SAT and Constraint Satisfaction

The Satisfiability Problem in Propositional Logic (SAT) is a conceptually
simple combinatorial decision problem which plays a prominent role in
Complexity Theory and Artificial Intelligence. To date, stochastic local
search methods are among the most powerful and successful methods for
solving large and hard instances of SAT. In this chapter, we first give a
general introduction to SAT and motivate its relevance to various areas and
applications. Next, we give an overview of some of the most prominent and
best-performing classes of SLS algorithms for SAT, covering algorithms of
the GSAT and WalkSAT Architecture as well as dynamic local search algo-
rithms. We discuss important properties of these algorithms such as the PAC
property and give a sketch of their empirical performance and behaviour.

Constraint Satisfaction Problems (CSPs) can be seen as a generalisation
of SAT; they form an important class of combinatorial problems in Artifi-
cial Intelligence. In the second part of this chapter, we introduce various
types of CSPs and give an overview of prominent SLS approaches to solv-
ing these problems. These approaches include encoding CSP instances into
SAT and solving the encoded instances using SAT algorithms, as well as
various rather straight-forward generalisations of SLS algorithms for SAT
and native CSP algorithms.

203

204

6.1 The Satisfiability Problem

As motivated and formally defined in Chapter 1, the Satisfiability Problem
in Propositional Logic (SAT) is to decide for a given propositional formula
F', whether there exists an assignment of truth values to the variables in
F under which F evaluates to true; such satisfying assignments are called
models of F'and form the solutions of the respective instance of SAT. When
applying SLS algorithms to SAT, we are typically more interested in solv-
ing the search variant of SAT (i.e., in finding models of a given formula)
rather than the decision variant. It should be noted that typical SLS algo-
rithms for SAT (including all SAT algorithms covered in this chapter) are
incomplete and hence cannot determine with certainty that a given formula
IS unsatisfiable, i.e. has no models.

CNF Representations and Transformations

Most algorithms for SAT, including all state-of-the-art SLS algorithms, are
restricted to formulae in conjunctive normal form (CNF), i.e., to formulae
that are conjunctions over disjunctions over literals. Since any propositional
formula can be transformed into a logically equivalent CNF formula, in
principle this restriction does not limit the class of SAT instances that can
be solved by such algorithms. The naive method of transforming a non-
CNF formula into CNF (using the distributive laws of propositional logic
to resolve nestings of A and Vv that are not allowed in CNF) can lead to
an exponential growth in the length of the formula. There is, however, an
alternative CNF transformation that avoids this effect at the cost of intro-
ducing a linear number (w.r.t. to the length of the formula) of additional
propositional variables in the worst case [Poole, 1984]. When representing
problems from other domains as SAT instances, in many cases relatively
natural and concise CNF formulations can be found directly and without
using general CNF transformation methods. Particularly, this is the case for
many classes of CSPs and we will discuss approaches for encoding CSP
instances as SAT in Section 6.5.

6.1. THE SATISFIABILITY PROBLEM 205

Alternative Formulations of SAT

Alternative representations of SAT for CNF formulae are used in various
contexts, specifically, when techniques for solving more general problems
are applied to SAT. As we will discuss in some more detail in Section 6.5,
SAT can be seen as a special case of the more general Finite Discrete Con-
straint Satisfaction Problem (CSP). Another prominent representation en-
codes the truth values | and T as integers 0 and 1 and propositional vari-
ables as integer variables with domain {0, 1}. Negated literals -z are then
encoded as I(—z) = 1 — z, while positive literals remain unchanged, i.e.,
I(x) = z. Finally, the encoding of a CNF clause ¢; = 1 VIa Vi3.. .l is
given by I(c;) = I(ly) + I(l2) + ... + I(lx) and the entire CNF formula
F=cANcaN...Ncy isencoded as I(F) = I(c1) - I(ca) - ... - I(cm)-
Then, a truth assignment « satisfies ¢; if and only if the corresponding 0-1
assignment satisfies the inequality 7(c;) > 1, and the CNF formula F is
satisfied under a if and only if 7(F) > 1. Using this representation, SAT
can be seen as a special case of a discrete constrained optimisation prob-
lem: Let u;(F,a) = 1 if clause ¢; is unsatisfied under assignment a and
u;(F,a) = 0 otherwise and N (F,a) = >, u;(F,a). Then any model of
F corresponds to a solution of a* = min{N(F,a) | a € {0,1}"} subject
toVi € {1,2,...,m} : u;(F,a) = 0. This type of constrained optimisa-
tion problem is known as 0-1 Integer Linear Programming (ILP) or Boolean
Programming.

Using these representations, SAT instances can in principle be solved us-
ing more general CSP or ILP algorithms. In practice, however, this approach
has not been able to achieve sufficiently high performance to provide a vi-
able alternative to native SAT solvers such as the SLS algorithms presented
in this chapter (see, e.g., [Schuurmans et al., 2001; Battiti and Protasi, 1998;
Mitchell and Levesque, 1996]). However, a number of SAT algorithms, par-
ticularly some of the dynamic local search methods presented in Section 6.4,
are inspired by more general CSP or constrained optimisation solving tech-
niques. Furthermore, successful SLS algorithms for SAT have been ex-
tended to more general classes of CSPs and ILPs, resulting in competitive
solvers for these problems (some of these generalised SLS algorithms will
be discussed in Section 6.6). Finally, it may be noted that the ILP formu-
lation of SAT can be easily generalised to weighted MAX-SAT, a closely
related optimisation problem for which in some cases more general ILP

206

methods perform much better than for SAT [?; Resende et al., 1997].

Polynomial Simplification of CNF Formulae

One of the advantages of the native, logical formulation of SAT is that
propositional formulae in general, and CNF formulae in particular can of-
ten be substantially simplified using computationally cheap reduction tech-
niques. Such reductions have been shown to be crucial in solving various
types of SAT instances more effectively; as preprocessing techniques, they
can be used for simplifying the input to any SAT algorithm for CNF formu-
lae.

One of the simplest reductions is the elimination of duplicate literals
and clauses from a given CNF formula. Obviously, this can be performed
in time O(n), where n is the size of the formula, and results in a logically
equivalent CNF formula. Similarly, all clauses that contain a variable and
its negation and are hence trivially satisfied (tautological clauses), can be
detected and eliminated in linear time. A slightly more interesting reduc-
tion is the elimination of subsumed clauses. A clause ¢ = I; Vi, V...l
is subsumed by another clause ¢’ = 1] v I; V... I if every literal in ¢’ also
oceurs inc, i.e., {13, l5, ..., I5} € {l1,ly,...,l}. Detection and elimination
of all subsumed clauses can be performed efficiently and leads to a logi-
cally equivalent formula. Another linear time reduction is the elimination
of clauses containing pure literals, i.e., variables that either do only occur
negated or unnegated in the same formula. Setting such a variable to true or
false, respectively, does not change the satisfiability of the formula; hence,
all clauses containing such variables can be removed.

One of the most important reduction techniques is based on the unit
resolution method: If a CNF formula contains a unit clause, i.e., a clause
consisting of only a single literal, this clause and all clauses containing the
same literal can be removed (this is a special case of the subsumption reduc-
tion), and all remaining occurrences of the corresponding variable, i.e., the
complementary literal) can be removed (this can be seen as a special case of
the general resolution rule, see, e.g., [Russel and Norvig, 1995]). Perform-
ing unit resolution to all unit clauses in the original CNF formula leads to
a logically equivalent CNF formula, we also refer to this transformation as
a single pass of unit propagation. It may be noted that unit resolution can
lead to empty clauses, making the resulting formula trivially unsatisfiable

6.1. THE SATISFIABILITY PROBLEM 207

or eliminate all clauses, leaving an empty CNF formula which is trivially
satisfiable. Furthermore, unit resolution can produce new unit clauses and
hence make further unit resolution steps possible. Repeated application of
unit resolution eventually leads to a formula without any unit clauses. We
refer to this reduction as complete unit propagation; it can be performed
in time O(n) and forms a crucial component of basically any systematic
search algorithm for SAT. Unit propagation alone is sufficient for deciding
deciding the satisfiability of Horn formulae, i.e., CNF formulae in which
every clause contains at most one unnegated variable [Dowling and Gallier,
1984], in linear time w.r.t. to the size of the given formula. It also forms the
basis of a linear-time algorithm for solving SAT for 2-CNF formulae [del
Val, 2000].

Unit propagation provides the basis for two other efficient and prac-
tially useful simplification techniques, unary and binary failed literal re-
duction. The key idea behind unary failed literal reduction is the follow-
ing: If setting a variable x occurring in the given formula F' to true makes
F unsatisfiable, then adding the unit clause ¢/ = —x to F yields a log-
ically equivalent formula F'. Since F' contains at least one unit clause,
¢, it can be simplified using unit propagation, which can result in a sub-
stantially smaller formula. Whether setting x to true renders F' unsatis-
fiable is determined by adding a unit clause ¢ = z to F' and by check-
ing whether subsequent application of unit propagation produces an empty
clause. Complete unary failed literal reduction consists of performing this
operation for each variable occurring in the given formula and has com-
plexity O(n?). Binary failed literal reduction works analogously but checks
whether simultaneously adding any two unary binary clauses, ¢; = z and
co = y and applying unit propagation leads to a trivially unsatisfiable for-
mula. If this is the case, the binary clause ¢ = -z Vv —y is added to
F, which potentially leads to further simplifications. Binary failed literal
reduction has time complexity O(n?); it is a fairly expensive operation,
but sometimes leads to substantial reductions in the overall time required
for solving a given SAT instance (see, e.g., [Kautz and Selman, 1996a;
Brafman and Hoos, 1999]).

208

Randomly Generated SAT Instances

Many empirical studies of SAT algorithms have made use of randomly gen-
erated CNF formulae. Various such classes of SAT instances have been pro-
posed and studied in literature; in most cases, they are obtained by means
of a random instance generator that samples SAT instances from an under-
lying probability distribution over CNF formulae. The probabilistic gen-
eration process is typically controlled by various parameters which mostly
determine syntactic properties of the generated formulae, such as number of
variables and clauses, in a deterministic or probabilistic way.

One of the earliest and most widely studied classes of randomly gener-
ated SAT instances is based on the random clause length model (also called
fixed density model): Given a number of variables, », and clauses, m, the
clauses are constructed independently from each other by including each of
the 2n literals with fixed probability p (see [Franco and Paull, 1983], a vari-
ant of this model was used in Goldberg’s empirical study on the average case
time complexity of the Davis Putnam algorithm [Goldberg, 1979]). Theo-
retical and empirical results show that this family of instance distributions is
mostly easy to solve on average using rather simple deterministic algorithms
[Cook and Mitchell, 1997; Franco and Swaminathan, 1997]. As a conse-
quence, the random clause length model is no longer widely used for eval-
uating the performance of SAT algorithms. Similar considerations apply to
other distributions of SAT instances, such as the instances obtained from the
AIM instance generator [Asahiro et al., 1996], which can be solved in poly-
nomial time by binary failed literal reduction [Hoos and Stiitzle, 2000c].

To date, the most prominent class of randomly generated SAT instances
that is used extensively for evaluating the performance of SAT algorithms is
based on the fixed-clause-length model and known as Uniform Random-k-
SAT [Franco and Paull, 1983], [Mitchell et al., 1992]. For a given number of
variables, n, number of clauses, m, and clause length &, Uniform Random
k-SAT instances are obtained as follows: To generate a clause, k literals are
chosen independently and uniformly at random from the set of 2n possible
literals (the n propositional variables and their negations). Clauses are not
included into the problem instance if they contain multiple copies of the
same literal or if they are tautological, i.e., they contain a variable and its
negation. Using this mechanism, clauses are generated and added to the
formula until it contains m clauses overall.

6.1. THE SATISFIABILITY PROBLEM 209

Random k-SAT Hardness and Solubility Phase Transition

One particularly interesting property of uniform Random k-SAT is the oc-
currence of a phase transition phenomenon, i.e., a rapid change in solubility
which can be observed when systematically increasing (or decreasing) the
number m of clauses for a fixed number of variables n [Mitchell et al., 1992;
Kirkpatrick and Selman, 1994]. More precisely, for small m, almost all for-
mulae are underconstrained and therefore satisfiable; when reaching some
critical m = m*, the probability of generating a satisfiable instance drops
sharply to almost zero. Beyond m*, almost all instances are overconstrained
and thus unsatisfiable. For Random 3-SAT, it has been empirically shown
that this phase transition occurs approximately at m* = 4.26n for large
n; for smaller n, the critical clauses/variable ratio m* /n is slightly higher
[Mitchell et al., 1992; Crawford and Auton, 1996]. For fixed &, the transi-
tion becomes increasingly sharp as n grows; furthermore, the critical value
m* increases with & [Kirkpatrick and Selman, 1994].

Empirical analyses have shown that problem instances from the phase
transition region of Uniform Random 3-SAT tend to be particularly hard for
both systematic SAT solvers [Cheeseman et al., 1991; Crawford and Au-
ton, 1996] and SLS algorithms [Yokoo, 1997]. Striving to evaluate their
algorithms on hard problem instances, many researchers are using test-
sets sampled from the phase transition region of Uniform Random 3-SAT.
Particularly in the context of empirical studies including incomplete SAT
algorithms, these test-sets are separated into satisfiable and unsatisfiable
instances using state-of-the-art complete SAT solvers [Hoos and Stiitzle,
2000c]. Although similar results hold for Uniform Random k-SAT with
k > 3, test-sets from these instance distributions are rarely used.

SAT-Encodings of Other Combinatorial Problems

Since SAT is an N"P-complete problem, any other problem in N”P can be
encoded into SAT in polynomial time and space. SAT-encoded instances
of various combinatorial problems play an important role in evaluating and
characterising the performance of SAT algorithms; these combinatorial prob-
lems stem from various domains, including mathematical logic, artificial
intelligence and VVLSI engineering.

Finite, discrete constraint satisfaction problems (CSPs) can be seen as a

210

generalisation of SAT that allow variables to have domains other than truth
values and constraints between the values assigned to individual variables
that are different from the ones captures by CNF clauses. CSPs are also
often a natural intermediate stage in encoding other combinatorial problems
into SAT. CSP instances can be encoded into SAT in various ways; CSPs
and their encodings into SAT will be further discussed in Section 6.5. It has
been shown that certain types of randomly generated CSPs can be solved
at least as efficiently by applying current SAT algorithms to SAT-encoded
instances as by using state-of-the-art CSP algorithms [Hoos, 1998b; 1999b]
(see also Section 6.6).

Other prominent examples of SAT-encoded instances of combinatorial
problems include graph colouring, various types of planning and scheduling
problems, boolean function learning, inductive inference, cryptographic key
search, n-Queens (see [Gu et al., 1997; Hoos and Stiitzle, 2000c]). For some
of these, particularly in the case of SAT-encoded STRIPS planning prob-
lems from the Blocks World and Logistics domains, applying SAT solvers
and reduction techniques to suitably encoded problem instances was shown
to achieve performance competitive with state-of-the-art algorithms for the
original problem [Kautz and Selman, 1996b]. Key factors underlying such
results are the conceptual simplicity of SAT, which facilitates the design and
efficient implementation of algorithms, and the large amount of knowledge
on techniques for solving SAT and their specific properties. Furthermore,
using suitable SAT encodings and reduction techniques is of crucial impor-
tance for solving the resulting SAT problems efficiently. Interestingly, the
size of the SAT encodings is not always indicative of the difficulty of solving
them. Particularly, it has been shown for various problem domains that com-
pact SAT encodings that result in instances with small search spaces can be
much more difficult to solve than sparser encodings that produce instances
with substantially bigger search spaces [Ernst et al., 1997; Hoos, 1998b;
1999b].

Some Practical Applications of SAT

Despite its conceptual simplicity and abstract nature, the SAT problem has
various practical applications. Some of the most prominent industrially rele-
vant SAT applications stem from hardware design and verification, in partic-
ular, from the verification of reactive systems, such as microprocessor com-

6.1. THE SATISFIABILITY PROBLEM 211

ponents. In an approach called Bounded Model Checking (BMC), a system
and a specification of its formal properties can be encoded into a proposi-
tional formula, whose models correspond to bugs, i.e., situations in which
the behaviour of the system violates its specifications [Biere et al., 1999a;
1999b]. Similar to SAT encodings of planning problems that require the
plan length to be bounded, in BMC, the size of the bug, i.e. the number of
states of the system involved in the bug, is limited by a constant. It may
be noted that for proving that a given system does not have any bugs below
a certain size, a complete SAT solver is required. Incomplete SAT solvers,
such as the SLS algorithms for SAT covered in Section ??, can be used,
however, to find bugs efficiently.

Symbolic model checking methods, such as BMC, are increasingly gain-
ing industrial acceptance, because compared to traditional, simulation-based
validation techniques, they detect a wider range of bugs, including subtle er-
ror conditions. Many traditional formal verification techniques use Binary
Decision Diagrams (BDDs) [Bryant, 1986] for representing propositional
formulae. By using CNF encodings and standard SAT algorithms in a BMC
approach, it is often possible to find bugs faster, and to find bugs of minimal
size; the latter is important since small bugs are typically easier to under-
stand for a human system tester or designer. Furthermore, BDD based ap-
proaches often require extremely large amounts of memory as well as spe-
cialised techniques for finding models of the given propositional formula,
while the CNF representations are typically more concise and can be solved
using standard SAT algorithms [Biere et al., 1999a].

Another application area in which SAT encodings and solvers have been
successfully used for solving real-world problems is asynchronous circuit
design [Vanbekbergen et al., 1992; Gu and Puri, 1995]. In one prominent
approach to asynchronous circuit synthesis, the circuits are specified using
signal transition graphs (STGs). One of the core problems is then to assign
a distinguishable binary code to every circuit state. This Complete State
Coding Problem (CSC) can be modelled as a SAT problem, but the size and
hardness of the formulae thus obtained limits the practical applicability of
using SAT algorithms for solving the CSC problem. However, by partioning
the STG into smaller components and using a SAT algorithm to solve the
corresponding CSC subproblems, substantial performance improvements
can be obtained for industrial asynchronous circuit design benchmarks [Gu
and Puri, 1995].

212

Finally, SAT algorithms have been recently used for solving real world
sports scheduling problems [Zhang, 2002]. Specifically, the problem of
finding fair schedules for college conference basketball tournaments can be
encoded into SAT. This encoding is based on a decomposition of the prob-
lem into three phases each of which deals with different constraints of the
overall scheduling problem. Using a standard SAT algorithm for solving the
SAT instances for the three phases, real-world college conference basketball
scheduling problems were solved substantially more efficiently than by pre-
vious, specialised techniques and more balanced schedules were obtained
than the ones that are currently used for these tournaments [Zhang, 2002].

Generalisations and Related Problems

Many generalisations of the Propositional Satisfiability Problem have been
proposed and studied in the literature. As mentioned above, the Constraint
Satisfaction Problem (CSP) can be seen as generalisations of SAT. Multi-
Valued SAT [Béjar and Manya, 1999; Frisch and Peugniez, 2001b] and
Pseudo-Boolean CSP [Abramson et al., 1996; Connolly, 1992; Walser, 1997;
kketangen, 2002] are two special cases of CSP that are closely related to
SAT. Multi-Valued SAT (MV-SAT) allows variables whose domains are
arbitrary finite sets of values and uses logical constraints similar to CNF
clauses. Pseudo-Boolean CSPs use binary variables with domain {0, 1} but
allow more general constraints. Both MV-SAT and Pseudo-Boolean CSP as
well as general finite discrete CSPs will be further discussed in Section 6.5.

The optimisation variant of SAT in which the objective is to maximise
the number of satisfied clauses of a given CNF formula rather than com-
pletely satisfying every clause is called MAX-SAT. In a further generali-
sation called weighted MAX-SAT, weights (usually positive integer or real
numbers) are associated to the clauses of a given CNF formula and the ob-
jective is to find a variable assignment that maximises the total weight of the
satisfied clauses. As one of the conceptually simplest combinatorial optimi-
sation problems and because of its close relation to SAT, MAX-SAT plays
an important role in the development and evaluation of search algorithms
for hard combinatorial problems. In general, the best known methods for
solving MAX-SAT problems are SLS algorithms. MAX-SAT problems and
SLS algorithms for MAX-SAT will be discussed in more detail in Chapter 7.

Another interesting generalisation of SAT is dynamic SAT (DynSAT)

6.1. THE SATISFIABILITY PROBLEM 213

[Hoos and ONeill, 2000]; intuitively, in DynSAT, a given CNF formula
changes over time and a solution consists of a sequence of models such
that at any time, the current CNF formula is satisfied by the current model.
Equivalently, DynSAT can be defined in such a way that each problem in-
stance consists of a conventional CNF formula some of whose variables
are fixed to specific truth values at certain times. SLS algorithms for SAT
can be generalised to DynSAT in a straight-forward way and appear to be
well-suited for solving these problems.

Let us mention three other prominent problems that are closely related
to SAT. In the Propositional Validity Problem (VAL), the objective is to de-
cide whether a given propositional formula F' is valid, i.e., has no variable
assignment that is not a model (see [Russel and Norvig, 1995]) VAL and
SAT are dual problems in the sense that any formula £ is valid if and only
if =F is unsatisfiable. Hence, any complete algorithm for SAT can be used
for deciding VAL and vice versa. VAL is an important problem in theo-
rem proving and has applications in Artificial Intelligence and other areas
of Computer Science. The Satisfiability Problem for Quantified Boolean
Formulae (QSAT) can be seen as a generalisation of both SAT and VAL.
A Quantified Boolean Formula (QBF) is a propositional formula in which
all variables are quantified existentially (3) or universally (V). A QBF of
the form Jz : F is satisfiable if either assigning z := T or z := L
makes F' satisfiable and a QBF of the form Vx : F' is satisfiable if both
x := T and z := L render F satisfiable (see, e.g., [Cadoli et al., 2002;
Rintanen, 1999b]). Many important problems in Artificial Intelligence can
be mapped directly into QSAT, including conditional planning, abduction,
and non-monotonic reasoning [Rintanen, 1999a; 1999b]. QSAT also plays
a prominent role in complexity theory, where it is prototypical and complete
for the problems in the polynomial hierarchy.

Finally, #SAT is a variant of SAT in which given a propositional formula
F, the objective is to determine the number of models of F' (counting vari-
ant) or to decide whether F' has at least a given number ¢ of models (decision
variant) [Roth, 1996; Bailey et al., 2001]. This problem has important ap-
plications to approximate reasoning problems in Artificial Intelligence; it is
also of substantial theoretical interest, as the counting variant of #SAT is the
prototypical complete problem for the complexity class #P and the decision
variant is a prototypical complete problem for the probabilistic complexity
class PP.

214

6.2 The GSAT Architecture

The GSAT algorithm [Selman et al., 1992] was one of the first SLS algo-
rithms for SAT; it had a very significant impact on the development of a
broad range of SAT solvers, including most of the current state-of-the-art
SLS algorithms for SAT. Like all SAT algorithms covered in this chapter,
GSAT is based on a 1-exchange neighbourhood in the space of all complete
truth assignments of the given formula; under this ‘one-flip neighbourhood’,
two variable assignments are neighbours if and only if they differ in the
truth assignment of exactly one variable. Furthermore, GSAT uses an eval-
uation function g(F, a) that maps each variable assignment to the number
of clauses of the given formula F' unsatisfied under a. Note that the mod-
els of F' are exactly the assignments with evaluation function value zero.
GSAT and most of its variants are iterative improvement methods that flip
the truth value of one variable in each search step. The selection of the vari-
able to be flipped is typically based on the score of a variable x under the
current assignment q; this is defined as g(F, a) — g(F, a’), where o' is the
assignment obtained from a by flipping the truth value of z. Algorithms of
the GSAT architecture differ primarily in the underlying variable selection
method. In the following, we describe some of the most widely known and
best-perfoming GSAT algorithms.

Basic GSAT

The core of the basic GSAT algorithm [Selman et al., 1992] consists of a
simple best-improvement search strategy: Starting from a randomly chosen
variable assignment, in each local search step, one of the variables with
maximal score, i.e., a variable that results in a maximal decrease in the
number of unsatisfied clauses, is flipped. If there are several variables with
maximal score, one of them is randomly selected according to a uniform
distribution. The iterative best-improvement search used in GSAT gets eas-
ily stuck in local minima of the evaluation function. Therefore, GSAT uses
a simple static restart mechanism that re-initialises the search at a randomly
chosen assignment every maxFlips flips. The search is terminated, when a
model of the given formula F' has been found, or after maxTries sequences
(also called ‘tries’) of maxFlips variable flips each have been performed
without finding a model of F' (see Figure 6.1).

6.2. THE GSAT ARCHITECTURE 215

procedure GSAT (F, maxTries, maxSteps)
input CNF formula F, positive integers maxTriesand maxSteps
output model of For “no solution found”
for try := 1 to maxTriesdo
a := randomly chosen assignment of the variables in formula F;
for step := 1 to maxStepsdo
if a satisfies Fthen return g;
v ;= randomly selected variable the flip of which minimises
the number of unsatisfied clauses;
a = awith v flipped;
end for;
end for;
return “no solution found”;
end GSAT

Figure 6.1: The basic GSAT algorithm; all random selections are according
to a uniform probability distribution over the underlying sets.

Straightforward implementations of GSAT are rather inefficient, since
in each step the scores of all variables have to be calculated from scratch.
The key to efficiently implementing GSAT is to compute the complete set
of scores only once at the beginning of each try, and then after each flip to
update only the scores of those variable which were possibly affected by
the flipped variable. Details on these implementation issues for GSAT and
related algorithms are discussed in an in-depth section on page 218.

For a any fixed number of restarts, GSAT is essentially incomplete [Hoos,
1998b; 1999a], and severe stagnation behaviour is observed on most SAT in-
stances. Still, when it was introduced, GSAT outperformed the best system-
atic search algorithms for SAT available at that time. Todate, basic GSAT’s
performance is substantially weaker than that of any of the other algorithms
described in the following, and the algorithm is mainly of historical interest.

216

GSAT with Random Walk (GWSAT)

Basic GSAT can be significantly improved by extending the underlying
search strategy into a randomised best-improvement method. This is achieved
by introducing an additional type of local search steps, so-called conflict-
directed random walk steps. In such a random walk step, first a currently
unsatisfied clause ¢’ is selected uniformly at random. Then, one of the vari-
ables appearing in ¢’ is randomly selected and flipped, thus effectively forc-
ing ¢’ to become satisfied. A simple SLS algorithm that initialises the search
by randomly picking an assignment (like basic GSAT) and then performs a
sequence of these conflict-directed random walk steps has been proven to
solve 2-SAT in quadratic expected time [Papadimitriou, 1991]; this result
inspired the use of this type of random walk to extend basic GSAT.

The basic idea of GWSAT is to decide at each local search step with
a fixed probability wp (called walk probability or noise setting) whether
to do a standard GSAT step or a conflict-directed random walk step. For
any wp > 0, this algorithm allows arbitrarily long sequences of random
walk steps; as detailed in [Hoos, 1999a], this implies that from arbitrary
assignments, a model (if existent) can be reached with a positive, bounded
probability. In particular, this allows the algorithm to escape from any local
minima region of the underlying search space. Hence, the probability that
GWSAT (without random restart), applied to a satisfiable formula finds a so-
lution converges to one as the run-time approaches infinity, i.e., GWSAT is
probabilistically approximately complete (PAC). Like all GSAT algorithms,
GWSAT uses the same static restart mechanism as basic GSAT.

Generally, GWSAT achieves substantially better performance than basic
GSAT. It has been shown that when using sufficiently high noise settings
(the precise threshold varies between problem instances), GWSAT does not
suffer from stagnation behaviour. Furthermore, for hard SAT instances, it
typically shows exponential RTDs [Hoos, 1998a; Hoos and Stiitzle, 1999];
hence, static restarts are ineffective, and optimal speedup can be obtained
by a multiple independent runs parallelisation (cf. Section 4.4). For low
noise settings, stagnation behaviour is frequently observed; recently, there
has been evidence that the corresponding RTDs can be characterised by
mixtures of exponential distributions [Hoos, 2002a].

6.2. THE GSAT ARCHITECTURE 217

GSAT with Tabu Search (GSAT/TABU)

The best-improvement search underyling basic GSAT can be easily ex-
tended into a tabu search strategy (see also Example 2.4 on page 69). GSAT/TABU
is obtained from basic GSAT by associating a tabu status with propositional
variables of the given formula [Mazure et al., 1995; McAllester et al., 1997;
Steinmann et al., 1997]. In GSAT/TABU, after a variable = has been flipped,
it cannot be flipped back within the next t/ steps, where the tabu tenure, tl, is
a parameter of the algorithm. In each search step, the variable to be flipped
is selected like in basic GSAT, except that the choice is restricted to vari-
ables that are currently not tabu. Upon search initialisation, the tabu status
of all variables is cleared. Efficient implementations of GSAT/TABU store
for each variable x the time (i.e., search step number) ¢, when it was last
flipped. When initialising the search, all the ¢, are set to —tI; subsequently,
every time a variable x is flipped, ¢, is set to the current search step number
t since the last initialisation of the search process. A variable z is tabu if
andonly if t — ¢, < tl.

Unlike in the case of GWSAT, it is not clear whether GSAT/TABU with
fixed cutoff parameter maxTries has the PAC property. Intuitively, for low
tl the algorithm might not be able to escape from extensive local minima
regions without using restart, while for high tl settings all the routes to a
solution might be cut off because too many variables are tabu. In prac-
tice, for very short tabu tenure, GSAT/TABU often shows severe stagna-
tion behaviour (the tl value for which this occurs depends on the given
problem instance). For sufficiently high tabu tenure settings, GSAT/TABU
does not suffer from stagnation behaviour and for hard problem instances,
shows exponential RTDs. As with GWSAT’s noise parameter, very high set-
tings of tl, although not causing stagnation behaviour, uniformly decrease
GSAT/TABU'’s performance.

Using instance specific optimised tabu tenure settings for GSAT/TABU
and noise settings for GWSAT, GSAT/TABU typically performes signifi-
cantly better than GWSAT, particularly when applied to large and struc-
tured SAT instances [Hoos and Stiitzle, 2000a]. (There are, however, a few
exceptional cases where GSAT/TABU performs substantially worse than
GWSAT, including well-known SAT-encoded instances of logistics plan-
ning problems.) Analogous to basic GSAT, GSAT/TABU can be extended
with a random walk mechanism; limited experimentation suggests that typi-

218

cally this hybrid algorithm does not perform better than GSAT/TABU [Stein-
mann et al., 1997]. Overall, with the exception of the dynamic local search
algorithms covered in Section 6.4, GSAT/TABU is one of the best-performing
variants of GSAT known todate.

HSAT and HWSAT

The intuition behind HSAT [Gent and Walsh, 1993b] is based on the obser-
vation that in basic GSAT some variables might never get flipped although
they are frequently eligible to be chosen. This can cause stagnation be-
haviour, since one of these variables might have to be flipped to allow the
search to make further progress. Therefore, when in a search step there are
several variables with identical score, HSAT selects the least recently flipped
variable, that is, the variable that was flipped longest ago. Only shortly after
search initialisation, when there are still variables that have not been flipped,
HSAT performs the same random tiebreaking between variables with identi-
cal score as plain GSAT. Apart from this difference in the variable selection
mechanism, HSAT is identical to basic GSAT.

Although HSAT was found to show superior performance over basic
GSAT [Gent and Walsh, 1993b], it is clear that it is even more likely to get
stuck in local minima from which it cannot escape, since the history-based
tie-breaking rule effectively restricts the search trajectories when compared
to GSAT. To counteract this problem, HSAT can be extended with the same
random walk mechanism as used in GWSAT. The resulting variant is called
HWSAT [Gent and Walsh, 1995]; like GWSAT, HWSAT has the PAC prop-
erty. Generally, HWSAT shows improved peak performance over GWSAT.
Compared to GSAT/TABU, HWSAT’s performance appears to be somewhat
better on hard Uniform Random-3-SAT instances and certain types of struc-
tured SAT problems, and significantly worse in many other cases [Hoos and
Stiitzle, 2000a].

In Depth: Efficiently Implementing GSAT

The key to implementing GSAT algorithms efficiently lies in caching and updating
the variable scores that form the basis for selecting the variable to be flipped in
each search step. Typically, not all variable scores change after each search step;
this suggests that rather than recomputing all variable scores in each step, it should

6.2. THE GSAT ARCHITECTURE 219

be more efficient to compute all scores when the search is initialised, but to sub-
sequently only update the scores affected by a variable flip in each search step.
The following definitions will help to explain the precise mechanism for updating
the scores and to analyse its time complexity.

Definition 6.1 (Variable and Clause Dependencies)

Given a CNF formula F' and two variables x,z' appearing in F. Then
z' is dependent on z (and vice versa) if there is a clause in which both
z and z' appear.

Furthermore, we define the set of variables dependent on z as
Viep(F,z) := {z' € Var(F) | =’ is dependent on z}

A clause c of F' is dependent on z, if z appears in ¢, and the set of
clauses dependent on z is defined as

Caep(F,z) := {cis a clause of F' | cis dependent on z}

A clause c is critically satisfied by a variable z under assignment a if =
appears in ¢, c is satisfied under a, and flipping the value of makes
c unsatisfied. Finally, a variable z' is critically dependent on a variable
z under assignment a, if there is a clause ¢ that is dependent on z
and z', and flipping z results in the clause to change its satisfaction
status from (i) satisfied to unsatisfied or vice versa, or (ii) satisfied to
critically satisfied or vice versa. |

After flipping a variable z, only clauses dependent on z can change their satisfac-
tion status; hence, in order to update the evaluation function value, i.e., the number
of unsatisfied clauses, only the clauses in Cy.,(z, F) need to be considered. Ac-
cording to the definition of a variable’s score, the score of z just changes its sign as
a consequence of flipping z. For all other variables z' # =z, the score of z' remains
unchanged if z' is not dependent on z, i.e., if 2’ ¢ V4, (F, 2). Hence, after flipping
x, only the scores of the variables in Vg, (F, z) need to be updated. In fact, among
those, only the scores of variables that critically depend on z can actually change.

For a given formula F' with n variables, m clauses, and a clause length (number
of literals per clause) bounded from above by CL(n), the time complexity of com-
puting all variable scores is O(m - CL(n)). This is achieved by going through all
clauses, checking their satisfaction status and increasing or decreasing the scores
of the variables appearing in a clause ¢, depending on whether ¢ is currently un-
satisfied, or whether it is critically satisfied by a given variable. At the end of this
process, the evaluation function value, a list of all unsatisfied clauses, and all vari-
able scores have been computed.

After each search step, all variable scores that are affected by the respective
flip can be updated in time O((CD(n) - CL(n)), where CD(n) is an upper bound

220

on the cardinality of the sets Cqy.,(F,z). This is achieved by going through all
clauses that are dependent on the flipped variable, z, and updating the scores of
the variables occuring in these, depending on the (critical) satisfaction status of the
respective clause before and after the flip of z. In order to perform this operation
efficiently, for each variable z a list is kept of the clauses that are dependent on
x; these lists are built when parsing the input formula. For each variable, we fur-
thermore store its current truth value and score, and for each clause, we store its
(critical) satisfaction status under the current assignment.

For Uniform Random-£-SAT formulae with fixed clauses/variable ratio, using
this implementation of GSAT achieves, because the average number of depen-
dent clauses for each variable is constant, independent of instance size, a time
complexity of O(1) for each search step, compared to ©(n?) for a naive imple-
mentation in which all variable scores are computed before every variable flip. For
SAT-encoded instances of other combinatorial problems, there are typically more
extensive variable dependencies, leading to a somewhat reduced, but still substan-
tial performance advantage of the efficient implementation described above.

The efficient mechanism for caching and updating variable scores described
here is also used in Selman and Kautz’ publically available reference implementa-
tion of GSAT. Very similar techniques can be used for efficiently implementing other
SLS algorithms, such as Galinier and Hao'’s Tabu Search algorithm for CSP, which
is outlined in Section 6.6. Interestingly, for the WalkSAT algorithms described in
the following, a more straight-forward implementation achieves slightly better per-
formance.

6.3 The WalkSAT Architecture

The WalkSAT architecture is based on ideas first published by Selman,
Kautz, and Cohen in 1994 [Selman et al., 1994] and was later formally
defined as an algorithmic framework by McAllester, Selman, and Kautz
in 1997 [McAllester et al., 1997]. WalkSAT can be seen as an extension
of the conflict directed random walk method that is also used in Papadim-
itriou’s algorithm [Papadimitriou, 1991] and GWSAT. It is based on a 2-
stage variable selection process focused on the variables occurring in cur-
rently unsatisfied clauses. For each local search step, in a first stage a cur-
rently unsatisfied clause ¢’ is randomly selected. In a second stage, one of
the variables appearing in ¢’ is then flipped to obtain the new assignment.
Thus, while the GSAT architecture is characterised by a static neighbour-
hood relation between assignments with Hamming distance one, using this

6.3. THE WALKSAT ARCHITECTURE 221

procedure WalkSAT (F, maxTries, maxSteps, sIc)
input CNF formula F, positive integers maxTriesand maxSteps,
heuristic function slc
output model of For “no solution found”
for try := 1 to maxTriesdo
a := randomly chosen assignment of the variables in formula F;
for step := 1 to maxSteps do
if asatisfies Fthen return a;
¢’ :=randomly selected clause unsatisfied under a;
v ;= variable selected from ¢’ according to heuristic function slc;
a := awith v flipped;
end for;
end for;
return *no solution found”;
end WalkSAT

Figure 6.2: The WalkSAT algorithm family. All random selections are ac-
cording to a uniform probability distribution over the underlying sets; Walk-
SAT algorithms differ in the variable selection heuristic slc.

procedure, WalkSAT algorithms are effectively based on a dynamically de-
termined subset of the GSAT neighbourhood relation. As a consequence
of this substantially reduced effective neighbourhood size, WalkSAT algo-
rithms can be implemented efficiently without caching variable scores and
still achieve substantially lower CPU times per search step than efficient
GSAT implementations [Hoos, 1998a; Hoos and Stiitzle, 2000a]. All Walk-
SAT algorithms considered here use the same random search initialisation
and static random restart as GSAT. A pseudo-code representation of the
WAalkSAT architecture is shown in Figure 6.2.

WalkSAT/SKC

The first WalkSAT algorithm, originally introduced in [Selman et al., 1994],
differs in one important aspect from most of the other SLS algorithms for
SAT: The scoring function score,(x) used by WalkSAT/SKC counts the
number of currently satisfied clauses that will be broken, i.e., become un-

222

satisfied, by flipping a given variable x. Using this scoring function, the
following variable selection scheme is applied: If there is a variable with
scorep(x) = 0 in the clause ¢’ selected in stage 1, that is, if ¢’ can be satis-
fied without breaking another clause, this variable is flipped (“zero-damage”
step). If no such variable exists, with a certain probability 1-p the variable
with minimal score, value is selected; in the remaining cases, i.e. with prob-
ability p (noise setting), one of the variables from ¢’ is randomly selected
(random walk step).

Conceptually as well as historically, WalkSAT/SKC is closely related to
GWSAT. However, there are a number of significant differences between
both algorithms, which in combination account for the generally superior
performance of WalkSAT/SKC. While both algorithms use the same kind of
random walk steps, WalkSAT/SKC applies them only under the condition
that there is no variable with score,(z) = 0. In GWSAT, however, ran-
dom walk steps are done in an unconditional probabilistic way. From this
point of view, WalkSAT/SKC is greedier, since random walk steps, which
usually increase the number of unsatisfied clauses, are only done when ev-
ery variable occurring in the selected clause would break some clauses when
flipped. Yet, in a greedy step, due to its two-stage variable selection scheme,
WalkSAT/SKC chooses from a significantly reduced set of neighbours and
can therefore be considered less greedy than GWSAT. Finally, because of
the different scoring function, in some sense, GWSAT shows a greedier be-
haviour than WalkSAT/SKC: In a best-improvement step, GWSAT would
prefer a variable which breaks some clause but compensates for this by fix-
ing some other clauses, while in the same situation, WalkSAT/SKC would
select a variable with a smaller total score, but breaking also a smaller num-
ber of clauses.

It has been proven that WalkSAT/SKC with fixed cutoff parameter maxSteps
has the PAC property for 2-SAT formulae [Culberson et al., 2000], but it
is not known whether the algorithm is PAC in the general case. Differ-
ent from GWSAT, it is not clear whether WalkSAT/SKC can perform arbi-
trarily long sequences of random walk steps, since random walk steps are
only possible when the selected clause does not allow any “zero-damage”
steps. In practice, however, WalkSAT/SKC does not appear to suffer from
any stagnation behaviour when using sufficiently high (instance specific)
noise settings, in which case its run-time behaviour is characterised by ex-
ponential RTDs [Hoos, 1998a; Hoos and Stiitzle, 1999; 2000a]. Like in the

6.3. THE WALKSAT ARCHITECTURE 223

case of GWSAT, stagnation behaviour is frequently observed for low noise
settings, and there is some evidence that the corresponding RTDs can be
characterised by mixtures of exponential distributions [Hoos, 2002a].

Generally, when using (instance specific) optimised noise settings, Walk-
SAT/SKC probabilistically dominates GWSAT in terms of variable flips re-
quired for finding a model to a given formula, but it does not always reach
the performance of HWSAT or GSAT/TABU. When comparing CPU time,
however, WalkSAT/SKC typically outperforms all GSAT variants presented
in Section 6.2.

WalkSAT with Tabu Search (WalkSAT/TABU)

Analogously to GSAT/TABU, there is also an extension to WalkSAT/SKC
that uses a tabu search mechanism. WalkSAT/TABU [McAllester et al.,
1997] uses the same two stage selection mechanism and the same scoring
function score;, as WalkSAT/SKC and additionally enforces a tabu tenure of
tl steps for each flipped variable. (To implement this tabu mechanism effi-
ciently, the same approach is used as described in Section 6.2 for GSAT/TABU.)
In WalkSAT/TABU, if the selected clause ¢’ does not allow a zero damage
step, of all the variables occurring in ¢’ that are not tabu the one with the
highest score, value is picked; when there are several variables with the
same maximal score, one of them is randomly selected according to a uni-
form probability distribution. It may happen, however, that all variables
appearing in ¢’ are tabu, in which case no variable is flipped (a so-called
null-flip).

As shown in [Hoos, 1998b; 1999a], WalkSAT/TABU with fixed cut-
off parameter maxSteps is essentially incomplete. Although this is mainly
caused by null-flips, it is not clear whether replacing null-flips by random
walk steps, for instance, would be sufficient for obtaining the PAC property.
In practice, when using sufficiently high (instance specific) tabu tenure set-
tings, WalkSAT/TABU’s run-time behaviour is characterised by exponen-
tial RTDs; but there are cases (particularly for structured SAT instances) in
which extreme stagnation behaviour is observed. Typically, however, Walk-
SAT/TABU performs significantly better that WalkSAT/SKC, and there are
structured SAT instances (e.g., large SAT-encoded blocks world planning
problems), where WalkSAT/TABU appears to achieve better performance
than any other SLS algorithm currently known.

224

Novelty and Novelty™

Novelty [McAllester et al., 1997] is a recent WalkSAT algorithm that uses
history-based variable selection mechanism in the spirit of HSAT. Novelty,
too, is based on the intuition, that repeatedly flipping back and forth the
same variable should be avoided. Additionally the number of local search
steps that have been performed since a variable was last flipped (also called
the variable’s age) is taken into consideration. An important difference of
Novelty compared to WalkSAT/SKC and WalkSAT/TABU is that it uses the
same scoring function as GSAT.

In Novelty, after an unsatisfied clause has been chosen, the variable to be
flipped is selected as follows. If the variable with the highest score does not
have minimal age among the variables within the same clause, it is always
selected. Otherwise, it is only selected with a probability of 1-p, where pis a
parameter called the noise setting. In the remaining cases, the variable with
the next lower score is selected. If there are several variables with identical
score, the reference implementation by Kautz and Selman always chooses
the one appearing first in the selected clause.

Note that for p > 0, the age-based variable selection of Novelty prob-
abilistically prevents flipping the same variable over and over again; at the
same time, flips can be immediately reversed with a certain probability if
a better choice is not available. Generally, the Novelty algorithm is sig-
nificantly greedier than WalkSAT/SKC, since always one of the two most
improving variables from a clause is selected, where WalkSAT/SKC may
select any variable if no improvement without breaking other clauses can
be achieved. Also, Novelty is more deterministic than WalkSAT/SKC and
GWSAT, since its probabilistic decisions are more limited in their scope
and take place under more restrictive conditions. For example, different
from WalkSAT/SKC, the Novelty strategy for variable selection within a
clause is deterministic for both p = 0 and p = 1.

On one hand side, this typically leads to a significantly improved per-
formance of Novelty when compared to WalkSAT/SKC. On the other hand,
because of this property, it can be shown that Novelty is essentially incom-
plete [Hoos, 1998a], as selecting only among the best two variables in a
given clause can lead to situations where the algorithm gets stuck in local
minima of the objective function. As shown in [Hoos and Stiitzle, 2000a],
this situation can be observed for a number of commonly used benchmark

6.3. THE WALKSAT ARCHITECTURE 225

best var does
not have min age

best var
has min age

select best
var from clause

select 2nd best select best
var from clause var from clause

Figure 6.3: Decision tree representation of Novelty’s mechanism for select-
ing a variable to be flipped within a given clause. Deterministic and prob-
abilistic choices are represented by black and white circles, respectively;
edges are labelled with the respective conditions and probabilities. Black
boxes indicate variable decision actions.

instances, where it severely compromises Novelty’s performance.

By extending Novelty with conflict-directed random walk analogously
to GWSAT, the essential incompleteness as well as the empirically observed
stagnation behaviour can be overcome. The Novelty™ algorithm [Hoos,
1998b; 1999a] selects the variable to be flipped according to the standard
Novelty mechanism with probability 1 — wp, and performs a random walk
step, as defined above for GWSAT, in the remaining cases. A GLSM model
of the resulting algorithm is shown in Figure 6.4.

Novelty™ is provably PAC for wp > 0 and shows exponential RTDs
for sufficiently high (instance specific) settings of the primary noise param-
eter, p. In practice, small walk probabilities, wp, are generally sufficient
to prevent the extreme stagnation behaviour that is occasionally observed
for Novelty and to achieve substantially superior performance to Novelty.
In fact, a uniform setting of wp = 0.01 seems to result in uniformly good

226

CPROB(not R, 1-p)

CPROB(notR, p)

DET O COND(notR)

T
caeC

COND(R)

Figure 6.4: GLSM models for Novelty (left) and Novelty* (right); the
restart predicate R is equal to countm(m), GSLM state RP initialises the
search at randomly selected variable assignment, NV performs a Novelty
step, and RW performs a random walk step (see text for details).

performance [Hoos, 1999a], and the algorithm’s performance appears to be
much more robust w.r.t. to the wp parameter than w.r.t. to the primary noise
setting, p. In cases where Novelty does not suffer from stagnation behaviour,
Novelty*’s performance for wp = 0.01 is typically almost identical to Nov-
elty’s. Overall, Novelty* is one of the best-performing WalkSAT algorithms
currently known and one of the best SLS algorithms for SAT available to
date [Hoos and Stiitzle, 2000a; Hutter et al., 2002].

R-Novelty and R-Novelty™

R-Novelty [McAllester et al., 1997] is a variant of Novelty which is based
on the intuition that, when deciding between the best and second best vari-
able (using the same scoring function as for Novelty), the actual difference
of the respective scores should be taken into account. The exact mecha-
nism for choosing a variable from the selected clause can be seen from the
decision tree representation given in Figure ??. Note that the R-Novelty
heuristic is quite complex — as reported in [McAllester et al., 1997], it was
discovered by systematically testing a large number of WalkSAT variants.
R-Novelty’s variable selection strategy is even more deterministic than
Novelty’s; in particular, it is completely deterministic for p € {0,0.5,1}.

6.3. THE WALKSAT ARCHITECTURE 227

Since the pure R-Novelty algorithm gets too easily stuck in local minima,
a simple loop breaking strategy is used: every 100 steps, a variable is ran-
domly chosen from the selected clause and flipped. As shown in [Hoos,
1998b; 1999a], this loop breaking strategy is generally not sufficient for
effectively escaping from local minima and leaves R-Novelty essentially
incomplete; as for Novelty, severe stagnation behaviour is observed in prac-
tice for some SAT instances [Hoos and Stiitzle, 2000a]. R-Novelty’s perfor-
mance is often, but not always, superior to Novelty’s.

Extending R-Novelty with a random walk mechanism exactly analo-
gous to the one used in Novelty* leads to the R-Novelty* algorithm [Hoos,
1998b; 1999a]. Like Novelty™, R-Novelty* is provably PAC for wp > 0
and shows exponential RTDs for sufficiently high noise (instance specific)
settings. Again, a small walk probability of wp = 0.01 appears to be gener-
ally sufficient for avoiding stagnation behaviour and for robustly achieving
good performance in practice. R-Novelty™’s performance for instances on
which R-Novelty does not suffer from stagnation behaviour is very similar
to R-Novelty’s, There is some indication that R-Novelty and R-Novelty*
do not reach the performance of Novelty™ on several classes of structured
SAT instances, including SAT-encoded hard graph colouring and planning
problems [Hoos and Stiitzle, 2000a].

WalkSAT with Adaptive Noise

The noise parameter, p, which is common to all WalkSAT algorithms dis-
cussed here with the exception of WalkSAT/TABU (where the tabu tenure
tl plays a similar role), has a major impact on the performance and run-time
behaviour of the respective algorithm. For low noise settings, stagnation
behaviour is typically observed, and as a consequence, using an appropri-
ate maxSteps setting for the static restart mechanism becomes crucial for
obtaining good performance [Hoos and Stiitzle, 2000a]. For sufficiently
high noise settings, however, the maxSteps setting has typically little or
no impact on the behaviour of the algorithm [Parkes and Walser, 1996;
Hoos and Stiitzle, 1999], since the corresponding RTDs are closely ap-
proximated by exponential distribution. (There are exceptions to this gen-
eral observation, including instances on which essentially incomplete Walk-
SAT variants show extreme stagnation behaviour as well as the irregular in-
stances recently described by Hoos [Hoos, 2002a].) Fortunately, for many

228

of the most prominent and best-performing WalkSAT algorithms, includ-
ing WalkSAT/SKC, WalkSAT/TABU, Novelty*, and R-Novelty*, the noise
settings required for reaching peak performance are generally high enough
that the cutoff parameter, maxSteps, does not affect performance unless it
is chosen too low, in which case performance is degraded. This leaves the
noise setting, p, to be optimised in order to achieve maximal performance
of these WalkSAT algorithms.

Unfortunately, finding the optimal noise setting is typically a difficult
task. Because optimal noise settings appear to differ considerably depend-
ing on the given problem instance, this task often requires experience and
substantial experimentation with various noise values [Hoos and Stiitzle,
2000a]. It has been shown that even relatively minor deviations from the
optimal noise setting can lead to a substantial increase in the expected time
for solving a given instance; and to make matters worse, the sensitivity of
WalkSAT’s performance w.r.t. the noise setting seems to increase with the
size and hardness of the problem instance to be solved [Hoos, 2002b]. This
complicates the use of WalkSAT for solving SAT instances as well as the
evaluation, and hence the development, of new WalkSAT algorithms.

The key idea behind Adaptive WalkSAT [Hoos, 2002b] is to use high
noise values only when they are needed to escape from stagnation situations
in which the search procedure appears to make no further progress towards
finding a solution. This idea is closely related to the motivation behind Re-
active Tabu Search [Battiti and Tecchiolli, 1994] and Iterated Local Search
[Lourengo et al., 2002]. More precisely, Adaptive WalkSAT dynamically
adjusts the noise setting p, i.e., the probability for performing greedy steps,
based on search progress, as reflected in the time elapsed since the last im-
provement in the evaluation function has been achieved. At the beginning of
the search process, the search is maximally greedy (p = 0). This will typi-
cally lead to a series of rapid improvements in the evaluation function value,
followed by stagnation (unless a solution to the given problem instance is
found). In this situation, the noise value is increased. If this increase is not
sufficient to escape from the stagnation situation, i.e., if it does not lead to an
improvement in evaluation function value within a certain number of steps,
the noise value is further increased. Eventually, the noise value should be
high for the search process to overcome the stagnation situation, at which
point the noise can be gradually decreased until the next stagnation situation
is detected or a solution to the given problem instance is found.

6.4. DYNAMIC LOCAL SEARCH ALGORITHMS FOR SAT 229

As an indicator for search stagnation, Adaptive WalkSAT uses a predi-
cate that is true if and only if no improvement in evaluation function value
has been observed over the last 6 - m search steps, where m is the number
of clauses of the given problem instance and @ is a parameter. Every incre-
mental increase in the noise value is realised as p := p+ (1 — p) - ¢. The
decrements are defined as p := p— p- 2¢, where p is the noise level and ¢ is
an additional parameter. The asymmetry between increases and decreases
in the noise setting is motivated by the fact that detecting search stagnation
is computationally more expensive than detecting search progress and by
the observation that it is advantageous to approximate optimal noise levels
from above rather than from below [Hoos, 2002b]. After the noise setting
has been increased or decreased, the current evaluation function value is
stored and becomes the basis for measuring improvement, and hence for
detecting search stagnation. As a consequence, between increases in noise
level there is always a phase during which the trajectory is monitored for
search progress without further increasing the noise. No such delay is en-
forced between successive decreases in noise level.

It may be noted that the behaviour of the adaptive noise mechanism is
controlled by two internal parameters, € and ¢. While one might assume
that this merely replaced the problem of tuning one parameter, p, by the po-
tentially more difficult problem of tuning these new parameters, it appears
that the performance of Adaptive WalkSAT is much more robust w.r.t. to
the settings of these parameters, than WalkSAT is w.r.t. to the noise set-
ting. Using fixed settings of § = 1/6 and ¢ = 0.2 for Adaptive Novelty "
generally seems to result in similar performance as observed for Novelty *
with approx. optimal, instance specific noise settings; in some cases, Adap-
tive Novelty™ achieves significantly better performance than Novelty™ ap-
prox. optimal static noise [Hoos, 2002b], making Adaptive Novelty* one
of the best-performing and most robust SLS algorithms for SAT currently
available.

6.4 Dynamic Local Search Algorithms for SAT

The first application of Dynamic Local Search to SAT was proposed around
the same time as GWSAT. Since then, a number of DLS algorithms for SAT
have been developped, the most recent of which achieve better performance

230

than the best GSAT and WalkSAT variants for many types of SAT instances
and can therefore be seen as the best performing SLS algorithms for SAT
currently known.

Most DLS algorithms for SAT are based on variants of GSAT as their
underlying local search procedure. Furthermore, the clauses of the given
formula represent the solution components that are selectively penalised.
In this section, we denote the penalty associated with clause i by clp(z).
Consistent with the general DLS algorithm from Section 2.2, typically a
modified evaluation function of the form

g (F,a) = g(F,a)+ Y {clp(i) | clause i is unsatisfied by a}

is used within the local search procedure. Many DLS algorithms for SAT
use the notion of clause weights clw () instead of clause penalties, where

clw(i) = clp(i) + 1

and
g (F,a) = Z{c]w(z’) | clause i is unsatisfied by a};

for
g(F,a) = #{i | clause i is unsatisfied by a},

the standard evaluation function used by most SLS algorithms for SAT, both
definitions of ¢'(F, a) are equivalent. The major differences between DLS
algorithms for SAT are in the details of the local search procedure and in the
scheme used for updating the clause penalties or weights.

Most DLS algorithms for SAT perform excellently in terms of the num-
ber of variable flips required for finding a model of a given formula. How-
ever, the time complexity and frequency of the weight updates is typically
rather high, which makes it difficult for DLS algorithms to reach or exceed
the time performance of the best-performing WalkSAT variants. Unfortu-
nately, the run-time behaviour of DLS algorithms for SAT has not been as
thoroughly investigated as that of GSAT and WalkSAT algorithms. In par-
ticular, little is know about these algorithms in terms of their asymptotic
run-time behaviour, search stagnation, and RTD characterisations.

6.4. DYNAMIC LOCAL SEARCH ALGORITHMS FOR SAT 231

GSAT with Clause Weights

This early DLS algorithm for SAT is based on the observation that when
applied to certain types of structured SAT instances, basic GSAT often finds
the same set of clauses unsatisfied at the end of a run [Selman and Kautz,
1993]. In this GSAT variant, weights are associated with each clause. These
weights are initially set to one; before each restart, the weights of all cur-
rently unsatisfied clauses are increased by 4 = 1. The underlying local
search procedure is a variant of basic GSAT that uses the modified evalu-
ation function ¢'(F’, a) introduced above. It may be noted that since basic
GSAT is a best-improvement search method, for sufficiently high maxSteps
setting, this local search procedure will terminate in or very close to a lo-
cal minima region of the underlying search space. Different from the other
DLS methods discussed in this section, GSAT with Clause Weights begins
its next local search phase from a randomly selected variable assignment.
(A further extension, called “Averaging In”, uses a modified search initiali-
sation that introduces a bias towards the best candidate solutions reached in
previous local search phases [Selman and Kautz, 1993].)

GSAT with Clause Weights performs substantially better than basic GSAT
on various classes of structured SAT instances, including SAT-encoded asym-
metrical graph colouring problems; there is also some indication that by
using the same clause weighting mechanism with GWSAT, further perfor-
mance improvements can be achieved [Selman and Kautz, 1993]. Today,
since its performance is not competitive with any of the more recent DLS
algorithms for SAT presented in the following, GSAT with Clause Weights
is mainly of historical interest.

Several variants of the Breakout algorithm have been studied by Cha and
Iwama [Cha and lwama, 1995]. In particular, they tested a variant that uses
weigthed GSAT as the underlying local search procedure, but different from
GSAT with Clause Weights, their algorithm performs weight updates when-
ever a local minimum of the modified evaluation function is encountered
and, in its basic form, it does not perform restarts. This algorithm appears
to perform substantially better than GSAT and GWSAT when applied to a
class of randomly generated SAT instances that have only a single model
[Asahiro et al., 1996]. (These instances, however, are not intrinsically hard
because they can be solved by polynomial simplifications and hence they
are only of limited use as benchmark problems [Hoos and Stiitzle, 2000b].)

232

There is no evidence that this variant performs better than the original GSAT
with Clause Weights algorithm.

Cha and lwama also investigated slight variations of the weight update
scheme as well as combinations of their basic algorithm with static restarts
and a simple tabu strategy that, different from GSAT/TABU or WalkSAT/TABU,
associates tabu status with the most recently visited variable assignments
rather than with recently flipped variables [Cha and Iwama, 1995]. From
their limited empirical results it appears that none of these variations achieves
significant performance improvements over their basic variant of GSAT
with Clause Weights.

Methods using Rapid Weight Adjustments

Frank introduced several variants of GSAT with Clause Weights that per-
form weight updates after each local search step [Frank, 1996; 1997]. The
underlying idea is that GSAT should benefit from discovering which clauses
are most difficult to satisfy relative to recent assignments. The most basic
of these variants, called WGSAT, uses the same weight initialisation and
update procedure as GSAT with Clause Weights, but performs only a single
weighted GSAT step before updating the clause weights. On hard Random-
3-SAT instances, WGSAT achieves a significantly improved performance
over HSAT (and hence, basic GSAT) when measuring run-time in terms
variable flips required for finding a solution [Frank, 1996; 1997]. When
comparing CPU times however, it appears that due to the computational
overhead caused by the frequent weight updates, WGSAT’s performance
cannot reach that of HSAT or GWSAT.

A modification of this algorithm, called UGSAT, uses a best-improvement
local search like weighted GSAT, but restricts the neighbourhood consid-
ered in each search steps to the set of variables appearing in currently unsat-
isfied clauses [Frank, 1996]. While this leads to considerable speedups for
naive implementations of the underlying local search procedure, the dif-
ference to efficient implementations is likely to be insufficient to render
UGSAT competitive with HSAT or GWSAT.

Another variant of WGSAT implements a uniform decay of clause weights
over time. The underlying idea is that the relative importance of clauses
w.r.t. their satisfaction status can change during the search, and hence a
mechanism is needed that focusses the weighted search on the most recently

6.4. DYNAMIC LOCAL SEARCH ALGORITHMS FOR SAT 233

unsatisfied clauses. In WGSAT with Decay, this idea is implemented by uni-
formly decaying all clause weights in each weight update phase before the
weights of the currently unsatisfied clauses are increased; this decay is per-
formed according to the formula clw (i) < clw (i) - p, where the decay rate
p (With 0 < p < 1) is a parameter of the algorithm [Frank, 1997]. Empirical
results suggest that on larger instances from the phase transition region of
Uniform Random-3-SAT, using this decay mechanism slightly improves the
performance of WGSAT when measured in terms of variable flips; this im-
provement, however, appears to be insufficient to amortise the added time
complexity of the frequent weight update steps. Nevertheless, as we will see
later in this section, similar mechanisms for focussing the search on recently
unsatisfied clauses play a crucial role in state-of-the-art DLS algorithms for
SAT.

Guided Local Search (GLS)

This relatively recent DLS algorithm has been applied to a number of com-
binatorial problems [Voudouris, 1997; Voudouris and Tsang, 1999] Guided
Local Search for SAT (GLSSAT) [Mills and Tsang, 1999; 2000] is based
on a local search algorithm that, similar to HSAT, Novelty, and R-Novelty,
implements a bias towards flipping variables whose values was not changed
for a while. More precisely, in each local search step, from the set of all vari-
ables that, when flipped, would lead to a strict decrease in the total penalty
of unsatisfied clauses, the one whose last flip has occurred least recently
is flipped. If no such strictly improving variable exists, the same selection
is made from the set of all variables that, when flipped, do not cause an
increase in the evaluation function value.! The subsidiary local search pro-
cedure terminates when a satisfying assignment is found, or after a fixed
number smax of consecutive non-improving flips have been made without
an improving flip becoming available.

Before the actual search begins, GLSSAT performs a complete pass of
unit propagation in order to simplify the given formula. Then, all clause
penalties are initialised to zero, and the search starts from a variable assign-
ment that is chosen uniformly at random.

LInterestingly, it has been shown that using simple random selection from the same sets
results in only slightly worse performance of GLSSAT.

234

After each local search phase, the penalties of all clauses with maximal
utilities are incremented by 6 = 1, where the utility of a clause 7 under as-
signment q is defined as util(a, i) = 1/(1 + clp(z)) if clause i is unsatisfied
under x and zero otherwise. Note that this corresponds to incrementing the
smallest clause penalties occurring in currently unsatisfied clauses. An im-
portant extension of GLSSAT uses an additional mechanism for bounding
the range of the clause penalties: If after updating the clause penalties, the
maximum penalty exceeds a given threshold, pmax, all clause penalties are
uniformly decayed by multiplying them with a factor pdecay. This clause
penalty decay mechanism has a substantial impact on the performance of
GLSSAT and significantly improves the algorithm’s efficacy in solving large
and hard structured instances. A similar modification of GLSSAT, called
GLSSAT?2, was used in another study [Mills and Tsang, 2000]; in this vari-
ant, all clause penalties are multiplied by a factor pdecay = 0.8 after every
200 penalty updates.

GLSSAT achieves better performance than WalkSAT/SKC on some widely
used benchmark instances when measuring run-time in terms of variable
flips, but in many cases WalkSAT/SKC is superior in terms of CPU time
[Mills and Tsang, 2000]. There are some hard structured SAT instances,
however, for which GLSSAT?2 appears to perform significantly better than
WalkSAT/SKC. There is some indirect evidence that GLSSAT is generally
outperformed by the most recent DLS algorithms for SAT, such as ESG and
SAPS (see below).

The Discrete Lagrangian Method (DLM)

The basic DLM algorithm for SAT [Shang and Wah, 1998] is motivated by
the theory of Lagrange multipliers for continuous optimisation. Basic DLM
is a DLS algorithm based on GSAT/TABU with clause weights (which flips
non-tabu variables maximising the decrease in the total weight of all unsatis-
fied clauses) as its underlying local search procedure. This subsidiary local
search is terminated when an assignment is reached for which the number
of neighbouring assignments with larger or equal evaluation function value
exceeds a given threshold ;. After each local search phase, the penalties for
all unsatisfied clauses are increased by §* = 1; in order to bound the range
of the clause penalties, additionally all penalties are reduced by 6~ = 1 after
every 6, local search phases. Before the actual search begins, DLM simpli-

6.4. DYNAMIC LOCAL SEARCH ALGORITHMS FOR SAT 235

fies the given formula by performing a complete pass of unit propagation.
As usual, all clause penalties are initialised to zero, and the search process
starts from a variable assignment that is chosen uniformly at random.

This basic DLM algorithm has been extended in various ways. DLM-
99-SAT [Wu and Wah, 1999] uses an additional mechanism for escaping
more effectively from local minima of the evaluation function. The idea
behind this mechanism is to identify clauses that are frequently unsatisfied
in local minima and to additionally increase their penalties. This is achieved
by means of temporary clause penalties ¢; that are initialised at zero and
increased by §,, = 1 for all unsatisfied clauses, whenever a local minimum is
encountered. After each regular clause penalty update, if the ratio between
the maximal ¢; and average ¢; over all clauses exceeds a threshold 65, the
regular penalty of the clause with the largest ¢; is increased by 6, = 1.2

A different extension of DLM-2000-SAT uses a long-term memory mech-
anism for preventing the search process from getting stuck repeatedly in cer-
tain attractive non-solution areas of the search space. This is implemented
by using a list of previously visited assignments and by adding an addi-
tional distance penalty to the evaluation function for assignments that are
close to the elements of this list. More precisely, during the search process,
every w, variable flips, the current variable assignment is added to a fixed-
length queue. Using the assignments «; in this queue, a distance term for a
given variable assignment a is computed as d = }_. min(6;, hd(a, a;)),
where hd(a,a;) is the Hamming distance (i.e., the number of variables
assigned different values) between assignments a and a;. The evaluation
function used in the subsidiary local search procedure is then extended to
g (F,a) = g(F,a)+> {clw(i) | clause i is unsatisfied by a} — d. Note that
by using a bound #; < n on the distance contribution from each assignment
a;, the impact of this mechanism on the search process is fairly localised.

DLM-99-SAT shows substantially better performance than the basic DLM
algorithm, particularly on large and structured SAT instances. DLM-2000-
SAT, the most recent DLM variant, typically seems to perform better than
DLM-99-SAT as well as WalkSAT/SKC; until very recently, this Dynamic
Local Search algorithm was one of the best known SLS algorithms for SAT.

2In another variant, only the ¢; of currently unsatisfied clauses are considered in com-
puting the ratio and determining the clause penalty that receives the additional increase.

236

The Exponentiated Subgradient Algorithm (ESG)

The Exponentiated Subgradient (ESG) algorithm [Schuurmans et al., 2001]
is motivated by subgradient optimisation, a well-known method for min-
imising Lagrangian functions that is often used for generating good lower
bounds for branch and bound techniques or as a heuristic in local search
algorithms.

ESG starts its search from a randomly selected variable assignment after
initialising all clause weights to one. As its underlying local search proce-
dure, ESG uses a best improvement search method that can be seen as a
simple variant of weighted GSAT: In each local search step, the variable
to be flipped is selected uniformly at random from the set of all variables
that appear in currently unsatisfied clauses and whose flip leads to a max-
imal reduction in the total weight of unsatisfied clauses. When reaching a
local minimum state, i.e., an assignment in which flipping any variable that
appears in an unsatisfied clause would not lead to a decrease in the total
weight of unsatisfied clauses, with probability 7, the search is continued
by flipping a variable that is uniformly chosen at random from the set of all
variables appearing in unsatisfied clauses. Otherwise, the local search phase
is terminated.

After each local search phase, the clause weights are updated. This
involves two stages: First, the weights of all clauses are multiplied by a
factor depending on their satisfaction status; weights of satisfied clauses
are multiplied by «,,;, weights of unsatisfied clauses by «,,..: (scaling
stage). Then, all clause weights are smoothed using the formula clw (i) <
clw(i) - p+ (1 — p) - w (smoothing stage), where @ is the average of all
clause weights after scaling, and the parameter p has a fixed value between
zero and one. The algorithm terminates when a satisfying assignment for F’
has been found or when a maximal number of iterations has been performed.

In a straight-forward implementation of ESG, the weight update steps
are computationally much more expensive than the weighted search steps,
whose cost is determined by the underlying basic local search procedure.
Each weight update step requires accessing all clause weights, while a weighted
search step only needs to access the weights of the critical clauses, i.e.,
clauses that can change their satisfaction status when a variable appearing
in a currently unsatisfied clause is flipped.® Typically, for the major part of

3The complexity of all other operations is dominated by these operations.

6.4. DYNAMIC LOCAL SEARCH ALGORITHMS FOR SAT 237

the search only few clauses are unsatisfied; hence, only a small subset of
the clauses is critical, rendering the weighted search steps computationally
cheaper than weight updates.

If weight updates would typically occur very infrequently as compared
to weighted search steps, the relatively high complexity of the weight up-
date steps might not have a significant effect on the performance of the
algorithm. However, experimental evidence indicates that the fraction of
weighting steps performed by ESG is quite high; it ranges from around 7%
(for SAT encodings of large flat graph colouring problems) to more than
40% percent (for SAT-encoded all-interval-series problems).

Efficient implementations of ESG therefore critically depend on addi-
tional techniques in order to achieve the competitive performance results
reported in [Schuurmans et al., 2001]. The most recent publically available
ESG-SAT software by Southey and Schuurmans (Version 1.4), for instance,
uses a4 = 1 (which avoids the effort of scaling satisfied clauses), replaces
w by 1 in the smoothing step, and utilises a lazy weight update technique
which updates clause weights only when they are needed.

When measuring run-time in terms of search steps, ESG typically per-
forms substantially better than state-of-the-art WalkSAT variants, such as
Novelty™*. In terms of CPU-time, even the highly optimised ESG-SAT im-
plementation by Southey and Schuurmans does not always reach the per-
formance of Novelty™. Compared to DLM-2000-SAT, ESG-SAT typically
requires fewer steps for finding a model of a given formula but in terms of
CPU-time, both algorithms show very similar performance [Schuurmans et
al., 2001; Hutter et al., 2002].

Scaling and Probabilistic Smoothing (SAPS)

The SAPS algorithm [Hutter et al., 2002] can be seen as variant of ESG
that uses a modified weight update scheme, in which the scaling stage is
restricted to the weights of currently unsatisfied clauses, and smoothing is
only performed with a certain probability P,,,..:». Note that restricting the
scaling operation to the weights of unsatisfied clauses («,,; = 1) does not
affect the variable selection in the weighted search phase, since rescaling
all clause weights by a constant factor does not affect the variable selec-
tion mechanism. (Southey’s and Schuurmans’ efficient ESG implementa-
tion also makes use of this fact.) This reduces the complexity of the scaling

238

step from O (|C(F')|) to O(|Cyunsat(F, a)|), where C(F') is the set of clauses
in the given CNF formula F' and Cl,.s:(F, a) is the set of clauses in F that
are unsatisfied under assignment a.

After a short initial search phase, typically only few clauses remain un-
satisfied such that |C,sqt(F, a)| becomes rather small compared to |C(F)];
this effect seems to be more pronounced for larger SAT instances with
many clauses. The smoothing step, however, has complexity ©(|C(F)|),
and now dominates the complexity of the weight update. Therefore, by
applying the expensive smoothing operation only occasionally, the time
complexity of the weight update procedure can be substantially reduced. It
has been shown experimentally that this does not have a detrimental effect
on the performance of the algorithm in terms of the number of weighted
search steps required for solving a given instance [Hutter et al., 2002].
By having the weight update procedure perform smoothing of all clause
weights (using the same formula as shown in our description of ESG above)
only with a probability Py,...cn < 1, compared to ESG the time com-
plexity of a weight update is reduced from O(|C(F)| 4+ |Cunsat(F, a)|) t0
O(Psmooth * |C(F)| + |Cunsat(F,a)|). As a result, the amortised cost of
smoothing no longer dominates the algorithm’s run-time. Performing the
smoothing probabilistically rather than a deterministically after a fixed num-
ber of steps (as the occasional clause weight reduction in DLM), has the the-
oretical advantage of preventing the algorithm from getting trapped in the
same kind of cyclic behaviour that renders R-Novelty essentially incom-
plete.

The SAPS algorithm as described here does not require additional im-
plementation tricks other than the standard mechanism for efficiently ac-
cessing critical clauses that is used in all efficient implementations of SLS
algorithms for SAT. Compared to ESG, SAPS has similar performance in
terms of the number of variable flips required for finding a model of the
given formula, but SAPS shows generally significantly improved time per-
formance over ESG, DLM-2000-SAT, and the best known WalkSAT vari-
ants [Hutter et al., 2002]. However, there are some cases (in particular, hard
and large SAT encoded graph colouring instances), for which SAPS does
not reach the performance of Novelty*.

A reactive variant of SAPS (RSAPS), which automatically adjusts the
smoothing probability Pg,...:, during the search using a very similar mech-
anism as Adaptive WalkSAT, sometimes achieves significantly better perfor-

6.5. CONSTRAINT SATISFACTION PROBLEMS 239

procedure UpdateClauseWeights(F, a; o, p, Psmoott)
input:
propositional formula ', variable assignment a;
scaling factor «, smoothing factor p, smoothing probability P s eoth
C = {clauses of F'}
Cy ={c € C| cis unsatisfied under a}
foreachis.t. ¢; € C, do
clw(i) :==clw(i) X «
end
with probability Py, .05 do
foreachis.t. ¢; € C'do
cw(@) =clw(@i) x p+ (1 —p) x @
end
end
end

Figure 6.5: The SAPS weight update procedure; w is the average over all
clause weights.

mance than SAPS [Hutter et al., 2002]. However, different from Adaptive
WalkSAT, RSAPS still has other parameters, in particular p, that need to be
tuned manually in order to achieve optimal performance.

6.5 Constraint Satisfaction Problems

An instance of a Constraint Satisfaction Problem (CSP) is defined by a set
of variables, a set of possible values (or domain) for each variable, and a
set of constraining conditions (constraints) involving one or more of the
variables. The Constraint Satisfaction Problem is to decide for a given CSP
instance whether all variables can be assigned values from their respective
domains such that all constraints are simultaneously satisfied. Depending on
whether the variable domains are discrete or continuous, finite or infinite,
different types of CSP instances and respective subclasses of CSP can be
distinguished. Here, we restrict our attention to the finite discrete CSP, a
widely studied type of CSP with many practical applications.

240

Definition 6.2 (Finite discrete CSP)

A CSP instance isa triple P = (V,D,C), where V = {4, ...,
xp } is a finite set of n variables, D is a function that maps each
variable x; to the set D; of possible values it can take (D; is
called the domain of z;),and C = {C4, .. ., Cy, } is afinite set of
constraints. Each constraint C; is a relation over an ordered set
Var(C;) of variables from V/, i.e., for Var(C;) = (vy1,---, k),
C; € D(y1) x -+- x D(yx). The elements of the set C; are
referred to as satisfying tuples of C;, and & is called the arity of
the constraint C.

P is a finite discrete CSP instance if all variables in P have
discrete and finite domains.

A variable assignment of P is a mapping a : V — [J{D}
that assigns to each variable z € V a value from its domain
D(x). Let Assign(P) denote the set of all possible variable as-
signments for P; then a variable assignment ¢ € Assign(P)
is a solution of P if and only if it simultaneously satisfies all
constraints in C, i.e., if for all C; € C with, say, Var(C;) =
(y1, - - -, yx) the assignment ¢ maps yi, . . ., yx to values vy, . . .,
v, such that (Ul, ... ,’Uk) S Cj.

CSP instances for which at least one solution exists are also
called consistent, while instances that do not have any solutions
are called inconsistent.

Finite discrete CSP is the problem of deciding whether a given
finite discrete CSP instance P is consistent. O

Remark: In many cases, the constraint relations involved in
CSP instances can be represented more compactly by using
standard mathematical relations, such as =, #, <, >,>,<. In
other cases, a more compact representation of a given constraint
C; is obtained by explicitly listing the complement of the set of
satisfying tuples, i.e., the set of unsatisfying tuples of C;.

6.5. CONSTRAINT SATISFACTION PROBLEMS 241

cdn-flag.eps

Figure 6.6: A simple CSP instance: The problem of colouring the Canadian
flag (see text for details).

Example 6.1: The Canadian Flag Problem

Let us consider the problem of colouring the Canadian flag by assigning
colours red (r) and white (w) to the four fields L, C, R, M in such a way
that any two neighbouring fields are coloured differently (see Figure 6.6).
This problem can be formulated as a binary CSP instance as follows:

vV = {L,C,R,M}
D(L) = D(C)=D(R)=D(M)={r,w}
C = {C,0CyCs}
with Var(Cy) = (L, C)
Var(Cs) = (C, M)
Var(Cs) = (C, R)
and C1=Cy=C3={(r,w), (w,r)}

There are two solutions to this CSP instance, one assigns red to M, L, R
and white to C, while the other assigns white to M, L, R and red to C. By
adding a forth, unary constraint to C that forces M to be coloured red, the
instance can be modified such that only the solution corresponding to the
correct colouring of the Canadian flag remains.

This simple CSP instance is an example of a Map Colouring Problem, which
in turn can be seen as a special case of the Graph Colouring Problem (GCP).
GCP is an important subclass of CSP in which the objective is to colour the

242

vertices of a given graph in such a way that two vertices connected by an
edge are never assigned the same colour. The Graph Colouring Problem
will be covered in more detail in Chapter 10.

Like SAT, finite discrete CSP is an NP-complete combinatorial problem.
This can be proven rather easily based on the following close relationship
between propositional SAT and finite discrete CSP: Any instance of SAT
(for CNF formulae) can be seen as a finite discrete CSP instance where all
the domains contain only the truth values T, L and each constraint contains
exactly all the satisfying assignments of one particular clause of the given
CNF formula F'. Vice versa, as we will show in the next section, any finite
discrete CSP instance can be directly transformed into a SAT instance.

Encoding CSP Instances into SAT

CSP instances can be encoded into SAT in a rather straight-forward way.
The basic idea is to use propositional variables to represent the assignment
of values to single CSP variables and clauses to express the constraint re-
lations [de Kleer, 1989]. For the sake of simplicity, we assume in the fol-
lowing, without loss of generality, that domains of all variables are equal to
Zr = {0,1,...,k — 1}, where k is an arbitrary positive integer. Further-
more, we use o(C};) to denote the arity of a constraint C, i.e., the number
of variables involved in Cj.

Given afinite discrete CSP instance P = (V, D,C)withV = {z4,..., z,},
D(z) = Zyforallz € V,and C = {C4,...,Cy,}, avery natural SAT en-
coding is based on propositional variables c; ,, that, if assigned the value T,
represent the assignment z; = v, where v € D(z;). P can then be repre-
sented by a CNF formula comprising the following sets of clauses:

(1) iy V Cip, (1 <i<njuy,ve € Ly vy <)
(2) Ci1 \% Ci2 V...V Ci k (1 S 1 S n)
(3) iy V TCiswy VooV TG0y (i = V13T = Vo T, = V)

violates some constraint C; € C
with o(C;) = s)

Intuitively, these clause sets ensure that each constraint variable is assigned
exactly one value from its domain (lines 1 and 2) and that this assignment

6.5. CONSTRAINT SATISFACTION PROBLEMS 243

is compatible with all constraints (line 3). The number of propositional
variables required for encoding a given CSP instance is linear in the number
of constraint variables and their domain sizes while the number of clauses is
at least linear in the number of constraint variables and depends critically on
the domain sizes and the arity of the constraints. This encoding is frequently
used in the context of translations of combinatorial problems into SAT that
use CSP as an intermediate domain (cf. Section 6.1). It is known as the
sparse encoding, because it generates large SAT instances whose models
have only a small fraction of the propositional variables set to T. (In the
literature, this encoding has also been referred to as the unary transform or
direct encoding.)

By using an alternative SAT encoding of CSP instances, the number
of propositional variables required for encoding a given CSP instance can
be significantly reduced compared to the sparse encoding. The compact
encoding (in the literature also referred to as the binary transform or log en-
coding) is based on the idea of representing the value v assigned to any
constraint variable x; by a group of [log, k| propositional variables c; ;
using a binary encoding of » [Iwama and Miyazaki, 1994; Hoos, 1998b;
1999b]. This leads to a CNF formula with n - [log, k] propositional vari-
ables; particularly for large domain sizes k, this can be a substantial reduc-
tion compared to the n - k£ propositional variables required by the sparse
encoding. The number of clauses, however, is similar for both encodings,
since in either case the same number of clauses is needed for representing
the constraint relations (these clauses typically dominate the overall number
of clauses). Although the SAT instances generated by the compact encoding
have search spaces that are substantially smaller than those obtained from
the sparse encoding, they appear to be much harder to solve using standard
SLS algorithms for SAT [Hoos, 1998b; 1999b; Frisch and Peugniez, 2001b].

CSP Simplification and Local Consistency Techniques

Similar to the case of SAT, native CSP instances can often be substantially
reduced in size and complexity by applying polynomial-time simplification
methods. Also known as local consistency techniques, these methods are
transformations that are applied to (local) subsets of a given CSP instance
P [Mackworth, 1977; Debruyne and Bessiére, 2001]. Local consistency
techniques can reduce the effective domains of CSP variables by eliminating

244

values that cannot occur in any solution.

One of the most prominent simplification techniques for CSP is the en-
forcement of arc consistency. A given CSP instance P is made arc consistent
w.r.t. to one of its constraints, C, by removing any value d from the domain
of any variable z involved in C' if there exists no CSP assignment that sat-
isfies C, i.e., no tuple ¢t € C, for which z has value d. A CSP instance P
is arc consistent if it is arc consistent w.r.t. all of its constraints. For binary
CSP instances with e constraints (there is a maximal number of n(n — 1)/2
constraints, where n is the number of variables) and maximal domain size
k, the best known algorithms for enforcing arc consistency have a time com-
plexity of O(ek?) and a space complexity of O(ek) [Bessiére et al., 1999].
A number of further local consistency techniques is presented in [Debruyne
and Bessiére, 2001].

Combined with backtracking mechanisms, simplification methods such
as forward checking or enforcing arc consistency play a crucial role in sys-
tematic search algorithms for CSP [Haralick and Elliot, 1980; Grant and
Smith, 1996]. They can also be used as preprocessing techniques before
applying SLS-based, incomplete CSP solvers. The high computational cost
of enforcing higher levels of local consistency, such as path consistency, are
often not amortised by the reduced run-times of CSP solvers that are sub-
sequently applied to the resulting CSP instances. One method for improv-
ing this situation is to apply the corresponding local consistency methods to
heuristically selected subsets of a given CSP only [Kask and Dechter, 1995].

Some Prominent Benchmark Instances for CSP

There are numerous types of CSP instances that have been routinely used in
the literature on CSP. Many studies have focused on a particular class of ran-
domly generated CSP instances with binary constraint relations which we
call Uniform Random Binary CSP. Besides the number of CSP variables and
the size of the variable domains, this problem distribution is characterised
by two parameters, the constraint graph density « and the constraint tight-
ness 3; a specifies the probability that a constraint relation exists between an
arbitrary pair of CSP variables and 5 is the expected fraction of value pairs
that are allowed by a given constraint relation between two variables. For
this class of CSP instances, a solubility phase transition phenomenon with
an associated peak in hardness, similar to the one for Uniform Random-3-

6.5. CONSTRAINT SATISFACTION PROBLEMS 245

SAT, has been observed [Smith, 1994] and test-sets of hard instances can
be obtained for specific combinations of o and 3 values.

Another widely used class of CSP instances stem from the Graph Colour-
ing Problem (see Example 6.1), which can be seen as a special case of Finite
Discrete CSP in which all variables have the same domain, and all constraint
relations are binary, allowing a pair of values (z, y) if and only if z # y (in-
equality constraint). The Graph Colouring Problem and specific instance
classes are discussed in more detail in Chapter 10. Graph colouring in-
stances with three colours are amongst the most commonly used benchmark
instances for CSP.

An prominent special case of the Graph Colouring Problem is the Quasi-
group Completion Problem (QCP), which is derived from the following
Quasigroup Problem or Latin Square Problem: Given an n x n quadratic
grid and n colours, the objective it to assign a colour to each grid cell in such
a way that every row and column contains all » colours. In the Quasigroup
Completion Problem, the objective is to decide whether a partial solution
of the Quasigroup Problem, i.e., an incomplete assignment of colours to the
given grid such that no two cells in the same row or column have the same
colour, can be extended into a complete solution by assigning colours to the
remaining cells. In the CSP formulation, the pre-assigned cells can be easily
represented by unary constraints. The QCP is known to be A/P-complete
[?], and a phase-transition phenomenon with an associated peak in hard-
ness has been observed [Gomes and Selman, 1997a]. It has applications in
experimental design, scheduling, and timetabling.

The n-Queens Problem is another prominent CSP; it can be seen as a
generalisation of the problem of placing eight queens on a chessboard such
that no queen is threatened by any of the other queens. This is achieved by
distributing the queens in such a way that no row, column, or diagonal has
more than a single queen on it. This 8-Queens Problem can be represented
as a CSP instance with eight variables and 28 binary constraints. In the
n-Queens Problem, the objective is to place n queens on an n x n board
subject to the same constraints.

Most of the work on CSP has been focused on binary CSP; One of the
reasons for this is that any non-binary CSP instance can be transformed
into as binary CSP instance in a rather straight-forward way [Dechter and
Pearl, 1989; Rossi et al., 1990; Bacchus et al., 2002]. Another reason lies
in the fact that algorithms restricted to binary CSP are typically easier to

246

implement than general CSP solvers.

There are numerous other classes of CSP instances, including CSP en-
codings of the real-world problems mentioned in Section 6.1. Some appli-
cation relevant problems include frequency assignment in radio networks,
scheduling problems, vehicle routing and many more. A description of
many of the different types of CSPs can be found at CSPLIB, a benchmark
library for constraints which is accessible at ww. cspl i b. or g.

6.6 SLS Algorithms for CSPs

Because of the close relationship between CSP and SAT, the respective
SLS algorithms for solving these problems are quite similar; historically,
there has been significant cross-fertilisation between both domains in terms
of SLS algorithm design and development. We distinguish three types of
SLS techniques for solving CSPs: SLS algorithms for SAT applied to SAT-
encoded CSP instances; generalisations of SLS algorithms for SAT; and
native SLS algorithms for CSPs. In the following, we will discuss each of
these approaches in more detail and present some of the most prominent and
best performing SLS algorithms for CSPs.

The “Encode and Solve as SAT” Approach

In principle, any CSP instance P can be solved by encoding it into SAT and
subsequently applying standard SAT solvers to determine the satisfiability
of the resulting CNF formula F'. If P is soluble, its solutions can be deter-
mined from the models of F'. By using either of the two SAT encodings of
CSPs discussed in Section 6.5, encoding CSP instances as well as decoding
their solutions are efficient processes and the resulting SAT instances are
typically not prohibitively large compared to the original CSP instances.
The main advantage of this approach lies in the fact that it allows the
use of highly optimised and efficiently implemented “off-the-shelve” SAT
solvers. Besides the SLS algorithms described earlier in this chapter, this
includes competitive systematic SAT solvers and other state-of-the-art SAT
algorithms (see Section 6.7 for references). Furthermore, standard polyno-
mial preprocessing techniques for SAT can be used to simplify SAT-encoded
CSP instances prior to applying a SAT solver. CSP preprocessing tech-

6.6. SLS ALGORITHMS FOR CSPS 247

nigques, such as efficiently computable forms of &-consistency, can be ap-
plied before encoding a CSP instance into SAT. However, one potentially
major disadvantage of the “encode and solve as SAT” approach may arise
from the inability of standard SAT algorithms to exploit the structure present
in given CSP instances.

There is some indication that by using the sparse encoding and high-
performing SAT algorithms, such as Novelty or Novelty*, competitive per-
formance compared to state-of-the-art SLS algorithms for CSP, such as
Galinier and Hao’s Tabu Search algorithm (which will be described later in
this section), can be obtained for Uniform Random Binary CSP instances
[Hoos, 1998a; 1999b]. Similar results appear to hold for graph colour-
ing instances, but there is some evidence that native CSP algorithms might
achieve superior performance for random instances with large variable do-
mains [Frisch and Peugniez, 2001b]. Interestingly, when using the compact
encoding, SLS algorithms for SAT show substantially weaker performance;
this performance difference appears to be caused by aspects of the search
space structure induced by the respective encodings; in particular it has been
shown that applied to the same CSP instances, the compact encoding gen-
erates search spaces with substantially higher local minima branching (see
Chapter 5) than the sparse encoding [Hoos, 1998a; 1999b].

Clearly, the “Encode and Solve as SAT” approach is not limited to CSP,
but can in principle be applied to any A/P-complete problem. For CSP, this
approach is particularly attractive, since as a result of the close relationship
between SAT and CSP, the encoding of CSP instances into SAT is concep-
tually simple and very efficiently computable in practice. Whether or not it
can achieve competitive performance compared to the best native CSP algo-
rithms, particularly when applied to structured CSP instances, is somewhat
unclear at the present time and needs to be further investigated.

Pseudo-Boolean CSP and WSAT (PB)

An alternative to the “encode and solve as SAT” approach discussed in the
previous section is to extend high performing SLS algorithms for SAT to
more general subclasses of CSP. One such generalisation of SAT is ob-
tained by maintaining the restriction to Boolean variables while allowing
constraints that are more expressive than CNF clauses. In Pseudo-Boolean
CSP, also known as (linear) Pseudo-Boolean Programming, all variables

248

have Boolean values represented by integers zero and one, and the con-
straints between variables /; are of the form

Zai-liwd,

where the a; as well as d are integers and ~ can be any comparison operator
from the set {=, <, <, >, >}. It may be noted that without loss of general-
ity, this can be restricted to constraints that only use the comparison operator
<, since any constraint using one of the other operators may be equivalently
expressed as a “<” constraint except for equality constraints, which can be
modelled by two “<” constraints. Pseudo-Boolean constraints are more ex-
pressive than CNF clauses because any CNF clause can be expressed by a
single pseudo-Boolean constraint, but pseudo-Boolean constraints can gen-
erally not be captured by a single clause. From an Operations Research
point of view, Pseudo-Boolean CSP can be seen as a special case of Integer
Programming (IP) with linear constraints and variable domains restricted to
{0, 1} [Nemhauser and Wolsey, 1988].

Example 6.2: Pseudo-Boolean Constraints

As an example for a Pseudo-Boolean constraint between three variables
Y1, Yo, y3 With domain{0, 1}, consider the inequality y; + yo — y3 > 0. This
constraint is equivalent to y; + y2 + (1 — y3) > 1, and hence to the CNF
clause z; V 2o V —z3.

The following constraint limits the number of variables that are assigned the
value one to a maximum of &:

y1+..-+yngk

Note that in order to express this constraint by a CNF formula, () clauses
of size k£ + 1 each are required; these encode the condition that for every
possible subset of £ + 1 variables, at least one variable needs to be assigned
the value false.

There are relatively few SLS algorithms for Pseudo-Boolean CSP [Abram-
son et al., 1996; Connolly, 1992; Walser, 1997; kketangen, 2002]. Among

6.6. SLS ALGORITHMS FOR CSPS 249

these, Walser’s WSAT(PB) algorithm is of particular interest, since it is
based on a direct generalisation of the WalkSAT architecture to Pseudo-
Boolean CSP. The WSAT(PB) algorithm follows the WalkSAT framework
as presented in Section 6.3, but uses a generalised evaluation function and
variable selection mechanism. The evaluation function is based on the no-
tion of net integer distance of a constraint from being satisfied. More pre-
cisely, for each constraint ¢, let d(a, ¢) denote the minimal integer difference
between any value of the right hand side of the corresponding inequality (or
equality) that satisfies ¢ and the value under assignment a; the evaluation
function value of assignment « is then defined as the sum of the d(a, ¢) val-
ues over all constraints unsatisfied in a. As in the SAT case, an assignment
that satisfies all constraints has an evaluation function value of zero.

Based on this evaluation function, WSAT(PB) uses a modified version
of the WalkSAT variable selection strategy to determine the variable to be
flipped in each search step. First, a constraint ¢’ is uniformly selected at ran-
dom from the set of all currently unsatisfied constraints. Then, a variable in-
volved in ¢’ is selected according to the following criteria: If flipping any of
the variable involved in ¢’ leads to a decrease in the evaluation function, the
variable that leads to the largest such decrease is selected; if there are several
such variables, the one that was flipped least recently is chosen. Otherwise,
with a small probability wp, the variable that has been flipped least recently
is selected; and in the remaining cases, the variable whose flip would cause
a minimal increase in the evaluation function is chosen; again, ties are bro-
ken in favour of the least recently flipped variable. (At the beginning of the
search, ties might arise between variables that haven’t been flipped; such
ties are broken uniformly at random.) Additionally, WSAT(PB) uses a sim-
ple tabu mechanism that excludes all variables that have been flipped within
the previous tI search steps from the selection process.

Different from conventional WalkSAT, WSAT(PB) supports a biased
random initialisation of the search process in which each variable is inde-
pendently set to zero with probability p, and to one otherwise; however,
experimental results suggest that using a biased initialisation (i.e., p, # 0.5)
generally does not lead to performance improvements [Walser, 1997].

Furthermore, the WSAT(PB) algorithm as presented in [Walser, 1997]
can also be used to solve an optimisation variant of Pseudo-Boolean CSP
in which a subset of the constraints are considered as “soft constraints”
and the objective is to find variable assignments that satisfy all conven-

250

tional (hard) constraints while minimising the number of unsatisfied soft
constraints. This problem can be seen as a special case of MAX-CSP, the
optimisation variant of CSP, which will be discussed in more detail in Chap-
ter 7, where we also describe the mechanism used by WSAT (P B) to handle
soft constraints.

A large number of practically relevant problems can be formulated eas-
ily and naturally within the Pseudo-Boolean CSP framework. WSAT(PB)
was tested on radar surveillance problems (which include soft constraints)
and the Progressive Party Problem [Smith et al., 1996]. For both prob-
lems, WSAT (PB) showed significantly improved performance over a state-
of-the-art commercial integer programming package (CPLEX) and results
from the literature. More recently, WSAT(PB) was extended to handle non-
Boolean integer programming problems [Walser et al., 1998]; the resulting
WSAT (OIP) algorithm has been shown to achieve excellent performance on
various combinatorial problems, including capacitated production planning
and Al planning problems [Walser et al., 1998; Kautz and Walser, 1999].

WalkSAT Algorithms for Many-Valued SAT

Another interesting subclass of CSP is the classof non-Boolean or many-
valued satisfiability problems [Frisch and Peugniez, 2001b; Béjar and Manya,
1999]. In non-Boolean SAT (NB-SAT), each variable may take values from
some finite domain D, which may contain more than twovalues [Frisch and
Peugniez, 2001b]. Formally, a non-Boolean literal is of the form z/d,or
—z/d, where z is a variable and d a value from the domain of z. The value
of z/d under the (non-Boolean) variable assignment a is true if and only
ifz is set to d in a, and false otherwise; the value of —z/d under « is ob-
tained by negating the value of z/d under a.Analogously to conventional
SAT, non-Boolean SAT is the problem to decide for a given non-Boolean
CNF formula, i.e., for a conjunction over disjunctions of non-Boolean liter-
als, whether or not it has a satisfying (non-Boolean) assignment. Obviously,
any conventional CNF formula can be represented by a non-Boolean CNF
formula with the same number of clauses and variables.When encoding NB-
SAT instances into SAT, however, a significantly higher number of variables
and CNF clauses as used in the non-Boolean formula may be required.
Because NB-SAT instances have the same clause structure as conven-
tional SAT instances, WalkSAT can be generalised to non-Boolean SAT

6.6. SLS ALGORITHMS FOR CSPS 251

in a rather straightforward way; the only major difference lies in the fact
that in NB-SAT, the concept of a variable flip needs to be redefined. In
NB-WalkSAT, the non-Boolean variant of WalkSAT by Frisch and Peug-
niez, a variable flip corresponds to assigning a different value to a non-
Boolean variable such that the literal selected in the corresponding search
step, and hence the clause in which appears, becomes satisfied [Frisch and
Peugniez, 2001a]. (It may be noted that this constitutes an important dif-
ference to WSAT(PB), in which search steps do not necessarily satisfy any
previously unsatisfied constraints.) Otherwise, NB-WalkSAT is identical to
WalkSAT/SKC, although other WalkSAT variants can easily be extended to
NB-SAT in an analogous way.

Béjar and Manya have introduced a similar extension of WalkSAT, called
MV-WalkSAT, which solves a variant of many-valued SAT that is slightly
richer than the non-Boolean CNF formulae underlying NB-SAT [Béjar and
Manya, 1999; ?]. Both, NB-WalkSAT and MVwsat were applied to many-
valued SAT encodings of various combinatorial decision problems, such as
graph colouring, where they showed excellent performance. However, as
of todate, the question whether these and other SLS algorithms for many-
valued SAT can substantially outperform state-of-the-art SLS algorithms for
SAT applied to suitably encoded instances has not been answered conclu-
sively.

The Min-Conflicts Heuristic and Variants

There are a number of SLS algorithms for general CSP, although in many
cases, the implementations are restricted to binary constraints. Among the
most widely known of these are the Min Conflicts Heuristic (MCH) [Minton
etal., 1990; 1992] and its variants. MCH iteratively modifies the assignment
of a single variable in order to minimise the number of violated constraints,
which is achieved in the following way: Given a CSP instance P, the search
process is initialised by assigning each variable in P a value that is cho-
sen uniformly at random from its domain. Then, in each local search step,
first a CSP variable z; is selected uniformly at random from the conflict set
K (A), which is the set of all variables that appear in a constraint violated
under the current assignment A. A new value d is then chosen from the
domain of z;, D;, such that by assigning d to x; the number of constraint
violation (conflicts) is minimised. If there is more than one value of d with

252

that property, one of the minimising values is chosen uniformly at random.
In many ways, MCH is analogous to the SLS algorithms for SAT described
earlier in this chapter. Like all SAT algorithms covered here, MCH is based
on a one-exchange neighbourhood. Considering that CNF clauses in SAT
play the same role as constraint relations in CSP, the evaluation function un-
derlying MCH, defined as the number of constraints violated under a given
assignment, is the same as used by GSAT or Novelty. The way in which
MCH selects the variable whose assignment is to be modified in each local
search step is similar to the two-stage variable selection process underlying
the WalkSAT architecture.

Like most iterative improvement methods, MCH is essentially incom-
plete, since it can get stuck in local minima of the evaluation function. The
simplest way to overcome this problem is to use a static restart mechanism
analogous to the one found in GSAT. Not surprisingly, however, there are
other, substantially more effective solutions. These are mainly derived from
mechanisms used in the better performing GSAT and WalkSAT algorithms,
which is somewhat surprising, considering that MCH itself predates all of
the SLS algorithms for SAT discussed above, including GSAT and basic
WalkSAT.

WMCH is a variant of MCH that uses a random walk mechanism anal-
ogous to GWSAT [Wallace and Freuder, 1995]. In each WMCH step, first a
variable z; is chosen uniformly at random from the conflict set (as in MCH).
Then, with probability wp > 0, z; is assigned a value from its domain D;
that has been chosen according to a uniform distribution; this kind of search
step is called a random walk step. In the remaining cases, i.e., with prob-
ability 1 — wp, a conflict-minimising value is chosen and assigned, as in
a conventional MCH step. As in the case of GWSAT, this random walk
mechanism renders WMCH probabilistically approximately complete for
wp > 0. Furthermore, WMCH has been empirically observed to perform
substantially better than MCH with random restart [Stiitzle, 1998].

Note that different from the random walk steps used in SLS algorithms
for SAT, such as GWSAT, random walk steps in WMCH do not necessarily
have the effect of satisfying a previously unsatisfied constraint. WMCH
can be varied slightly such that in each random walk step, after choosing
a variable z; involved in a currently violated constraint C', z; is assigned
a value such that C’ becomes satisfied; if no such value exists, a value is
chosen at random. This variant, however, performs only marginally better

6.6. SLS ALGORITHMS FOR CSPS 253

than the random walk mechanism used in WMCH [Stiitzle, 1998].

Analogous to GSAT and WalkSAT, MCH can be extended with a tabu
search mechanism. In TMCH, after each search step, i.e., after the value of
variable z; is changed from d to d’, the variable/value pair (x;, d) is tabu for
the next ¢/ steps. While (x;, d) is tabu, value d is excluded from the selection
of values for z;, except if assigning d to z; leads to an improvement over the
best assignment encountered so far (aspiration criterion). TMCH appears
to generally perform better than WMCH. Interestingly, a tabu tenure setting
of ¢t = 2 was found to consistently result in good performance for CSP
instances of different types and size [Stiitzle, 1998].

Galinier and Hao’s Tabu Search Algorithm

The tabu search algorithm by Galinier and Hao [Galinier and Hao, 1997],
TSGH, is currently one of the best performing SLS algorithms for CSP.
TSGH is based on the same neighbourhood and evaluation function as MCH,
but uses a different mechanism for selecting the variable/value pair involved
in each search step: among all pairs (z, d') such that variable x appears in
a currently violated constraint and d’ is any value from the domain of =z,
TSGH chooses the one that leads to a maximal decrease in the number of
violated constraints. If multiple such pairs exist, one of them is selected
uniformly at random. As in MCH, the actual search step is then performed
by assigning d’ to z. This best-improvement strategy is augmented with
the same tabu mechanism used in TMCH: After changing the assignment
of = from d to d', the variable value pair (x,d) is tabu for tI search steps.
As in TMCH, an aspiration criterion is used to override the tabu status of
variable/value pairs corresponding to search steps that lead to improvements
over the best assignment encountered since the search was initialised.

In order to achieve competitive performance of TSGH, it is crucial to
avoid computing evaluation function values for every variable/value pair
that might potentially be involved in a search step. Instead, to implement
TSGH efficiently, a caching and updating technique analogous to the one
used for efficient implementations of GSAT (see in-dept section on page 218),
is used [Fleurent and Ferland, 1996; Galinier and Hao, 1997]: After ini-
tialising the search, the effects on the evaluation function of changing the
assignment of any variable z to any value d from its domain, are computed
and stored in a two-dimensional table of size n x k, where n is the number

254

of constrain variables, and % is the size of the largest domain in the given
CSP instance P. Based on the entries in this table, the (non-tabu) vari-
able/value pair that results in the maximal improvement in the evaluation
function value can be selected in time O(n - k) in the worst case. After each
search step, only the entries in the table that are affected by the correspond-
ing change in the current assignment need to be updated. For CSP with
binary constraint relations, initialising the table takes time O(n? - k) in the
worst case; the update after a search step can be performed in O(n - k) in
the worst case, but is substantially faster for CSP instances with sparse con-
straint graphs. Using this technique and an efficient implementation of the
tabu mechanism, as described for GSAT/TABU, the search steps of TSGH
are as efficient as those of MCH.

It may be noted that TSGH was originally introduced as an algorithm
for MAX-CSP, the optimisation variant of CSP in which the objective is to
find a variable assignment that satisfies a maximal number of constraints.
SLS algorithms for MAX-CSP will be further discussed in Chapter 7. Em-
pirical studies suggest that when applied to conventional CSP, TSGH gen-
erally achieves better performance than any of the MCH variants, including
TMCH, rendering it one of the best known SLS algorithms for CSP. Un-
like in the case of TMCH, for TSGH, the optimal setting of the tabu tenure
parameter, tl, increases with instance size, which makes it harder to solve
previously unknown CSP instances with peak efficiency.

6.7 Further Readings and Related Work

SAT and CSP have been extensively studied for several decades, and there is
an extensive body of literature on these problems and on algorithms for solv-
ing them. The SLS algorithms presented in this chapter have been selected
primarily based on their performance and historical significance; however,
there are many other SLS algorithms for SAT and CSP that are interesting
and fairly widely known.

One of the earliest applications of SLS techniques to SAT is found in
Jun Gu’s SAT1 algorithm family. Developed independently and published
around the same time as the basic GSAT algorithm, the first SAT1 algo-
rithms are based on a simple iterative improvement method augmented with
various techniques for overcoming search stagnation [Gu, 1992]. Subse-

6.7. FURTHER READINGS AND RELATED WORK 255

quently, these early SAT1 algorithms have given rise to numerous variants
and extensions, including parallel SLS algorithms for SAT, complete SAT
algorithms obtained from combining SLS techniques and backtracking al-
gorithms, and special cases of iterated local search. Many of these algo-
rithms have been applied successfully to SAT-encodings of real-world VVLSI
circuit testing and synthesis and scheduling problems. A good overview of
this line of work can be found in [Gu et al., 1997]. Both, basic GSAT and
the earliest SAT1 algorithms are predated by the Steepest Ascent Mildest
Descent (SAMD) algorithm for MAX-SAT [Hansen and Jaumard, 1990],
which will be covered in some more detail in Chapter 7.

Since the early 1990s, a large number SLS algorithms for SAT have
been introduced and studied in the literature. These include methods based
on Simulated Annealing [Spears, 1993; Beringer et al., 1994; Selman et al.,
1994], Evolutionary Algorithms [Gottlieb et al., 2002], and Greedy Ran-
domized Adaptive Search Procedures (GRASP) [Resende and Feo, 1996].
While some of these algorithms have been directly compared to some of
the SAT algorithms presented in this chapter, there is no evidence that any
of them might generally perform better than the best WalkSAT or dynamic
local search algorithms.

SLS algorithms also play an important role in the theoretical complexity
analysis of SAT. Using a variant of Christos Papadimitriou’s Random Walk
algorithm [Papadimitriou, 1991] that restarts the search from a randomly
chosen assignment after 3n variable flips, Uwe Schoning proved that any k-
CNF formula with n variables can be solved in time poly(n)-2(k—1)/k)™,
where poly(n) is an arbitrary polynomial function over n [Schoning, 1999;
Schoning, 2002]. By using the same algorithm with a modified search ini-
tialisation, which exploits sets of mututally independent clauses, the cur-
rently best known lower bound on the time complexity of SAT for 3-CNF
formulae of poly(n) - 1.3303" was obtained [Schuler et al., 2001]. For k-
CNF with & > 3, the currently best lower bounds on the time complexity of
SAT were obtained by Paturi et al. based on an algorithm that first calcu-
lates the closure of the given formula F' under bounded-length resolution,
and then performs a simple stochastic iterated construction search in order to
find models of the resulting CNF formula [Paturi et al., 1997; 1998]. This al-
gorithm forms the basis of another recent SAT solver, UnitWalk [Hirsch and
Kojevnikov, 2001], which was empirically shown to reach the performance
of state-of-the-art SLS algorithms for SAT for various classes of benchmark

256

instances and has been shown to be probabilistically approximately com-
plete.

The survey paper by Gu et al. [Gu et al., 1997] provides an excellent
overview of the SAT problem, including an interesting classification of SAT
algorithms, complexity results, various types of benchmark instances, and a
large number of practical applications. It also presents a number of SLS al-
gorithms for SAT which, however, is somewhat incomplete and now rather
outdated, as well as a comprehensive list of references. A more recent study
by Hoos and Stiitzle [Hoos and Stiitzle, 2000b; 2000a] presents a fairly
complete and up-to-date overview of GSAT and WalkSAT algorithms, in-
cluding detailed results on the run-time behaviour and performance of these
algorithms.

The GSAT architecture can be generalised to CSP in a rather straight-

forward way; a GSAT variant that includes various additional SLS mecha-
nisms, such as random walk, clause weighting, and a dynamic restart strat-
egy, was described by Kask and Dechter, who used it in an empirical study
regarding the effectivity of preprocessing techniques for SAT and CSP [Kask
and Dechter, 1995]. An interesting extension that combines GSAT with a
tree search mechanism based on cycle-cutsets, called GSAT+CC, has been
applied to Random Uniform Binary CSP [Kask and Dechter, 1996]. Empiri-
cal results suggest that for a limited class of CSP instances (those with small
cutsets), using the additional tree search mechanism results in substantially
improved performance, while on other subclasses of CSP, GSAT+CC per-
forms rather poorly.
[hh: I’d really like to include a statement about the performance of
Kask & Dechter’s GSAT and GSAT+CC as compared to MCH, WMCH,
TSGH, but I am not aware of any published results that would provide
a solid basis for such a statement]

GENET [Davenport et al., 1994], one of the first extensions of MCH,
is another interesting and relatively widely known SLS algorithm for CSP.
Originally inspired by the Breakout Method [Morris, 1993], GENET is
based on a dynamic local search algorithm and is a precursor of the Guided
Local Search algorithm by Voudouris and Tsang [Voudouris, 1997; Voudouris
and Tsang, 1999] (see also Section 2.2). A recent study has produced em-
pirical evidence suggesting that a version of the Breakout Method based
on the same type of neighborhood relation as Galinier and Hao’s Tabu
Search algorithm performs significantly better than random walk extensions

6.8. SUMMARY 257

of MCH [J. P. Williams and Dozier, 2001]. This indicates that dynamic local
search is a promising approach for future CSP algorithms.

Binary CSP instances are commonly used for the evaluation of Evo-
lutionary Algorithms, where they serve as a benchmark for investigating
algorithm behaviour for constrained problems [Eiben, 2001; Marchiori and
Steenbeek, 2000; Craenen et al., 2000; Dozier et al., 1998]. ¢From the
published results, however, it is unclear how these algorithms compare to
state-of-the-art SLS algorithms for CSP in terms of performance; given the
experience for SAT, it is doubtful that the proposed EAs can reach state-of-
the-art performance.

Recently, Christine Solnon developped an Ant Colony Optimisation al-
gorithm for CSP, using a local search procedure based on MCH [Solnon,
2002b; 2002a]. This algorithm was successfully applied to Uniform Ran-
dom Binary CSP and graph coloring instances; for hard Uniform Random
Binary CSP instances from the soubility phase transition region, the ACO
algorithm performed better than WMCH. Furthermore, ACO algorithms
were successfully applied to subclasses of CSP, such as the car sequenc-
ing problem [Solnon, 2000].

As general references for CSP, the interested reader is referred to the
book by Tsang [Tsang, 1993] (in parts now somewhat outdated) as well as
the new book by Rina Dechter [?].

6.8 Summary

In this chapter, we presented and discussed SLS algorithms for two impor-
tant and prominent combinatorial decision problems, the Propositional Sat-
isfiability Problem (SAT) and the Constraint Satisfaction Problem (CSP).
Both problems are of substantial theoretical interest and also have a range
of real-word applications.

SAT is one of the most prominent and widely studied N"P-complete de-
cision problems. Most SAT algorithm operate on propositional formulae in
conjunctive normal form (CNF); since any formula can be transformed into
CNF, this is not a serious limitation. Moreover, instances of other combi-
natorial problems can often be encoded into SAT using reasonably compact
and natural CNF representations. While SAT can be formulated as a special
case of CSP as well as of 0-1 Integer Linear Programming, the conventional

258

logical formulation appears to provide a much better basis for solving SAT
instances efficiently. Polynomial time simplification techniques, such as
unit propagation, play a crucial role for preprocessing SAT instances before
applying a general SAT solver, as well as within systematic search algo-
rithms for SAT; on their own, they can be used for solving several interesting
subclasses of SAT efficiently.

We discussed various types of SAT instances, including Random-£-SAT,
one of the most prominent classes of randomly generated SAT instances,
and the solubility phase transition phenomenon observed for this subclass of
SAT; SAT-encodings of other combinatorial problems; and instances from
several practical applications of SAT, such as circuit verification and de-
sign. We briefly mentioned a number of generalisations of SAT, including
Multi-Valued SAT, MAX-SAT, and the Satisfiability Problem for Quantified
Boolean Formulae (QBF-SAT), as well as problems related to SAT, such as
the Propositional Validity Problem (VAL).

We presented three classes of SLS algorithms for SAT: the GSAT archi-
tecture, the WalkSAT architecture, and dynamic local search algorithms for
SAT. While GSAT and related algorithms played a pivotal role in the early
development of SLS algorithms for SAT, recent WalkSAT and dynamic lo-
cal search algorithms, such as Novelty* and SAPS, are amongst the best
SAT solvers currently known.

The Constraint Satisfaction Problem (CSP) can be seen as a generali-
sation of SAT in which the variable domains can be different from the set
{T, L} and the constraining conditions that have to be simultaneously satis-
fied by any solution can be arbitrary relations between a subset of CSP vari-
ables. Our discussion was focussed on finite discrete CSP, an N"P-complete
subproblem in which all variable domains are finite and discrete sets. We
gave a brief overview of various widely used classes of benchmark instances
for CSP, including Uniform Random Binary CSP, as well as Graph Colour-
ing and Quasigroup Completion instances.

We discussed three SLS approaches for solving CSP: (1) Encoding CSP
instances into SAT and solving them using SLS algorithms for SAT (or any
other type of SAT solver); (2) using direct generalisations of SAT algo-
rithms for solving CSP instances; (3) and applying native SLS algorithms
for CSP. It is presently not clear whether any of these approaches achieves
substantially better performance than the others.

For the first approach, different SAT encodings of CSP can be used.

6.9. EXERCISES 259

Amongst the two encodings discussed here, the sparse encoding and the
compact encoding, the former produces SAT instances that appear to be con-
sistently easier to solve for standard SLS algorithms for SAT. In the context
of the second approach, we discussed direct generalisations of WalkSAT
for two interesting subclasses of CSP, Pseudo-Boolean CSP (also known as
Pseudo-Boolean Programming) and Many-Valued SAT. Our discussion of
the third approach was focussed on the Min-Conflicts Heuristic (MCH) and
the tabu search algorithm by Galinier and Hao; while the former played a
pivotal role in the development of SLS algorithms for SAT and CSP, the lat-
ter achieves substantially better performance than MCH and its more recent
variants.

Overall, SAT is (and continues to be) an ideal problem for developing
and evaluating algorithmic ideas, including SLS techniques, because of its
conceptual simplicity as well as its theoretical and practical significance.
While many problems are more naturally encoded into CSP than into SAT,
it is presently not clear that native CSP algorithms can substantially out-
perform highly optimised SAT algorithms on suitable chosen encodings. It
may, however, be expected that when dealing with more specialised con-
straints, generalisations of successful SLS algorithms for SAT that are aug-
mented with specific methods for handling certain types of complex con-
straints might be the best approach.

Furthermore, since the development and understanding of SLS algo-
rithms appears to be significantly further advanced for SAT than for CSP,
there appears to be substantial room for further improvements in native SLS
algorithms for CSP.

Finally, it may be noted that for both, SAT and CSP, the potential of
many advanced SLS techniques, such as ILS, variable depth search, or
ACO, has not been fully explored and it is quite likely that by using such ad-
vanced techniques, further significant improvements in our ability to solve
these problems can be achieved.

6.9 Exercises

Exercise 6.1 (Easy) Consider the problem G of colouring the vertices of the
graph shown in Figure ?? with 4 colours such that no two vertices connected

260

by an edge have the same colour. [hh: add figure —- TODO(hh)]

(a) Formulate this problem as a SAT instance, i.e., give a CNF formula F’
such that any model of F' corresponds to a solution of G.

(b) Formulate this problem as a CSP instance.

Exercise 6.2 (Medium) Design and describe an Ant Colony Optimisation
algorithm for SAT.

Exercise 6.3 (Easy) Describe how you can use a WalkSAT algorithm to
solve the Propositional Validity Problem (VAL) for a given formula in dis-
junctive normal form (DNF).

Exercise 6.4 (Medium) When allowing an arbitrary number of tries, GSAT
is probabilistically approximately complete. Explain why nevertheless other
mechanisms for achieving the PAC property, such as Random Walk, are
preferable over the simple static restart mechanism.

Exercise 6.5 (Easy) How many clauses and variables are required in the
worst case for encoding an NB-SAT instances with n variables and m clauses
into a semantically equivalent SAT instances using a sparse encoding?

Exercise 6.6 (Medium) Develop the details of caching and updating scheme
for the evaluation function values for the TSGH algorithm.

[hh: might want to replace one of the exercises with a harder exercise;
should have an experimental and an implementation exercise]

