighted MAX-SAT known todate. How-
ever, most existing experimental studies on SLS algorithms for MAX-CSP
are limited to particular classes of randomly generated MAX-CSP instances.
Furthermore, the potential of many advanced SLS approaches, such as Dy-
namic Local Search or Iterated Local Search, in the context of MAX-CSP
is largely unexplored. Overall, considerably more research is necesary to
yield a more complete picture on the relative performance and behaviour of
SLS algorithms for MAX-CSP.

On the other hand, generalisations of WalkSAT to overconstrained pseudo-
Boolean problems and integer programs, which can be seen as special cases
of MAX-CSP, have been used successfully to solve various application
problems and in many cases achieved substantially better performance than
specialised algorithms and state-of-the-art commercial optimisation tools.
Still, compared to state-of-the-art complete integer or constraint program-
ming algorithms, SLS methods for these problems are much less explored,
leaving very likely considerable room for further improvement.

7.6. EXERCISES 297

7.6 EXercises

Exercise 7.1 (Easy) How can an implementation of a standard SLS al-
gorithm for SAT, such as GSAT, be used for solving weighted MAX-SAT
instances with integer clause weights? Discuss potential drawbacks of this
approach to solving weighted MAX-SAT instances.

Exercise 7.2 (Easy) Consider the following minimum cost graph colouring
problem: ...

[ts/hh: specification of min-cost GCP instance will be added here, in-
cluding graphical illustration.]

Represent this problem
(@) as aweighted MAX-SAT instance;
(b) as a weighed (discrete finite) MAX-CSP instance.

Exercise 7.3 (Medium) Give an extended definition of weighted MAX-
SAT that allows weights to arbitrary subformulae of a propositional for-
mula. Discuss potential advantages and disadvantages of such a generalised
version of weighted MAX-SAT, particularly w.r.t. to solving such problems
with SLS algorithms.

Exercise 7.4 (Easy) Give a detailed description of the examination timetabling
problem in terms of a weighted MAX-CSP instance. Exemplify your en-
coding by applying it to a small examination timetabling instance with four
exams, six students and four time slots and encode it as a weighted MAX-
CSP.

Exercise 7.5 (Medium) Extend the definitions of weighted MAX-CSP to
allow penalties to be given to assignments of particular values to CSP vari-
ables. Does this increase the representative power of weighted MAX-CSP?

Exercise 7.6 (Medium) Formulate the Frequency Assignment Problem,
which was introduced in Section 7.3,

298

(@) as a Pseudo-Boolean optimisation problem;

(b) as a weighted (discrete finite) MAX-CSP instance.

