
Empirical Analysis of SLS
Algorithms

In this chapter, we discuss methods for empirically analysing the perfor-
mance and behaviour of stochastic local search algorithms. Most of our
general considerations and all empirical methods covered in this chapter
apply to the broader class of Las Vegas algorithms, which contains SLS
algorithms as a subclass. After motivating the need for a more adequate
empirical methodology and providing some general background on Las Ve-
gas algorithms, we introduce the concept of run-time distributions (RTDs),
which forms the basis of the empirical methodology presented in the fol-
lowing. Generally, this RTD-based analysis technique facilitates the eval-
uation, comparison, and improvement of SLS algorithms for decision and
optimisation problems; specifically, it can be used for obtaining optimal pa-
rameterisations and parallelisations.

4.1 Las Vegas Algorithms

Stochastic Local Search algorithms are typically incomplete - when applied
to a given instance of a combinatorial decision or optimisation problem,
there is no guarantee that an (optimal) solution will eventually be found.
However, in the case of a decision problem, if a solution is returned, it is

139

140

guaranteed to be correct. The same holds for the search and decision vari-
ants of optimisation problems. Another important property of SLS algo-
rithms is the fact that, given a problem instance, the time required for find-
ing a solution (in case a solution is found eventually) is a random variable.
These two properties, correctness of the solution computed, and run-times
characterised by a random variable, define the class of Las Vegas Algorithms
(LVAs).

Definition 4.1 (Las Vegas Algorithm)

An algorithm
�

for a problem class � is a Las Vegas Algorithm
(LVA) if it has the following properties:

(1) If for a given problem instance ����� , algorithm
�

returns
a solution � , � is guaranteed to be a correct solution of � .

(2) For each given instance ����� , the run-time of
�

applied
to � is a random variable �
	��� � . �

Remark: According to this definition any deterministic search
algorithm would also be a Las Vegas algorithm; however, the
term is typically used in the context of randomised algorithms.

Obviously, any SLS algorithm for a decision problem is a Las Vegas algo-
rithm, as long as the validity of any solution returned by the algorithm is
checked. Typically, checking for the correctness of solutions is very effi-
cient compared to the overall run-time of an SLS algorithm, and most SLS
algorithms implement such a check before returning any result. (Note that
for problems in ��� , the correctness of a solution can always be verified
in polynomial time.) Based on this argument, in the following we assume
that SLS algorithms for decision problems always check correctness before
returning a solution.

As an example, it is easy to see that Uniform Random Picking (as intro-
duced in Section 1.5) is a Las Vegas algorithm: Since generally, a solution
is never returned without verifying it first (as explained above), condition
(1) of the definition is trivially satisfied, and because of the randomised se-
lection process in each search step, the time required for finding a solution
is obviously a random variable.

4.1. LAS VEGAS ALGORITHMS 141

In the case of SLS algorithms for optimisation problems, at the first
glance, the situation seems to be less clear. Intuitively and practically, unless
the optimal value of the objective function is known, it is typically impossi-
ble to efficiently verify the optimality of a given candidate solution. How-
ever, as noted in Section 1.1, many optimisation problems include logical
conditions that restrict the set of valid solutions. The validity of a solution
can be checked efficiently for combinatorial optimisation problems whose
associated decision problems are in ��� , and SLS algorithms for solving
such optimisation problems generally include such a test before returning
a solution. Hence, if only valid solutions are considered correct, SLS al-
gorithms for optimisation problems fit the formal definition of Las Vegas
algorithms.

However, SLS algorithms for optimisation problems typically have the
additional property that for fixed run-time, the solution quality, i.e., the value
of the objective function for the current solution candidate, is also a random
variable.

Definition 4.2 (Optimisation Las Vegas Algorithm)

An algorithm
�

for a class ��� of optimisation problems is an
Optimisation Las Vegas Algorithm (OLVA) if it is a Las Vegas
algorithm, and for each problem instance ��� � ��� the solution
quality after run-time

�
is a random variable ���	� ��
 . �

Note that for OLVAs, both the solution quality achieved within a bounded
run-time is a random variable, but the same holds for the run-time required
for achieving or exceeding a given solution quality. The latter follows from
the fact that we view LVAs for optimisation problems as LVAs for solving
the associated decision variants.

Las Vegas algorithms are prominent in various areas of Computer Sci-
ence and Operations Research. A significant part of this impact is due to
the successful application of SLS algorithms for solving ��� -hard com-
binatorial problems. However, there are other very successful Las Vegas
algorithms that are not based on stochastic local search. In particular, a
number of systematic search methods, including some fairly recent variants
of the Davis Putnam algorithm for satisfiability (SAT) problems (see also

142

Chapter 6), make use of non-deterministic decisions, such as randomised
tie-breaking rules, and fall into the category of Las Vegas Algorithms.

It should also be noted that Las Vegas algorithms can be seen as a spe-
cial case of the larger, and also very prominent class of Monte Carlo Al-
gorithms. Like LVAs, Monte Carlo algorithms are randomised algorithms
with randomly distributed run-times. However, a Monte Carlo algorithm
can sometimes return an incorrect answer; in other words, it can generate
false positive results (incorrect solutions to the given problem) as well as
false negative results (missed correct solutions), while for Las Vegas algo-
rithms, only false negatives are allowed.

Empirical vs Theoretical Analysis

As a result of their inherently non-deterministic nature, the behaviour of
Las Vegas algorithms is usually difficult to analyse. For most practically
relevant LVAs, in particular SLS algorithms that perform well in practice,
theoretical results are typically hard to obtain, and even in the cases where
theoretical results do exist, their practical applicability is often very limited.

The latter situation can arise for different reasons. Firstly, sometimes
the theoretical results are obtained under idealised assumptions, which do
not hold in practical situations. This is, for example, the case for Simu-
lated Annealing, which is proven to converge towards an optimal solution
under certain conditions, one of which is infinitesimally slow cooling in the
limit [Hajek, 1988]—which obviously cannot be achieved in practice.

Secondly, most complexity results apply to worst-case behaviour, and in
those relatively few cases, were theoretical average-case results are avail-
able, these typically are based on instance distributions that are unlikely to
be encountered in practice. Finally, theoretical bounds on the run-times of
SLS algorithms are typically asymptotic, and do not reflect the actual be-
haviour accurately enough.

Given this situation, in most cases the analysis of the run-time behaviour
of Las Vegas algorithms is based on empirical methodology. In a sense, de-
spite dealing with algorithms which are completely known and easily under-
stood on a step-by-step execution basis, computer scientists are in a sense
in the same situation as, for instance, an experimental physicist studying
some non-deterministic quantum phenomenon or a microbiologist investi-
gating bacterial growth behaviour. In either case, a complex phenomenon

4.1. LAS VEGAS ALGORITHMS 143

of interest cannot be easily derived from known underlying principles solely
based on theoretical means; instead, the classical scientific cycle of obser-
vation, hypothesis, prediction, experiment is employed in order to obtain a
model that explains the phenomenon. It should be noted that in all empirical
sciences, in particular physics, chemistry, and biology, it is largely a collec-
tion of these models which constitutes theoretical frameworks, whereas in
computer science, theory is almost exclusively derived from mathematical
foundations.

Historical reasons aside, this difference is certainly largely due to the
fact that algorithms are completely specified and mathematically defined at
the lowest level. However, in the case of SLS algorithms (and many other
complex algorithms or systems), this knowledge is often not sufficient to
theoretically derive all relevant aspects of their behaviour. In this situation,
empirical approaches, based on computational experiments, are often not
only the sole way of assessing a given algorithm, but also have the potential
to provide insights into practically relevant aspects of algorithmic behaviour
that appear well beyond the reach of theoretical analysis.

Norms of LVA Behaviour

By definition, Las Vegas algorithms are always correct, while they are not
necessarily complete, i.e., even if a given problem instance has a solution, a
Las Vegas algorithm is generally not guaranteed to find it. Completeness is
not only an important theoretical concept for the study of algorithms, but is
often also very relevant in practical applications. In the following, we dis-
tinguish not only between complete and incomplete Las Vegas algorithms,
but also introduce a third category, so-called probabilistically approximately
complete LVAs. Intuitively, an LVA is complete, if it can be guaranteed to
solve any soluble problem instance in bounded time; it is probabilistically
approximately complete (PAC), if it will solve each soluble problem in-
stance with arbitrarily high probability if it is allowed to run long enough;
and it is essentially incomplete, if even arbitrarily long runs cannot be guar-
anteed to find existing solutions. These concepts can be formalised as fol-
lows:

Definition 4.3 (Asymptotic Behaviour of LVAs)

Consider a Las Vegas algorithm
�

for a problem class � , and

144

let ��� � �
	 �� ��� ��

denote the probability that

�
finds a solution

for a soluble instance � ��� in time less than or equal to
�
.

�
is called

� complete, if and only if for each soluble instance � � �
there exists some

���	��

such that ��� � �
	 �� ��� ���	��

���

;
� probabilistically approximately complete (PAC), if and only

if for each soluble instance � � � , ��������������� � �
	��� �����
���
;

� essentially incomplete, if it is not PAC, i.e. if there exists
a soluble instance � � � , for which ��������������� � �
	��� �����
 �!�

.

Probabilistic approximate completeness is also refered to as the
PAC property, and we will often use the term ‘approximately
complete’ to characterise algorithms that are PAC.

Furthermore, we will use the terms completeness, probabilistic
approximate completeness, and essential incompleteness also
with respect to single problem instances or subsets of a problem
class � , if the respective properties hold for the corresponding
sets of instances instead of � . �

Examples for complete Las Vegas algorithms are randomised systematic
search procedures such as Satz-Rand [Gomes et al., 1998]. Many stochastic
local search methods, such as Randomised Iterative Improvement and vari-
ants of Simulated Annealing , are PAC, while others, such as basic Iterative
Improvement, most variants of Iterated Local Search, and most tabu search
algorithms are essentially incomplete (some specific results can be found in
subsequent chapters).

Theoretical completeness can be achieved for any SLS algorithm by us-
ing a restart mechanism that systematically re-initialises the search such that
eventually, the entire search space has been visited. However, the time lim-
its for which solutions are guaranteed to be found using this appproach are
typically far too large to be of practical value. A similar situation arises
in many practical situations for search algorithms whose completeness is
achieved by different means.

4.1. LAS VEGAS ALGORITHMS 145

Probabilistic approximate completeness is often also referred to as con-
vergence in the literature; this property is established for a number of SLS
algorithms, such as Simulated Annealing [Kirkpatrick et al., 1983], or Ge-
netic Algorithms [Holland, 1975; Goldberg, 1989]. Another well-known
notion of convergence characterises SLS algorithms whose search trajec-
tory ends in a (optimal) solution with probability arbitrarily close to one as
run-time approaches infinity. One of the best-known convergence results
of this type has been proven for Simulated Annealing [Hajek, 1988]. This
notion of convergence implies the PAC property (but not vice versa); for
practical purposes, however, it seems to offer no advantage over the PAC
property, since for decision problems, the search is typically terminated as
soon as a solution is found, and for optimisation problems, the best quality
solution encountered so far is memorised and can be accessed at any time
throughout the search. In fact, it can be argued that in practice, guaranteed
convergence of the search trajectory towards (optimal) solutions often car-
ries the risk of search stagnation due to a lack of diversification in earlier
phases of the search process.

Essential incompleteness of an SLS algorithm is usually caused by the
algorithm’s inability to escape from attractive local minima regions of the
search space. Any mechanism that guarantees that a search process can
eventually escape from arbitrary regions of the search space, given enough
time, can make an SLS algorithm probabilistically approximately complete.
Examples for such mechanisms include random restart, random walk, and
probabilistic tabu-lists; however, as we will discuss in more detail later (see
Section 4.4), not all such mechanisms necessarily lead to performance im-
provements relevant to practical applications.

For optimisation LVAs, the concepts of completeness, probabilistic ap-
proximate completeness, and essential incompleteness can applied to the
associated decision problems in a straight-forward way, using the following
generalisations:

Definition 4.4 (Asymptotic Behaviour of OLVAs)

Consider an optimisation Las Vegas algorithm
�

for a problem
class ��� , and let ��� � �
	��� ��� � � � ��� �� ��� � � �
 denote the proba-
bility that

�
finds a solution of quality � � � (with � ����� opt,

where � opt is the optimal solution quality), for a soluble in-
stance ��� ����� in time � �

.

146

�
is called

� � � -complete, if and only if for each soluble instance ��� �
��� there exists some

���	��

such that ��� � �
	��� ��� � ���	��
 � ��� �� ��� �� �
���

;
� probabilistically approximately � � -complete (� � -PAC), if and

only if for each soluble instance ��� ����� , ��������������� � �
	 �� ��� �� � ��� �� ��� � � �
���
;

� essentially � � -incomplete, if it is not approximately � � -complete,
i.e., if there exists a soluble problem instance ��� ����� , for
which ����� ��������� � �
	��� ��� � � � ��� �� ��� � � �
 �!�

. �

With respect to finding optimal solutions, we use the terms complete, ap-
proximately complete, and essentially incomplete synonymously for � � -com-
plete, approximately � � -complete, and essentially � � -incomplete, where � � is
the optimal solution quality for the given problem instance.

Application Scenarios and Evaluation Criteria

For the empirical analysis of any algorithm it is crucial to use appropriate
evaluation criteria. In the case of Las Vegas algorithms, depending on the
characteristics of the application context, different evaluation criteria are
appropriate. Let us start by considering Las Vegas algorithms for decision
problems, and classify possible application scenarios in the following way:

Type 1: There are no time limits, i.e., we can afford to run the algorithm
as long as it needs to find a solution. Basically, this scenario is given when-
ever the computations are done offline or in a non-realtime environment
where it does not really matter how it takes to find a solution. In this situ-
ation we are interested in the expected time required for finding a solution;
this can be estimated from easily from a number of test runs.

Type 2: There is a hard time limit for finding the solution such that the
algorithm has to provide a solution after a time of

� �	��

; solutions that are

found later are of no use. In real-time applications, such as robotic control
or dynamic task scheduling,

� �	��

can be very small. In this situation we are

not so much interested in the expected time for finding a solution but in the
probability that after the hard deadline

� �	��

a solution has been found.

4.1. LAS VEGAS ALGORITHMS 147

Type 3: The usefulness or utility of a solution depends on the time that
was needed to find it. Formally, if utilities are represented as values in� � � ��� , we can characterise these scenarios by specifying a utility function�����
	�� � � � ��� , where

� � ��
 is the utility of finding a solution at time
�
.

As can be easily seen, application types 1 and 2 are special cases of type 3
which can be characterised by utility functions that are either constant (type
1) or step functions

� � ��
 �
for

� � ���	��

and

� � ��
 �
for

��� ���	��

(type

2). However, as we will explain in more detail shortly, more complex utility
functions are encountered in many real-world applications.

While in the case of no time limits being given (type 1), the mean run-
time of a Las Vegas algorithm might suffice to roughly characterise its run-
time behaviour, in real-time situations (type 2) it is basically meaningless.
Type 3 is not only the most general class of application scenarios, but these
scenarios are also the most realistic. The reason for this is the fact that
real-world problem solving usually involves time-constraints which are less
strict than the hard deadline given in type 2 scenarios. Instead, at least within
a certain interval, the value of a solution gradually decreases over time. In
particular, this situation is given when taking into account the costs (like
CPU time) of finding a solution.

As an example, consider a situation where hard combinatorial problems
have to be solved online, using expensive hardware in a time-sharing mode.
Even if the immediate benefit of finding a solution is invariant over time,
the costs for performing the computations will diminish the final payoff.
Two common ways of modelling this effect are constant or proportional dis-
counting, i.e., to use utility functions of the form

� � ��
� ��������������� � � ��� or� � ��
���! �" � , respectively [Poole et al., 1998]. Based on the utility function,
the weighted solution probability

� � ��
�# � � �
	 � ��

can be used as a perfor-

mance criterion. If
� � ��
 and � � � �
	 � ��

are known, optimal cutoff times
�%$

that maximise the weighted solution probability can be determined as well
as the expected utility for a given time

� � . These evaluations and calcula-
tions require detailed knowledge of the solution probabilities ��� � �
	 � ��

,
potentially for arbitrary run-times

�
.

In the case of optimisation Las Vegas algorithms, solution quality has
to be considered as an additional factor. One might imagine application
contexts in which the run-time is basically unconstrained, such as in the
type 1 scenarios discussed above, but a certain solution quality needs to be
obtained, or situations in which a hard time-limit is given, during which

148

the best possible solution is to be found. Typically, however, one can ex-
pect to find more complex tradeoffs between run-time and solution quality.
Therefore, the most realistic application scenario for optimisation Las Ve-
gas algorithms is a generalisation of type 3, where the utility of a solution
depends on its quality as well as on the time needed to find it. This is mod-
elled by utility functions

� � � � �
 � �
	 � �
	 � � � � ��� , where
� � � � �
 is the

utility of a solution of quality � found at time
�
. Analogous to the case of

decision LVAs, the probability � � � �
	!� � � ��� � �
 for obtaining a certain
solution quality � within a given time

�
, weigthed by the utility

� � � � �
 can
be used a performance criterion.
[hh: add some figures illustrating utility functions, run-time distribu-
tions, and utility–weighted solution probability?]

4.2 Run-time Distributions

As we have argued in the previous section, it is generally not sufficient to
evaluate LVAs based on the expected time for solving a problem instance
or achieving a given solution quality, or the probability of solving a given
instance within a given time. Instead, application scenarios are often char-
acterised by complex utility functions, or SLS algorithms or other LVAs are
evaluated without a priori knowledge of the application scenario, such that
a utility function is unknown but cannot be assumed to correspond to one
of the special cases characterising type 1 or 2 application scenarios. There-
fore, LVA evaluations should be based on a detailed knowledge and anal-
ysis of the solution probabilities � � � �
	 � ��

for decision problems, and
��� � �
	 � � � ��� � �
 for optimisation problems, respectively. Obviously,
these probabilities can be determined from the probability distributions of
the random variables characterising the run-time and solution quality of a
given LVA.

Definition 4.5 (Run-time Distribution)

Consider a Las Vegas algorithm
�

for a class � of decision
problems and let � � � �
	 �� � � ��

denote the probability that
�

finds a solution for a soluble instance � � � in time � �
. The

run-time distribution (RTD) of
�

on � is the probability distri-
bution of the random variable �
	
�� � , which is characterised by

4.2. RUN-TIME DISTRIBUTIONS 149

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1 10 100

P
(s

ol
ve

)

run-time [CPU sec]

0.1
1

10
100

run-time [CPU sec]0
0.5

1
1.5

2
2.5

rel. soln. quality [%]

0
0.2
0.4
0.6
0.8

1

P(solve)

Figure 4.1: Typical run-time distributions for SLS algorithms applied to
hard combinatorial decision (left) and optimisation problems (right); for de-
tails, see text.

the run-time distribution function �
��� ��� � � � � ��� defined as

�
��� � ��
� ��� � �
	 �� ��� ��

.

Similarly, given an optimisation Las Vegas algorithm
� � for

a class ��� of optimisation problems, and a soluble problem
instance ��� � ��� , let ��� � �
	 � � ��� � � � ��� � � ��� � �
 denote
the probability that

� � applied to ��� finds a solution of quality
� � in time � �

. The run-time distribution (RTD) of
� � on ���

is the probability distribution of the bivariate random variable
� �
	 � � ��� � ��� � � ���
 , which is characterised by the run-time dis-
tribution function �

��� � � � � 	 � � � � ��� defined as �
��� � � � �
�

��� � �
	 � � ��� � � � ��� � � ��� � �
 . �

Remark: Since RTDs are completely and uniquely charac-
terised by their distribution functions, we will often use the term
‘run-time distribution’ or ‘RTD’ to refer to the corresponding
run-time distribution functions.

Example 4.1: RTDs for decision and optimisation LVAs

Figure 4.1 (left) shows the typical run-time distribution for a SLS algorithm

150

applied to an instance of a hard combinatorial decision problem. The RTD is
represented by a cumulative probability distribution curve � � �

�

��� � �
	 � ��
�

which has been empirically determined from 1,000 runs of WalkSAT, one
of the most prominent SLS algorithms for SAT, on a hard Random-3-SAT
instance with 100 variables and 430 clauses (for details on the algorithm
and problem class, see Chapter 6).

Figure 4.1 (right) shows the bivariate RTD for an SLS optimisation algo-
rithm applied to an instance of a hard combinatorial optimization problem.
The plotted surface corresponds to the cumulative probability distribution
of an empirically measured RTD, in this case determined from 1,000 runs
of an Iterated Local Search (ILS) algorithm applied to instance pcb442
with 442 cities from TSPLIB, a benchmark library for the TSP (details on
SLS algorithms and benchmark problems for the TSP will be discussed in
Chapter 8). Note how the contours of the three dimensional qualified RLD
surface projected into the run-time / solution quality plane reflect the trade-
off between run-time and solution quality: for a given probability level,
better solution qualities require longer runs, while vice versa, shorter runs
yield lower quality solutions.

The behaviour of a Las Vegas algorithm applied to a given problem instance
is completely and uniquely characterised by the corresponding RTD. Given
an RTD, other performance measures or evaluation criteria can be easily
computed. For decision LVAs, measures such as the mean run-time for
finding a solution, its standard deviation, median, percentiles , or success-
probabilities for arbitrary time limits, are often used in empirical studies.
For optimisation LVAs, popular evaluation criteria include the mean or stan-
dard deviation of the solution quality for a given run-time (cutoff time) as
well as basic descriptive statistics of the run-time required for obtaining a
given solution quality.

Different from these measures, however, knowledge of the RTD allows
the evaluation of Las Vegas algorithms for problems and application scenar-
ios which involve more complex trade-offs. Some of these can be directly
represented by a utility function, while others might concern preferences
on properties of the RTDs. As an example for the latter, consider a situa-
tion where for a given time-limit

� � , one SLS algorithm gives a high mean

4.2. RUN-TIME DISTRIBUTIONS 151

solution quality but a relatively large standard deviation, while another al-
gorithm produces slightly inferior solutions in a more consistent way. RTDs
provide a basis for addressing such trade-offs quantitatively and in detail.

Qualified RTDs and SQDs

Multivariate probability distributions, such as the RTDs for optimisation
LVAs, are often more difficult to handle than univariate distributions. There-
fore, when analysing and characterising the behaviour of optimisation LVAs,
instead of working directly with bivariate RTDs, it is often easier and more
appropriate, to focus on the (univariate) distributions of the run-time re-
quired for reaching a given solution quality threshold.

Definition 4.6 (Qualified Run-time Distribution)

Let
� � be an optimisation Las Vegas algorithm for a class � � of

optimisation problems, and let � � ��� � be a soluble problem in-
stance. If �

��� � � � �
 is the RTD of
� � on ��� , then for any solution

quality � � , the qualified run-time distribution of
� � on ��� for � �

is defined by the distribution function � �
����� � � �
 �

��� � � � � �
�
��� � �
	 � � ��� � � � ��� � � ��� � � �
 . �

Obviously, the qualified RTDs thus defined are marginal distributions of
the bivariate RTD; intuitively, they correspond to cross-sections of the two-
dimensional RTD graph for fixed solution quality values. Qualified RTDs
are useful for characterising the ability of a SLS algorithm for an optimi-
sation problem to solve the associated decision problems (cf. Chapter 1).
In practice, they are commonly used for studying an algorithm’s ability to
find optimal or close-to-optimal solutions (if the optimal solution quality is
known), or feasible solutions (in cases where hard constraints are given).
Analysing series of qualified RTDs with solution quality thresholds which
are increasingly more restrictive can give a detailed picture of the behaviour
of an optimisation LVA.

An important question arises with respect to the solution quality bounds
used when measuring or analysing qualified RTDs. For some problems,
benchmark instances with known optimal solutions are available. In this

152

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10 100 1000

P
(s

ol
ve

)

run-time [CPU sec]

0.8%
0.6%
0.4%
0.2%

opt
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5

P
(s

ol
ve

)

relative solution quality [%]

0.1s
0.3s

1s
3.2s
10s

Figure 4.2: Left: qualified RTDs for the bivariate RTD from Figure 4.1;
right: SQDs for the same RTD.

case, bounds expressed as relative deviations from the optimal solution qual-
ity are often used; the relative deviation of solution quality � from optimal
solution quality � opt is calculated as ��� � opt � �

and is often expressed in
percent. (In cases where � opt

 �
, sometimes the solution quality is nor-

malised by dividing it by the maximal (i.e., worst) possible solution qual-
ity.) If optimal solutions are not known, one possibility is to evaluate the
SLS algorithms w.r.t. the best known solutions. This method, however,
has the potential disadvantage that best known solutions can become ob-
solete. Therefore, it is sometimes preferable to use lower bounds of the
optimal solution quality, especially if these are known to be close to the op-
timum, as is the case for the TSP [Held and Karp, 1970; Johnson and Mc-
Geoch, 1997]. Alternately, there are statistical methods for estimating opti-
mal solution qualities in cases where tight lower bounds are not available [?;
?].

Example 4.2: Qualified run-time distributions

Figure 4.2 (left) shows a set of qualified RTDs which correspond to marginal
distributions of the bivariate empirical RTD from Example ??. Note that
when tightening the solution quality bound, the qualified RTDs get shifted
to the right and appear somewhat steeper in the semilog plot. This indicates
that not only the run-time required for finding higher quality solutions is
higher, but also the relative variability of the run-time (as reflected, e.g., in

4.2. RUN-TIME DISTRIBUTIONS 153

the variation coefficient, i.e., the standard deviation of the RTD devided by
its mean). The latter observation reflects a rather typical property of SLS
algorithms for hard optimisation problems.

An orthogonal view of an optimisation LVAs behaviour is given by the dis-
tribution of the solution quality for fixed run-time limits.

Definition 4.7 (Solution Quality Distribution)

Let
�

be an optimisation Las Vegas algorithm
�

for a class � �
of optimisation problems, and let � � � � � be a soluble problem
instance. If �

��� � � � �
 is the RTD of
�

on � � , then for any run-
time

� � , the solution quality distribution (SQD) of
�

on ��� for
� �

is defined by the distribution function � � ��� � � �
 �
��� � � � � �

��� � �
	 � � ��� � � � � ��� � � ��� � �
 . �

Like qualified RTDs, solution quality distributions are marginal distribu-
tions of a bivariate RTD. Intuitively, they correspond to cross-sections of
the two-dimensional RTD graph for fixed run-times; in this sense they are
orthogonal to qualified RTDs. SQDs are particularly useful in situations
where fixed cutoff times are given (such as in type 2 application scenar-
ios). Furthermore, they facilitate quantitative and detailed analyses of the
trade-offs between the chance of finding a good solution fast and the risk of
obtaining only low-quality solutions.

Different from run-time, solution quality is inherently bounded from be-
low by the quality of the optimal solution of the given problem instance.
This constrains the SQDs of typical SLS algorithms, such that for suffi-
ciently long run-times, an increase in mean solution quality is often accom-
panied by a decrease solution quality variability. In particular, for an prob-
abilistically approximately complete algorithm, the SQDs for increasingly
large time-limits

� � approach a degenerate probability distribution that has
all probability mass concentrated on the optimal solution quality.

Example 4.3: Solution quality distributions

154

Figure 4.2 (right) shows a set of SQDs, marginal distributions of the bivari-
ate empirical RTD from Example ??, which offer an orthogonal view to the
qualified RTDs from Example 4.2. The SQDs show clearly that for increas-
ing run-time, the entire probability mass is shifted towards higher-quality
solutions, while the variability in solution quality decreases. It is also inter-
esting to note that the SQDs for large run-times are multimodal, as can be
seen from the fact that they have multiple steep segments which corrrespond
to the peaks in probability density (modes).

Time-dependent Summary Statistics

Instead of dealing with a set of SQDs for a series of time-limits, researchers
(and practitioners) often just look at the development of certain solution
quality statistics over time (SQTs). A common example of such an SQT
is the function ���	� ��
 , which characterises the time-dependent development
of the mean solution quality achieved by a given algorithm. We generally
prefer SQTs reflecting the development of percentiles (e.g., median) of the
SQDs over time, since percentiles are typically statistically more stable than
means. Furthermore, SQTs based on SQD percentiles offer the advantage
that they can be seen as horizontal sections or contour lines of the underlying
bivariate RTD surfaces. Combinations of such SQTs can be very useful for
summarising certain aspects of a full SQD series, and hence a complete
bivariate RTD; they are particularly suited for explicitly illustrating trade-
offs between run-time and solution quality. Especially individual SQTs,
however, offer a fairly limited view of an optimisation Las Vegas algorithm’s
run-time behaviour in which important details can be easily missed.

Example 4.4: Solution quality statistics over time

Figure 4.3 (left) shows the development of solution quality and standard
deviation over time, obtained from the same empirical data underlying the
bivariate RTD from Example ??. From this type of evaluation, which is
often used in the literature, we can easily see that in the given example
the algorithm behaves in a very desirable way: with increasing run-time,
the median solution quality as well as the higher SQD percentiles improve

4.2. RUN-TIME DISTRIBUTIONS 155

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 1 10 100

re
la

tiv
e

so
lu

tio
n

qu
al

ity
 [%

]

run-time [CPU sec]

median
75% percentile
90% percentile

0.1

1

10

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

ru
n-

tim
e

[C
P

U
 s

ec
]

relative solution quality [%]

median
75% percentile
90% percentile

Figure 4.3: Left: development of median solution quality, 75% and 90%
SQD percentiles over time for same TSP algorithm and problem instance as
used in Figure 4.1 (left). right: RTQ for the same algorithm and problem
instance.

monotonically; in this particular example, we can also see that there is a big
and rapid improvement in solution quality after 4–20 CPU seconds. The
gradual decrease in solution quality variability in during the first and final
phase of the search is rather typical for the behaviour of high-performance
SLS algorithms for hard combinatorial optimisation problems; this indicates
that for longer runs the algorithm tends to find better solutions in a more
consistent way. Note, however, that interesting properties, such as the fact
that in our example the SQDs for large run-times are multimodal, or that
the variation in run-time increases when higher-quality solutions need to be
obtained, cannot be observed from the SQT data shown here.

It is interesting to note that while SQTs are commonly used in the literature
for evaluating and analysing the behaviour or SLS algorithms for optimisa-
tion problems, the orthogonal concept of qualified RTD statistics dependent
on solution quality (RTQs) does not appear to be used at all. Possibly the
reason for this lies in the fact that SQTs appear to be intuitively more closely
related to the run-time behaviour of an optimisation LVA, and that empiri-
cal SQTs can be obtained more easily experimentally (the latter issue will
be discussed in more detail in the next section). Nevertheless, RTQs can
be useful, for instance in cases where trade-offs between the mean and the

156

standard deviation of the time required for reaching a certain solution qual-
ity � � have to be examined in dependence of � � , but where the details offered
by a series of qualified RTDs (or the full bivariate RTD) are not of interest.

Example 4.5: Run-time statistics depending on solution quality

Figure 4.3 (right) illustrates several percentiles of the qualified RTDs from
Figure ?? for relative solution quality � in dependence of � . Note the differ-
ence to the SQT plots in Figure 4.3 (left), which show SQD statistics as a
function of run-time.

Empirically Measuring RTDs

Except for very simple algorithms, such as random picking, it is typically
not possible to determine RTDs theoretically from properties of a given Las
Vegas algorithm. Hence, the true RTDs characterising a Las Vegas algo-
rithm’s behaviour are typically approximated by empirical RTDs. For a
given instance � of a decision problem, the empirical RTD of an LVA

�
can be easily determined by performing

�
(independent) runs of

�
on �

and recording for each successful run the time required to find a solution.
The empirical run-time distribution is the cumulative distribution associated
with these observations. Each run corresponds to drawing a sample from the
true RTD of

�
on � , and clearly, the more runs are performed, the better will

the empirical RTD obtained from these samples approximate the true under-
lying RTD. For algorithms which are known to be either complete or prob-
abilistically approximately complete (PAC), it is often desirable (athough
not always practical) to terminate each run only after a solution has been
found; this way, a complete empirical approximation of

�
’s RTD on � can

be obtained. In cases where, because of time limits, not all runs are suc-
cessful, either because the algorithm is essentially incomplete, or because
the search was terminated before a solution could be found (with reason-
ably high probability), a truncated approximation of the true RTD can be
obtained from the successful runs. Practically, nearly always a cut-off time
is used as a criterion for terminating unsuccessful runs.

4.2. RUN-TIME DISTRIBUTIONS 157

More formally, let
�

be the total number of runs performed with a cutoff-
time

� � , and let
� � � �

be the number of successful runs, i.e., runs dur-
ing which a solution was found. Furthermore, let �
	 ���
 denote the run-
time for the � th entry in a list of all successful runs, ordered according to
increasing run-times. The cumulative empirical RTD is then defined by

�

� � �
	 � ��
��� ����� �
	 ���
 � � � � �
. The ratio ��� � � � �

is called
the success-rate of

�
on � with cutoff

� � . For algorithms that are known
or suspected to be essentially incomplete, the success-rate converges to the
asymptotic maximal success probability of

�
on the given problem instance

� , which is formally defined as 	 $� � ����� ��������� � �
	 �� � � ��

. For suffi-

ciently high cutoff-time, the empirically determined success-rate can give
useful approximations of 	 $� . Unfortunately, in the absence of theoretical
knowledge on the success probability or the speed of convergence of the
success-rate, the decision whether a given cutoff-time is high enough to get
a reasonable estimate of the success probability needs to be based on edu-
cated guessing. In practice, the following criterion is often useful in situa-
tions, where a reasonably high number of runs (typically between 100 and
10,000) can be performed: When increasing a given cutoff

� � by a factor of
 (where
 is typically between 10 and 100) does not result in an increased
success-rate, it is assumed that the asymptotic behaviour of the algorithm is
observed and that the observed success-rate is a reasonably good approxi-
mation of the asymptotic success probability.

Note that in these situations, as well as in cases where success-rates of
one cannot be achieved for practical reasons (e.g., due to limited computing
resources), certain RTD statistics, in particular all percentiles lower than
��� , are still available. Other RTD statistics, particularly the mean time for
finding a solution, can be estimated using the following approach: When
for cutoff time

� � , � � out of
�

runs were successful, the probability for any
individual run with cutoff

� � to succeed equals the success-rate ��� � � � �
.

Consequently, for � successive (or parallel) independent runs with cutoff� � , the probability that at least one of these runs is successful is
� � � � �

���
� . Using this result, percentiles higher than ��� can be estimated for the
variant of the respective algorithm that re-initialises the search after each
time interval of length

� � (static restart). Furthermore, the expected time for
finding a solution can be estimated from the mean time over the successful
runs by taking into account the expected number of runs required to find a

158

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600 700 800 900 1000

ru
n-

tim
e

[C
P

U
 s

ec
]

trial #

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

P
(s

ol
ve

)

run-time [CPU sec]

Figure 4.4: Run-time data for WalkSAT/SKC, applied to a hard Random-
3-SAT instance for approx. optimal noise setting, 1,000 tries. Left: bar
diagramm of � � ���
 ; right: corresponding RTD.

solution: �
�� � �
	 �
� �

� �

� �� �
� � �
	 ���

�� � � � ���
�# � � (4.1)

Note that this estimate applies to the algorithm with static restart and cutoff� � ; the mean run-time will generally be different when no restart is used as
well as for cutoffs different from

� � . In the latter case, RTD information can
actually be used for determining performance optimising cutoff settings (cf.
Section 4.4).

Example 4.6: Raw run-time data vs Empirical RTDs

Figure 4.4 (left) shows the raw data from running WalkSAT/SKC, a promi-
nent SLS algorithm for SAT applied to a hard problem instance with 100
variables and 430 clauses; each vertical line represents one run of the algo-
rithm and the height of the lines indicates the CPU time needed for finding
a solution. The right side of the same figure shows the corresponding RTD
as a cumulative probability distribution curve � � �

�

�	� � �
	 � ��
�

. Note that

the run-time is extremely variable, which is typical for SLS algorithms for
hard combinatorial problems. Clearly, the RTD representation gives a much

This method is equivalent to the one used in [Parkes and Walser, 1996], where a more
detailed derivation of this estimate can be found.

4.2. RUN-TIME DISTRIBUTIONS 159

more informative picture of the run-time behaviour of the algorithm than
simple descriptive statistics summarising the data shown on the left side of
Figure 4.4, and, as we will see later in this chapter, it also provides the ba-
sis for more sophisticated analyses of algorithmic behaviour. (The graphs
shown in Figure 4.4 are based on the same data that was used in Exam-
ple 4.1.)

For empirically approximating the bivariate RTDs of optimisation LVA
� �

on a given problem instance � � , a slightly different approach is used: Dur-
ing each run of

� � , whenever the incumbent solution (i.e., the best solution
found during this run) is improved, the quality of the improved solution and
the time the improvement was achieved is recorded in a solution quality
trace. The empirical RTD is derived from the solution quality traces ob-
tained over multiple (independent) runs of

� � on ��� . Formally, let
�

be
the number of runs performed and let � � � � � �
 denote the quality of the best
solution found in run � until time

�
. Then the cumulative empirical run-

time distribution of
� � on ��� is defined by

�

� � �
	 � � � � ��� � � �
 � ��� �
� � � � � � �
 � � � � � �

. Qualified RTDs and SQDs, as well as SQT and RTQ data,
can also be easily derived from the solution traces. With regard to the use of
cutoff-times and their impact on the completeness of the empirical RTDs,
considerations very similar to the ones discussed for the case of decision
problems apply.

CPU Time vs Operation Counts

Up to this point, and consistent with a large part of the empirical analyses of
algorithmic performance in the literature, we have used CPU-time for mea-
suring and reporting the run-time of algorithms. Obviously, a CPU-time
measurement is always based on a concrete implementation and run-time
environment (machine and operating system). However, it is often more
appropriate, especially in the context of comparative studies of algorithmic
performance, to measure run-time in a way that allows to abstract from these
factors and that facilitates comparing empirical results across various plat-
forms. This can be done using operation counts, which reflect the number
of operations which are considered to contribute significantly towards an al-
gorithm’s performance, and cost models, which relate the cost (typically in

160

terms of run-time per execution) of these operations relative to each other
or absolute in terms of CPU-time for a given implementation and run-time
environment [Ahuja and Orlin, 1996].

Generally, using operation counts and an associated cost model rather
than CPU-time measurements as the basis for empirical studies often gives
a clearer and more detailed picture of algorithmic performance. This ap-
proach is especially useful for comparative studies involving various al-
gorithms or different variants of one algorithm. Furthermore, it allows to
explicitly address trade-offs in the design of SLS algorithms, such as com-
plexity vs efficacy of different types of local search steps. To make a clear
distinction between run-time measurements corresponding to actual CPU-
times and abstract run-times measured in operation counts, we refer to the
latter as run-lengths. Similarly, we refer to RTDs which are obtained from
run-times measured in terms of operation counts as run-length distributions
or RLDs.

For SLS algorithms, a commonly used operation count is the number
of local search steps. In the case of pure SLS methods, such as iterative
improvement, there is only one type of local search step, and while the cost
or time complexity of such a step typically depends on the size and other
properties of the given problem instance, in many cases it is constant or
close to constant within and between runs of the algorithm on the same
instance. In this situation, measuring run-time in terms of local search steps
as elementary operations is often the method of choice; furthermore, run-
times measured in terms of CPU-time and run-lengths based on local search
steps as basic operations are related to each other by scaling with a constant
factor.

Example 4.7: RTDs vs RLDs

Figure 4.5 shows RTD and RLD data for the same experiments (solving
three Uniform Random-3-SAT SAT instances with 100 variables and 430
clauses each using WalkSAT/SKC, a prominent SLS algorithm for SAT).
The operations counted for obtaining RLDs are local search steps; in the
case of WalkSAT/SKC, a each local search step corresponds to flipping the
truth value assigned to a propositional variable. Note that, when comparing
the RTDs and the corresponding RLDs in a semi-log plot, both distributions
always have the same shape. This reflects the fact that the CPU-time per step

4.2. RUN-TIME DISTRIBUTIONS 161

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0001 0.001 0.01 0.1 1 10 100
CPU sec

hard
medium

easy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000 1e+06
steps

hard
medium

easy

Figure 4.5: RTDs (left) and RLDs (right) for WalkSAT/SKC, applied to
three Uniform Random-3-SAT instances of varying difficulty, based on
1,000 runs and using using an approx. optimal noise parameter setting. [
hh: label y axes; need eps + plt files – TODO(hh)]

is roughly constant. However, closer examination of the RTD and RLD data
reveals that the CPU-time per step is not constant for the three instances;
the reason for this is the fact that the hard problem was solved on a faster
machine than the medium and easy instances. In this example, the CPU-
time per search step is 0.027ms for the hard instance and 0.035ms for the
medium and easy instances; the time required for search initialisation is
0.8ms for the hard instance and 1ms for the medium and easy instances.
These differences result solely from the difference in CPU speed between
the two machines used for running the respective experiments.

In case of hybrid SLS algorithms characterised by GLSM models with mul-
tiple frequently used states, such as Iterated Local Search (cf. Sections 2.3
and 3.3), the search steps for each state of the GLSM model may have sig-
nificantly different execution costs (i.e. run-time per step) associated with
them, and consequently, they should be counted separately. By weigthing
these different operation counts relative to each other, using an appropri-
ate cost model, it is typically possible to aggregate them into run-lengths or
RLDs. Alternatively, or in situations where the cost of local search steps
can vary significantly within a run of the algorithm or between runs on the
same instance, it can be useful to use finer-grained elementary operation,
such as the number of evaluations of the underlying objective function, or

162

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100000 200000 300000 400000 500000

P
(s

ol
ve

)

run-time [search steps]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000 100000 1e+06

P
(s

ol
ve

)

run-time [search steps]

Figure 4.6: Left: RLD for WalkSAT/SKC on a hard Random-3-SAT in-
stance for approx. optimal noise parameter setting; right: semi-log plot of
the same RLD.

the number of updates of internal data structures used for implementing the
algorithm’s step function.

4.3 RTD-based Analysis of LVA Behaviour

After having introduced RTDs (and related concepts) in the previous sec-
tion, we now show how these can be used for analysing and characteris-
ing the behaviour and relative performance of Las Vegas algorithms. We
will start with the quantitative analysis of LVA behaviour based on single
RTDs; next, we will show how this technique can be generalised to cover
sets and distributions of problem instances. We will then explain how RTDs
can be used for the comparative analysis of algorithms before returning to
individual algorithms, for which we discuss advanced analysis techniques,
including the empirical analysis of asymptotic behaviour and stagnation.

Basic Quantitative Analysis based on Single RTDs

When analysing or comparing the behaviour of Las Vegas Algorithms, the
empirical RTD (or RLD) data can be used in different ways. In our ex-
perience, graphic representations of empirical RTDs provide often a good
starting point. As an example, Figures 4.6 and 4.7 show the RLD for the

4.3. RTD-BASED ANALYSIS OF LVA BEHAVIOUR 163

0.001

0.01

0.1

1

100 1000 10000 100000 1e+06

P
(s

ol
ve

)

run-time [search steps]

0.001

0.01

0.1

1

100 1000 10000 100000 1e+06

1-
P

(s
ol

ve
)

run-time [search steps]

Figure 4.7: Log-log plot of the same RLD as in Figure 4.6 (left) and log-log
plot of the corresponding failure probability over time (right).

hard problem instance from Figure 4.5 in three different views. Compared
to standard representations, semi-log plots (as shown in Figure 4.7, right),
give a better view of the distribution over its whole range; this is especially
important, since SLS algorithms show often RLDs with extreme variability.
Also, when using semi-log plots to compare RLDs, uniform performance
differences characterised by a constant factor can be easily detected, as they
correspond to simple shifts along the horizontal axis (for an example, see
Figure ??, page ??). On the other hand, log-log plots of an RLD or its
associated failure rate decay function,

� � �
��� � ��
 , are often very useful for

examining the behaviour of a given Las Vegas algorithm for extremely short
or extremely long run-times (cf. Figure 4.7).

While graphical representations of RTDs are well suited for investigat-
ing and describing the qualitative behaviour of Las Vegas Algorithms, quan-
titative analyses are usually based on the basic descriptive statistics of the
RTD data. For our example, some of the most common standard descriptive
statistics, such as the empirical mean, standard deviation, minimum, maxi-
mum, and some percentiles, are reported in Table 4.1. Note again the huge
variability of the data, as indicated by the large standard deviation and per-
centile ratios. The latter, like the variation coefficient, ��� � ����� � � ��� ��� � ,
have the advantage of being invariant to multiplication of the data by a con-
stant, which – as we will see later – is often advantageous when comparing
RTDs.

In the case of optimisation LVAs, analogous considerations apply to

164

mean stddev vc min max median

57,606.23 58,953.60 1.02 107 443,496 38,911

� ��� ��� � ��� ��� � ��� � � ��� � � ��� ��� � � ��� ��� � ��� � � � ��� �
16,762 80,709 5,332 137,863 4.81 25.86

Table 4.1: Basic descriptive statistics for the RLD given in Figures ??
and 4.7;

�
	
denotes the � -percentile; the variation coefficient ���

� ����� � � ��� ��� � and the percentile ratios
�
	 � � � 	 are measures for the rela-

tive variability of the run-length data.

graphical representations and standard descriptive statistics of qualified RTDs
for various solution quality bounds. Similarly, different graphical represen-
tations and summary statistics can be used for analysing and characterising
empirical SQDs for various run-time bounds or time-dependent statistics of
solution quality; this approach is more commonly followed in the literature,
but not always preferable over studying qualified RTDs.

Generally, it should be noted that for directly obtaining sufficiently sta-
ble estimates for summary statistics, the same number of test-runs have to
be performed as for measuring reasonable empirical RTDs. Thus, mea-
suring RTDs does not cause a computational overhead in data acquisition
when compared to measuring only a few simple summary statistics, such
as averages and empirical standard deviations. At the same time, arbitrary
percentiles and other descriptive statistics can be easily calculated from the
RTD data. Furthermore, for optimisation LVAs, bivariate RTDs, qualified
RTDs, SQDs, and SQTs can all be easily determined from the same solu-
tion quality traces without significant overhead in computation time. Be-
cause qualified RTDs, SQDs, and SQTs merely present different views on
the same underlying bivariate RTD and since similar considerations apply
to all of these, in the following discussion of empirical methodology we will
often just explicitly mention RTDs.

Because of the high variability in run-time over multiple runs on the
same problem instance that is typical for many SLS algorithms, empiri-
cal estimates of mean run-time can be rather unstable, even when obtained

4.3. RTD-BASED ANALYSIS OF LVA BEHAVIOUR 165

Emp/r3s-rtds.eps Emp/r3s-scd.eps

Figure 4.8: Left: RLDs for WalkSAT/SKC (approx. optimal noise parameter
setting), a prominent SLS algorithm for SAT, applied to three hard Random-
3-SAT instances. Right: Distribution of median local search cost for the
same algorithm across a set of 1,000 Uniform Random 3-SAT instances.

from relatively large numbers of successful runs. This potential problem
can be alleviated by using percentiles and percentile ratios instead of means
and standard deviations for summarising RTD data with simple descriptive
statistics [?].

Basic Quantitative Analysis for Ensembles of Instances

In many applications, the behaviour of a given algorithm needs to be tested
on a set of problem instances. In principle, the same method as described
above for single instances can be applied — RTDs are measured for each
instance, and the corresponding sets of graphs and/or associated descriptive
statistics are reported.
[hh: need to generate these (data should be available) – TODO(hh)]

Often, LVA behaviour is analysed for a set of fairly similar instances
(such as instances of the same type, but different size, or instances from
the same random instance distribution). In this case, the RTDs will often
have similar shapes (particularly as seen in a semilog-plot) or share promi-
nent qualitative properties, such as being uni- or bi-modal, or having a very
prominent right tail. A simple example can be seen in Figure 4.8 (left side),
where very similarly shaped RTDs are obtained when applying the same
SLS algorithm for SAT (WalkSAT/SKC) to three randomly generated in-

166

stances from the same instance distribution (Uniform Random-3-SAT with
100 variables and 430 clauses). In such cases, a representative or typical in-
stance can be selected for presentation or further analysis, while the similar
data for the other instances is only briefly summarised. It is very important,
however, to not assume naively properties of or similarities between RTDs
based on a few selected examples only, but to carefully test such assump-
tions by manual or automated analysis of all or sufficiently many RTDs. In
the next section, we will demonstrate how in certain cases, the latter can be
done in an elegant and informative way by using functional approximations
of RTDs and statistical goodness-of-fit tests.

For bigger sets of instances, such as the sets obtained from sampling
random distributions of problem instances, it becomes important to charac-
terise the performance of a given algorithm on individual instances as well
as across the whole ensemble. Often (but not always!) when analysing the
behaviour of reasonably optimised, probabilistically approximately com-
plete SLS algorithms in such situations, there is a fairly simple scaling re-
lationship between the RTDs for individual problem instances: Given two
instances and a desired probability of finding a solution, the ratio of the run-
times required for achieving this solution probability for the two instances is
roughly constant. This is equivalent to the observation that in a semilog plot,
the two corresponding RTDs essentially differ only by a shift along the time
axis. If this is the case, the performance of the given algorithm across the
ensemble can be summarised by one RTD for an arbitrarily chosen instance
from the ensemble, and the distribution of the mean (or any percentile) of
the individual RTDs across the ensemble. The latter type of distribution in-
tuitively captures the cost for solving instances across the set; in the past it
has often been referred to as “hardness distribution” – however, it should be
noted that without further knowledge, the underlying notion of hardness is
entirely relative to the algorithm used rather than intrinsic to the problem
instance, and hence this type of distribution is technically more appropri-
ately termed a (local search) cost distribution. An example for such a cost
distribution, here for an SLS algorithm for SAT (WalkSAT/SKC) applied
to a set of 1,000 Uniform Random-3-SAT instances with 100 variables and
430 clauses each, can be seen in Figure 4.8 (right side).

In reality, the simple multiplicative scaling relationship between any two
instances of a given ensemble will hardly ever hold exactly. Hence, depend-
ing on the degree and nature of variation between the RTDs for the given

4.3. RTD-BASED ANALYSIS OF LVA BEHAVIOUR 167

ensemble, it is often reasonable and appropriate to report cost distributions
along with a small set of RTDs that have been carefully selected from the
ensemble such that they representatively illustrate the variation of the RTDs
across the sets. Sometimes, distributions (or statistics) of other basic de-
scriptive RTD statistics across the ensemble of instance, e.g., a distribution
of variation coefficients or percentile ratios, can be useful for getting a more
detailed picture of the algorithm’s behaviour on the given ensemble. It can
also be very informative to investigate the correlation between various fea-
tures of the RTD across the ensemble; specifically, the correlation between
the median (or mean) and some measure of variation can be very interesting
for understanding LVA behaviour.

Finally, it should be mentioned that when dealing with sets of instances
that have been obtained by systematically varying some parameter, such as
problem size, it is natural and obvious to study characteristics and proper-
ties of the corresponding RTDs (or the cost distributions) in dependence of
this parameter. Otherwise, similar considerations as discussed above for en-
sembles of instances, apply. Again, choosing an appropriate graphical rep-
resentation, such as a semilogarithmic plot for the functional dependence of
mean cost on problem size, is often the key for easily detecting interesting
behaviour (e.g., exponential scaling).

In Depth: Benchmark Sets
The selection of benchmark instances is an important factor in the empirical anal-
ysis of an algorithm’s behaviour, and the use of inadequate benchmark sets can
lead to questionable results and misleading conclusions. The criteria for bench-
mark selection depend significantly on the problem domain under consideration,
on the hypotheses and goals of the empirical study, and on the algorithms being
analysed. There are, however, some general issues and principles which will be
discussed in the following.

Typically, benchmark sets should mainly consist of problem instances that are
intrinsically hard or difficult to solve for a broad range of algorithms. While easy
instances can be sometimes useful for illustrating or investigating properties of
specific algorithms (for example polynomially solvable instances that are hard for
certain, otherwise high-performing algorithms), they should not be used as general
benchmark problems, as this can easily lead to heavily biased evaluations and as-
sessments of the usefulness of specific algorithms. Similar considerations apply
to problem size; small problem instances can sometimes lead to atypical SLS be-
haviour that does not generalise to larger problem sizes. To avoid such problems

168

and to facilitate studies on the scaling of SLS performance it is generally advisable
to include problem instances of different sizes into benchmark sets.

Furthermore, benchmark sets should contain a diverse collection of problem
instances. An algorithm’s behaviour can substantially depend on specific features
of problem instances, and in many cases at least some of these features are not
known a priori. Using a benchmark set comprising a diverse range of problem in-
stances reduces the risk of incorrectly generalising from behaviour or performance
results that only apply to a very limited class of problem instances.

We distinguish three types of benchmark instances: instances obtained from
real-world applications, artificially crafted problem instances, and randomly gen-
erated instances. Some combinatorial problems have no real-word applications;
where real-world problem instances are available, however, they often provide
the most realistic test-bed for algorithms of potential practical interest. Artificially
crafted problem instances can be very useful for studying specific properties or
features of an algorithm; they are also often used in situations where real-world
instances are not available or unsuitable for a specific study (e.g., because they
are too large, too difficult to solve, or only very few real-world instances are avail-
able). Random problem instance generators have been developed and widely used
in many domains, including SAT and TSP. These generators effectively sample
from distributions of problem instances with controlled syntactic properties, such
as instance size or expected number of solutions. They offer the advantage that
large test-sets can be generated easily, which facilitates the application of statisti-
cal tests. However, basing the evaluation of an algorithm on randomly generated
problem instances only carries the risk of obtaining results that are misleading or
meaningless w.r.t. to practical applications.

Ideally, benchmark sets used for empirical studies should comprise instances
of all three types. In some cases, it can also be beneficial to additionally use suit-
able encoded problem instances from other domains. The performance of SAT
algorithms, for example, is often evaluated on SAT-encoded instances from do-
mains such as graph colouring, planning, or circuit verification [?]. In these cases
it is often important to ensure that the encoding schemes used do not produce un-
desirable features that, for instance, may render the resulting instances abnormally
difficult for the algorithm(s) under consideration.

In principle, artificially crafted and randomly generated problem instances can
offer the advantage of carefully controlled properties; in reality, however, the be-
haviour of SLS algorithms is often affected by problem features that are not well
understood or difficult to control. (This issue will be further discussed in Chap-
ter 5.) Randomly generated instance sets often show a large variation w.r.t. their
non-controlled features, leading to the kind of diversity in the benchmark sets that
we have advocated above. On the other hand, this variation often also causes
extreme differences in difficulty for instances within the same sample of problem
instances (see, e.g., [Hoos, 1998a; Hoos and Stützle, 1999]). This can easily lead
to substantial differences in difficulty (as well as other properties) between test-
sets sampled from the same instance distribution. As a consequence, comparative

4.3. RTD-BASED ANALYSIS OF LVA BEHAVIOUR 169

analyses should always evaluate all algorithms on identical test-sets.
To facilitate the reproducibility of empirical analyses and the comparability of

results between studies, it is important to use established benchmark sets and to
make newly created test-sets available to other researchers. In this context, public
benchmark libraries play an important role. Such libraries exist for many domains;
widely known examples include TSPLIB (containing a variety of TSP and TSP-
related instances), SATLIB (which includes a collection of benchmark instances
for SAT) ORLIB (comprising test instances for a variety of problems from Opera-
tions Research), TPTP (a collection of problem instances for theorem provers), and
CSPLIB (a benchmark library for constraints). Good benchmark libraries are reg-
ularly updated with new, challenging problems. Using severely outdated or static
benchmark libraries for empirical studies gives rise to various, well-known pitfalls
[Hooker, 1994; 1996] and should therefore be avoided as much as possible. Fur-
thermore, good benchmark libraries will provide descriptions and explanations of
all problem instances offered, ideally accompanied by references to the relevant
literature. Generally, a good understanding of all benchmark instances to be used
in the context of an empirical study, regardless of their source, is often crucial for
interpreting the results correctly and conclusively.

Comparing Algorithms based on RTDs

Empirical investigations of algorithmic behaviour are frequently performed
in the context of comparative studies, often with the explicit or implicit goal
to establish the superiority of a new algorithm over existing techniques. In
this situation, given two Las Vegas algorithms for a decision problem, one
would empirically show that one of them consistently gives a higher solu-
tion probability than the other. Likewise, for an optimisation problem, the
same applies for a specific (e.g., the optimal) solution quality, or a range of
solution qualities. Formally, this can be captured by the concept of proba-
bilistic domination, defined in the following way:

Definition 4.8 (Probabilistic Domination)

Let � ��� an instance of a decision problem � , and
�

and � be
two Las Vegas algorithms for � .

�
probabilistically dominates

� on � if � � � ��� � �
	 �� � � ��
 � ��� � �
	�� � � ��

and � � �

��� � �
	 �� ��� ��
 � ��� � �
	�� � � ��

.

Similarly, for an instance � � ��� � of an optimisation problem
��� , and optimisation LVAs

� � and � � for ��� , � � probabilistically

170

dominates � � on ��� for solution quality less than or equal to� , if � � � � � ��� � �
	�� � ��� � � � ��� � � ���
 � �
 � ��� � �
	�� � ��� �� � ��� � � ���
 � �
 and � � � ��� � �
	�� � ����� � � ��� � � ���
 � �
 �
��� � �
	�� � ��� � � � ��� � � ���
 � �
 .
� � is said to probabilistically dominate � � on ��� , if

� � prob-
abilistically dominates � � on ��� for arbitrary solution quality
bound � . �

Remark: A probabilistic domination relation holds between
two Las Vegas algorithms on a given problem instance if their
respective (qualified) RTDs do not cross over. This provides a
simple method for graphically checking probabilistic domina-
tion between two LVAs on individual problem instances.

In practice, performance comparisons between Las Vegas algorithms are
complicated by the fact that even for a single problem instance, a proba-
bilistic domination does not always hold. This situation is characterised by
the occurrence of cross-overs between the corresponding RTDs, indicating,
that which of the two algorithms gives better performance, i.e., higher solu-
tion probabilities (for a given solution quality bound), depends on the time
the algorithm is allowed to run.

Statistical can be used to assess the significance of performance dif-
ferences. In the simplest case, the Mann-Whitney U-test (or, equivalently,
the Wilcoxon rank sum test) can be applied [Sheskin, 2000]; this test de-
termines whether the medians of two samples are equal, hence a rejection
indicates significant performance differences. This test can also be used to
determine whether the median solution quality achieved by two SLS optimi-
sation algorithms are identical. � The more specific hypothesis whether the
theoretical RTDs (or SQDs) of two algorithms are identical can be tested
using the Kolmogorov-Smirnov test for two independent samples [Sheskin,
2000].

�

The widely used
�
-test generally fulfills a similar purpose, but requires the assumption

that the given samples are normally distributed with identical variance; since this assump-
tion is often violated in the context of the empirical analysis of SLS behaviour, the

�
-test

should be avoided.

4.3. RTD-BASED ANALYSIS OF LVA BEHAVIOUR 171

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100 1000

p(
so

lv
e)

run-time [CPU sec]

MMAS
ILS

Figure 4.9: Qualified RTDs for two SLS algorithms for the TSP that, applied
to a standard benchmark instance, are required to find a solution of optimal
quality. The two RTDs cross over between 20 and 30 CPU seconds.

Example 4.8: Comparative RTD Analysis

Figure 4.9 shosw the qualified RTDs for two SLS algorithms for the TSP,
Max-Min Ant System (

���
AS) and Iterated Local Search (ILS) under the

requirement of finding a solution of optimal quality for TSPLIB instance
lin318. Clearly, there is no probabilistic domination between the two
algorithms. The qualified RTD curves cross over at one specific point be-
tween 20 and 30 CPU seconds and ILS gives a higher solution probability
than MMAS for shorter runs, whereas MMAS is more effective for longer
runs. However, for long run-times LVA B again recovers and eventually
finds optimal solutions in every single run. Both algorithms eventually find
optimal solutions in all runs and hence do not show any evidence for essen-
tially incomplete behavior on this problem instance. Interestingly, it appears
that MMAS has practically no chance of finding an optimal solution in less
than 10 CPU seconds, while ILS finds optimal solutions with small proba-
bility after only 0.2 CPU seconds. (This salient difference in performance
is partly explained by the fact that population-based algorithms like MMAS
typically incur a certain overhead from maintaining multiple candidate so-
lutions.)

172

Comparative Analysis for Ensembles of Instances

As mentioned before, empirical analyses of LVA behaviour are mostly per-
formed on ensembles of problem instances. For comparative analyses, in
principle this can done by comparing the respective RTDs on each indi-
vidual problem instance. Ideally, when dealing with two algorithms

�
and

� , one would hope to observe probabilistic domination of
�

by � (or vice
versa) on every instance of the ensemble. In practice, probabilistic domina-
tion does not always hold for all instances, and even where it holds, it may
not be consistent across a given set of instances. Hence, an instance-based
analysis of probabilistic domination (based on RTDs) can partition a given
problem ensemble into three subsets: Those on which

�
probabilistically

dominates � , those on which � probabilistically dominates
�

, and those
for which probabilistic domination is not observed, i.e., where

�
’s and � ’s

RTDs cross over. The relative sizes of these partitions give a rather realistic
and detailed picture of the algorithms’ relative performance on the given set
of instances.

Statistical tests can be used to assess the significance of performance
differences between two algorithms applied to the same ensemble of in-
stances. These tests are applied to performance measures, such as mean
run-time or an RTD percentile, for each algorithm on any problem instance
in the given ensemble; hence, they do not capture qualitative differences
in performance, particularly as given in cases where there is no probabilis-
tic domination of one algorithm over the other. The binomial sign test as
well as the Wilcoxon matched pairs signed-rank test measure whether the
median of the paired differences is statistically significantly different from
zero, indicating that one algorithm performs better than the other [Sheskin,
2000]. The Wilcoxon test is more sensitive, but requires the assumption
that the distribution of the paired differences is symmetric. It may be noted
that the widely used

�
-test for two dependent samples requires assumptions

on the normality and homogeneity of variance of the underlying distribu-
tions of search cost over the given test-set; this test should not be used for
comparing the performance of SLS algorithms, where these assumptions are
typically not satisfied.

Particularly for large instance ensembles, it is often useful to refine this
analysis by looking at particular performance measures, such as the median
run-time, and studying the correlation between

�
and � w.r.t. these. For

4.3. RTD-BASED ANALYSIS OF LVA BEHAVIOUR 173

0.1

1

10

100

1000

0.1 1 10 100 1000

m
ed

ia
n

ru
n-

tim
e

IL
S

 [C
P

U
 s

ec
]

median run-time MMAS [CPU sec]

Figure 4.10: Correlation between median run-time required by
���

AS vs
ILS for finding the optimal solutions to instances of a set comprising 100
TSP instances with 300 cities each; each median was measured from 10
runs per algorithm.

qualitative analyses of such correlations, scatter plots can be used in which
each instance is represented by one point in the plot, whose coordinates cor-
respond to the performance measure for

�
and � applied to that instance.

Quantitatively, the correlation can be summarised using the empirical corre-
lation coefficient. When the nature of an observed performance correlation
seems to be regular (e.g., a roughly linear trend in the scatter plot), a re-
gression analysis can be used to model the corresponding relationship in the
algorithms’ performance.

To test whether the correlation between the performance of two algo-
rithms are significant, non-parametric tests like Spearman’s rank order test
or Kendall’s tau test can be employed [Sheskin, 2000]. These tests deter-
mine whether there is a significant monotonic relationship. They are prefer-
able over tests based on Pearson product-moment correlation coefficient,
which requires the assumption that the two random variables underlying the
performance data stem from a bivariate normal distribution.

Example 4.9: Comparative Analysis on Instance Ensembles

Figure 4.10 shows the correlation between the performance of an ILS algo-
rithm and an ACO algorithm for TSP applied to a set of randomly generated
Euclidean TSP instances (the algorithms and problem class are described in

174

Chapter 8). Clearly, for the ILS algorithm has a lower median run-time than
the ACO algorithm for the majority of the problem instances. The median
run-times required for finding optimal solutions show a significant correla-
tion (correlation coefficient equal to ???), which indicates that instances that
are difficult for one algorithm tend to also be difficult for the other. This sug-
gests that similar features are responsible for rendering instances from this
class of TSP instances difficult for both SLS algorithms, a hypothesis that
can be investigated further through additional empirical analysis (cf. Chap-
ter 5). [hh: report sizes of three partitions (see above) and spearman’s
rank order corr coeff, check stat significance – TODO(ts)]

Peak Performance vs Robustness

Most state-of-the-art SLS algorithms have parameters (such as the noise pa-
rameter in Randomised Iterative Improvement, or the mutation and crossover
rates in Evolutionary Algorithms) that need to be set manually; often, these
parameter settings have a very significant impact on the respective algo-
rithms’ performance. The existence of such parameters complicates the em-
pirical investigation of LVA behaviour significantly. This is particularly the
case for comparative studies, where “unfair parameter tuning”, i.e., the use
of unevenly optimised parameter settings can give extremely misleading re-
sults. Many comparative empirical studies of algorithms in the literature use
peak performance w.r.t. parameter settings as the measure for comparing pa-
rameterised algorithms. This can be justified by viewing peak performance
as a measure of potential performance; more formally, it can be seen as a
tight upper bound on performance over algorithm parameterisations.

For peak performance analyses, it is important to determine optimal or
close to optimal parameterisations of the respective algorithms. Since dif-
ferently parameterised versions of the same algorithm can be viewed as dis-
tinct algorithms, the RTD-based approach described above can be applied.
For continuous parameters, such as the noise parameter mentioned before, a
series of such experiments can be used to obtain approximations of optimal
values. Peak performance analysis can be very complex, especially when
multiple parameters are involved which are typically not independent from
each other, or when dealing with complex parameters, such as the temper-

4.3. RTD-BASED ANALYSIS OF LVA BEHAVIOUR 175

ature schedule for Simulated Annealing, for which the domain of possible
settings are extremely large and complex. In such cases, it can be infeasible
to get reasonable approximations of optimal parameter settings; in the con-
text of comparative studies, this situation should then be clearly acknowl-
edged and about the same effort should be spent in tuning the parameter
settings for every algorithm participating in a direct comparison. An alter-
native to hand-tuning is the use of automised parameter tuning approaches
that are based on techniques from experimental design [?; Coy et al., 2000;
?].

In practice, optimal parameter settings are often not known a priori;
furthermore, for the same algorithm, optimal parameter settings can dif-
fer considerably between problem instances or instance classes. Therefore,
robustness of an SLS algorithm w.r.t. suboptimal parameter settings is an
important issue. This notion of robustness can be defined as the variation
in an algorithm’s RTD (or some of its basic descriptive statistics) caused
by specific deviations from an optimal parameter setting. It should be noted
that typically, such robustness measures can be easily derived from the same
data that has been collected for determining optimal parameter settings.

[hh: add example for robustness? (could use RTDs for WalkSAT with
different noise settings.)]

A more general notion of robustness of an LVA’s behaviour additionally
covers other types of performance variation, such as the variation in run-
time for a fixed problem instance and a given algorithm (which is captured
in the corresponding RTD) as well as performance variations over different
problem instances or domains. In all these cases, using RTDs rather than
just basic descriptive statistics often gives a much clearer picture of more
complex dependencies and effects, such as qualitative changes in algorith-
mic behaviour which are reflected in the shape of the RTDs (a prominent
example for this can be found in Chapter 6). More advanced empirical stud-
ies should attempt to relate variation in LVA behaviour over different prob-
lem instances or domains to specific features of these instances or domains;
such features can be of entirely syntactic nature (e.g., instance size), or they
can reflect deeper, semantic properties. In this context, for SLS algorithms,
features of the corresponding search spaces, such as density and distribution
of solutions, are particularly relevant and often studied; this approach will
be further discussed in Chapter 5.

176

4.4 Characterising and Improving LVA Behaviour

Up to this point our discussion of the RTD-based empirical methodology
was focused on analysing specific quantitative and qualitative aspects of al-
gorithmic behaviour as reflected in RTDs. In this section, we first discuss
more advanced aspects of empirical RTD analysis. This includes the analy-
sis of asymptotic and stagnation behaviour as well as the use of functional
approximations for mathematically characterising entire RTDs. Then, we
discuss how a more detailed and sophisticated analysis of RTDs can facil-
itate improvements in the performance and run-time behaviour of a given
Las Vegas algorithm.

Asymptotic Behaviour and Stagnation

In Section 4.1, we defined various norms of LVA behaviour. It is easy to see
that all three norms of behaviour, completeness, probabilistic approximate
completeness (PAC property), and essential incompleteness, correspond to
properties of the given algorithm’s theoretical RTDs. For complete algo-
rithms, the theoretical cumulative RTDs will reach one after a bounded time
(where the bound depends on instance size). Empirically, for a given time
bound, this property can be falsified by finding a problem instance on which
at least one run of the algorithm did not produce a solution within the time
respective bound. However, it should be clear that a completeness hypoth-
esis can never be verified experimentally, since the instances for which a
given bound does not hold might be very rare, and the probability for pro-
ducing longer runs might be extremely small.

SLS algorithms for combinatorial problems are often incomplete, or in
the case of complete SLS algorithms, the time bounds are typically too high
to be of any practical relevance. There are, however, in many cases empir-
ically observable and practically significant differences between essentially
incomplete and PAC algorithms [?]. Interestingly, neither property can be
empirically verified or falsified: For an essentially incomplete algorithm,
there exists a problem instance for which the probability of not finding a
solution in an arbitrarily long run is greater than zero. Since only finite runs
can be observed in practice, arbitrarily long unsuccessful runs could hypo-
thetically always become successful after the horizon of observation. On
the other hand, even if unsuccessful runs are never observed, there is always

4.4. CHARACTERISING AND IMPROVING LVA BEHAVIOUR 177

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000

p(
so

lv
e)

run-time [CPU sec]

MMAS
MMAS*

Figure 4.11: Qualified RTDs for two SLS algorithms for the TSP that are
required to find an optimal solution of a well-known benchmark instance;
���

AS is provably PAC, whereas
���

AS
$

is an essentially incomplete
variant of the same algorithm (see text for details). Each RTD is based on
1,000 independent runs of the respective algorithm.

a possibility that the failure probability is just too small compared to the
number of runs performed, or the instances on which true failure can occur
are not represented in the ensemble of instances tested. However, empir-
ical run-time distributions can provide evidence for (rather than proof of)
essential incompleteness or PAC behaviour and hence provide the basis for
hypotheses which, in some cases, can then be proven by theoretical analy-
ses. Such evidence primarily takes the form of an apparent limiting success
probability that is asymptotically approached by a given empirical RTD.

Example 4.10: Asymptotic Behaviour in Empirical RTDs

Figure ?? shows the qualified RTDs for two variants of an ACO algorithm
required to find an optimal solution for TSPLIB instance lin318. The
RTD for

���
AS
$

shows severe stagnation behaviour; after 26 CPU sec-
onds, the probability for finding a solution does not increase any further,
and up to 10,000 CPU seconds not a single additional solution is found.
This provides strong evidence (but no proof) that

���
AS
$

is essentially
incomplete. Conversely, all 1,000 runs of

���
AS were successful and the

underlying RTD appears to asymptotically approach one, suggesting that
���

AS is probabilistically approximately complete. In fact,
���

AS, a

178

slight extension of
���

AS
$
, is provably PAC, while

���
AS
$

is essen-
tially incomplete. The two algorithms differ only in the key feature that
renders

���
AS PAC [Stützle and Dorigo, 2002] (details on

���
AS can

be found in Chapter 8).

In practice, true asymptotic behaviour (such as probabilistic approxi-
mate completeness) is less relevant then the rate at which the failure prob-
ability of a given LVA decreases over time. Intuitively, a drop in this rate
indicates a stagnation in the algorithm’s progress towards finding solutions
of the given problem instance. Here, we adopt a slightly different view of
stagnation, which turns out to be consistent with the intuition described be-
fore. This view is based on the fact that in many cases, the probability of
obtaining a solution of a given problem instance by using a particular Las
Vegas algorithm can be increased by restarting the algorithm after a fixed
amount of time (the so-called cutoff time) rather than letting it run longer
and longer. Whether or not such a restart strategy yields the desired im-
provement depends entirely on the respective RTD, and it is easy to see that
only for RTDs identical to exponential distributions, restart does not result
in any performance loss or improvement [Hoos and Stützle, 1999].

Exponential RTDs are characterised by a constant rate of decay in their
right tail, which corresponds to the failure probability, a measure of the
probability of not finding an existing solution of a given problem instance
within a given amount of time. When augmenting any LVA with a fixed
restart policy, the resulting algorithms will show RTDs with exponentially
decaying right tails. We let � � ��
 denote the decay rate obtained for fixed
cutoff time

�
; then the ratio � � � $
 � � � ��
 , where

� $
is the cutoff time leading

to maximal decay of the failure probability, is a measure of the efficiency of
the LVA, and its reciprocal can be used for quantifying stagnation.

Definition 4.9 (LVA Efficiency and Stagnation)

Let
�

be a Las Vegas algorithm for a given combinatorial prob-
lem � and �
	��� � the cumulative run-time distribution function
of
�

applied to a problem instance ��� � .

Then we define ���� � � ��
 � � � � � ����� � �
	��� � � � ��
� � � �
	 �� � � ��
 #
� � � � � �
	 �� � � � ��
 , where

� � � � � � � denotes the first derivative of a

4.4. CHARACTERISING AND IMPROVING LVA BEHAVIOUR 179

function � . Furthermore, we define � $�� � ��� � � � �� � � ��
 � � ����
.

The efficiency of
�

on � at time
�

is then defined as ��� �� � � ��
�
� $�� � � � �� � � ��
 . Similarly, the stagnation ratio of

�
on � at time�

is defined as � ���	� � �� � � ��
��� � ��� �� � � ��
 , and, the stagnation of
of
�

on � at time
�

is given by � ���	� �� � � ��
� � ���	� � �� � � ��
 � � .
Finally, we define minimal efficiency of

�
on � as ��� �� �

��� � �
��� �� � � ��
 � � � ���
and the minimal efficiency of

�
on a

problem class � as ��� �� � ��� � �
��� �� � � ��� � � . The maxi-
mum stagnation ratio and maximum stagnation on problem in-
stances or problem classes are defined analogously. �

Remark: For empirical RTDs
�
�
	 �� � , where the derivative

of the RTD is not well-defined, the following estimate for the
decay rate can be used: ���� � � ��
� � ����� � � � �

�
	��� � � ��
�
 � � . It
is easy to see that for arbitrarily precisely sampled RTDs, this
approaches the theoretical value of � �� � � ��
 defined above.

Under this definition, the stagnation rate is a measure of performance loss
compared to the case where an optimal restart strategy is used. It is easy
to see that according to the definition, for essentially incomplete algorithms
there are problem instances for which the minimum efficiency approaches
zero as run-times get arbitrarily long. Constant minimum efficiency of one
is observed if and only if the corresponding RTD is an exponential distribu-
tion. LVA efficiency greater than one indicates that restarting the algorithm
rather then letting it run longer would result in a performance loss; this
situation is often encountered for SLS algorithms during the initial search
phase.

It should be clear that our measure of LVA efficiency is a relative mea-
sure; hence the fact that a given algorithm has high minimal efficiency does
not imply that this algorithm cannot be further improved. As a simple ex-
ample, consider Random Picking as introduced in Section 1.5; this primi-
tive search algorithm has efficiency one for arbitrary problem instances and
run-times, yet there are many other SLS algorithms which perform signifi-
cantly better than Random Picking, some of which have a smaller minimal

180

efficiency. Hence, LVA efficiency as defined above cannot be used to deter-
mine the optimality of a given Las Vegas algorithm’s behaviour in an abso-
lute way. � Instead, it provides a quantitative measure for relative changes in
efficiency of a given LVA over the course of its run-time.

Functional Characterisation of LVA Behaviour

Obviously, any empirical RTD, as obtained by running a Las Vegas algo-
rithm on a given problem instance, can be completely characterised by a
function — a step function which can be derived from the empirical RTD
data in a straightforward way. Typically, if an empirical RTD is a reasonably
precise approximation of the true RTD (i.e. the number of runs underlying
the empirical RTD is sufficiently high), this step function is rather regular
and can be approximated well using much simpler mathematical functions.

Such approximations are useful for summarising the observed algorith-
mic behaviour as reflected in the raw empirical RTD data. But more im-
portantly, they can provide the basis for modelling the observed behaviour
mathematically, which is often a key step in gaining deeper insights into an
algorithm’s behaviour. It should be noted that this general approach is com-
monly used in other empirical disciplines and can be considered one of the
fundamental techniques in science.

In the case of empirical RTDs, approximations with parameterised fami-
lies of continuous probability functions known from statistics, such as expo-
nential or normal distributions, are particularly useful. Given an empirical
RTD and a parameterised family of cumulative probability functions, good
approximations can be found using standard model fitting techniques, such
as the Marquart-Levenberg algorithm [?] or the expectation maximisation
(EM) algorithm [?]. The quality of the approximation thus obtained can
be assessed using standard statistical goodness-of-fit tests, such as the well-
known � � -test or the Kolmogorov-Smirnov test [Sheskin, 2000]. Both of
these tests are used to decide if a sample comes from a population with a
specific distribution. While the Kolmogorov-Smirnov test is restricted to
continuous distributions, the ��� goodness-of-fit test can also be applied to

�
However, the definition can easily be extended such that an absolute performance mea-

sure is obtained; this is done by using the optimal decay rate ��� over a set of algorithms
instead of ���	�
 � in the definition of LVA efficiency.

4.4. CHARACTERISING AND IMPROVING LVA BEHAVIOUR 181

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000 100000 1e+06

P
(s

ol
ve

)

variable flips

RLD for WSAT
ed[39225]

0

100

200

300

400

500

600

100 1000 10000 100000

C
hi

-S
qu

ar
e

va
lu

e

median local search steps

0.05 acceptance
0.01 acceptance

Figure 4.12: Left: Best-fit approximation of the RLD from Figure 4.6 by
an exponential distribution; this approximation passes the � � goodness-of-
fit test at significance level � � � ��� . Right: Correlation between median
run-length and � � values testing RLDs of individual instances versus a best-
fit exponential distribution for a test-set of 1,000 hard Random-3-SAT in-
stancesl; the horizontal lines indicate the acceptance thresholds for the 0.01
and 0.05 acceptance levels of the � � -test.

discrete distributions.

Example 4.11: Functional Approximation of Empirical RTDs

Looking at the empirical RLD of WalkSAT/SKC applied to a hard Uniform
Random-3-SAT instance from Figure 4.6, one might notice that RLD graph
resembles that of an exponential distribution. This leads to the hypothesis
that on the given problem instance, the algorithm’s behaviour can be char-
acterised by an exponential RLD. To test this hypothesis, we first fit the
RLD data with a cumulative exponential distribution function of the form��� � � � � �
� � � � � 	 � � ���
 , using the Marquart-Levenberg algorithm (as
realised in C. Gramme’s Gnufit software) to determine the optimal value for
the parameter � . This approximation is shown in Figure 4.12 (left side).
Then, we apply the � � goodness-of-fit test to test the hypothesis whether
the resulting exponential distribution is identical to the theoretical RTD un-
derlying the empirically observed run-lenghts. In the given example, we
resulting � � value of ��� � ��� indicates that our distribution hypothesis passed

182

the test at a standard significance level � � � ��� .

It is worth noting that, since Las Vegas algorithms (like all algorithms ac-
cording to the standard definition, see e.g. 1.5) are of an inherently discrete
nature, their true (theoretical) RTDs are always step functions. However,
there are good reasons for the use of continuous probability functions for
approximation: For increasing problem sizes these step functions will be-
come arbitrarily fine — an effect which, especially for computationally hard
problems, such as SAT or TSP, becomes relevant even for relatively modest
and certainly realistically solvable problem sizes. Furthermore, abstracting
from the discrete nature of RTDs, often facilitates a more uniform charac-
terisation that is mathematically easier to handle. However, for “very easy”
problem instances, i.e., instances which can be solved by a given algorithm
in tens or hundreds of basic operations or CPU cycles, the discrete nature
of the respective true RTDs can manifest itself — an effect which needs to
be taken into account when fitting parameterised functions to such data and
testing the statistical significance of the resulting approximations.

Functional Characterisation for Instance Ensembles

Like the previous RTD-based analytical approaches, the functional charac-
terisation of LVA behaviour can be extended from single problem instances
to ensembles of instances in a rather straightforward way. For small instance
sets, it is generally feasible to perform the approximation and goodness-of-
fit test for each instance as described above; for larger ensembles this pro-
cedure needs to be automated and its results analysed and summarised in an
appropriate way. Overall, similar considerations apply as described in the
previous section.

Using this approach, hypotheses on the behaviour of a given LVA on
classes or distributions of problem instances can be tested. Hypotheses on
an LVA’s behaviour on infinite or extremely large sets of instances, such as
the set of all SAT instances with a given number of clauses and variables,
cannot be proven by this method; however, it allows to falsify such hypothe-
ses or to collect arbitrary amounts of evidence for their validity.

Example 4.12: Functional RTD Approx. for Instance Ensembles

4.4. CHARACTERISING AND IMPROVING LVA BEHAVIOUR 183

A simple generalisation from the result presented in the previous example
results in the hypothesis that for an entire class of SAT instances Walk-
SAT/SKC’s behaviour can be characterised by exponential run-time distri-
butions. Here, we test this hypothesis for a set of

� � � � � Uniform Random-
3-SAT instances with 100 variables and 430 clauses. By fitting the RLD
data for the individual instances with exponential distributions and calcu-
lating the � � as outlined above, we get the result shown in Figure 4.12
(right side), where we plot the median values of the RLDs against the cor-
responding � � values: although, for most instances, the distribution hypoth-
esis is rejected, we observe a clear correlation between the solution cost
of the instances and the � � values; and for almost all of the hardest in-
stances, the distribution hypothesis passes the test. Thus, although our orig-
inal generalised hypothesis could not be confirmed, the results suggest an
interesting modification of this hypothesis. (Further analysis of the easier
instances, for which the RLDs could not be well approximated by expo-
nential distributions, shows that there is a systematic deviation in the left
tail of the RLDs, while the right tail matches that of an exponential dis-
tribution; details on this result can be found in [Hoos and Stützle, 1999;
?].)

This functional characterisation approach can also be used for analysing and
modelling the dependency of LVA behaviour on algorithmic parameters or
properties of problem instances (particularly problem size). Furthermore,
it facilitates comparative studies of the behaviour of two or more LVA al-
gorithms. In all these cases, reasonably simple, parameterised models of
the algorithms’ run-time behaviour provide a better basis for the respective
analysis than the basic properties and statistics of RTDs discussed before.
For example, when studying scaling of an algorithm’s run-time behaviour
with problem size, having good parameterised functional approximations of
the RTDs reduces the investigation to an analysis of the impact of problem
size on the model parameters (e.g., the median of an exponential distribu-
tion).

As we will see later, such characterisations can also have direct con-
sequences for important issues such as parallelisation or optimal param-
eterisation of Las Vegas algorithms. At the same time, they can suggest

184

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100

p(
so

lv
e)

run-time [CPU sec]

Figure 4.13: Qualified RTD of an ACO algorithm for TSP (
���

AS) on
TSPLIB instance (lin318), based on 1,000 independent runs. The fact
that this RTD is steeper than an exponential indicates that restart with any
fixed cutoff time will lead to performance loss.

novel interpretations of LVA behaviour and thus facilitate an improved un-
derstanding of these algorithms.

Optimal Cutoff Times for Static Restarts

A detailed analysis of an algorithm’s RTDs, particularly with respect to
asymptotic behaviour and stagnation, can often suggest ways of improving
the performance of the algorithm. Arguably the simplest way to overcome
stagnation of an SLS algorithm is to restart the search after a fixed amount
of time (cutoff time). Generally, based on our definition of search efficiency
and stagnation, it is easy to decide whether such a static restart strategy can
improve the performance of a Las Vegas algorithm

�
for a given problem in-

stance � . If for all run-times
�
, the efficiency of

�
on � at time

�
, ��� �� � � ��
 ,

is larger than one, restart with any cutoff-time
�

will lead to performance
loss. Intuitively, this is the case, when with increasing

�
, the probability of

finding a solution within a given time interval increases, which is reflected
in an cumulative RTD graph that is steeper than the exponential distribu-
tion � � � � � for which � � � � � � ��
� �

��� �� � � ��
 (an example for such an RTD
is shown in Figure ??). Furthermore, if and only if ��� �� � � ��
 �

for all
�
,

restart at any time
�

will not change the success probability for any time
� � ;

as mentioned in Section 4.3, this condition is satisfied only if the RTD of
�

4.4. CHARACTERISING AND IMPROVING LVA BEHAVIOUR 185

on � is an exponential distribution. Finally, if and only if ��� �� � � ��
 � �
for

some run-time
�
, restarting the algorithm at time

�
will lead to an increased

solution probability for some run-time
� � � �

. This condition is equivalent
to the fact that the cumulative RTD graph of

�
on � is less steep at

� � than
the exponential distribution � � � � � for which � � � � � � � �
� �

��� �� � � � �
 .
In the case where random restart is effective for some cutoff-time

� � , an
optimal cutoff time

���
�
�

can intuitively be identified by finding the “left-
most” exponential distribution, � � � � $ � , that touches the RTD graph of

�
on

� , and the minimal
�

for which � � � � $ � � ��
� �
��� �� � � ��
 for some

�
. Formally,

this is achieved using the following equations:

� $ � ��� � � � � � � � � � � � � � � ��
 � �
��� �� � � ��
� ���

(4.2)���
�
� � ��� � � � � � ��� � � � � $ � � ��
 � �

��� �� � � ��
� ���
(4.3)

where �
��� �� � � ��
 is the theoretical run-time distribution of

�
on � , and

�
is

incomplete, i.e., � � � �
	 � ��
 � �
for all (finite)

�
(note that

�
may still be

probabilistically approximately complete).
Generally, there are two special cases to be considered when solving

these two equations. Firstly, we might not be able to determine � $ because
the set over which we minimise in the first equation has no minimum. In
this case, if the infimum of the set is zero, it can be shown that the optimal
cutoff time is either equal to zero or it is equal to

���
(depending on the

behaviour of
���
�
�

as � $ approaches zero. Secondly, if � $ as defined by the
first equation exists, it might still not be possible to determine

���
�
�
, because

the set in the second equation does not have a minimum. In this case, there
are arbitrarily small times

�
for which � � � � $ � � ��
 �

��� �� � � ��
 , i.e., the two
curves are identical on some interval

� � � � �
 , and the optimal cutoff time is
equal to zero. In practice, optimal cutoff times of zero will hardly occur,
since it would require that

�
can solve � with probability larger than zero

for infinitesimally small run-times.
Equations 4.2 and 4.3 apply to theoretical as well as empirical RTDs.

In the latter case, however, it is sufficient to consider only run-times
�

in
Equations 4.2 and 4.3 that have been observed in one of the runs underlying
the empirical RTD. There is one caveat with this method: Cases in which
the optimal cutoff time determined from Equation 4.3 is equal to one of
the longest run-times underlying the given empirical RTD should be treated
with caution. The reason for this lies in the fact that the high quantiles

186

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100 1000

p(
so

lv
e)

run-time [CPU sec]

opt
ed[5.90]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100 1000

p(
so

lv
e)

run-time [CPU sec]

restart
better

Figure 4.14: Qualified RTD for an ILS algorithm required to find optimal
solutions for TSPLIB instance pcb442; note the stagnation behaviour ap-
parent from the RTD graph. Left: Optimal cutoff time for static restarts,���
�
�
, and corresponding exponential distribution � � � � $ � ; right: effect of dy-

namical restart strategy. (Details are given in the text.) [hh: mark optimal
cutoff in left graph; ideally: mark actual restart points in right graph;
disp grid – TODO(ts/hh)]

of empirical RTDs, which correspond to the longest runs, are often rather
statistically unstable. Still, using cutoffs based on such extreme run-times
may be justified, if there is evidence that the algorithm shows stagnation
behaviour.

In the case of SLS algorithms for optimisation problems, optimal cutoff
times are determined from qualified RTDs. Clearly, such optimal cutoff
times depend on the solution quality bound. In many cases, tighter solution
quality bounds (i.e., bounds that are closer to the optimal solution quality)
lead to higher optimal cutoff times; yet, for weak solution quality bounds
restart with any cutoff time typically leads to performance loss.

Example 4.13: Determining Optimal Cutoff Times for Static Restarts

Figure 4.14 shows the empirical qualified RTD of a simple ILS algorithm
for the TSP for finding optimal solutions to TSPLIB instance pcb442 with
� � ��� cities. The algorithm was run 1,000 times on a Pentium 700MHz
machine with 512MB RAM and unsuccessful runs were terminated after
1,000 CPU seconds. This qualified RTD shows strong stagnation behaviour;

4.4. CHARACTERISING AND IMPROVING LVA BEHAVIOUR 187

note that this behaviour could not have been observerd when limiting the
maximal run-time of the algorithm to less than 5 CPU seconds. Figure 4.14
shows the optimal cutoff time for static restarts,

� �
�
�
, and the corresponding

exponential distribution � � � � $ � determined according to Equations 4.2 and
4.3. The same exponential distribution characterises the rough shape of the
RTD for the algorithm using static restarts with cutoff time

� �
�
�
.

Dynamic Restarts and Other Diversification Strategies

One drawback of using a static restart strategy lies in the fact that optimal
cutoff times typically vary considerably between problem instances. There-
fore, it would be preferable to re-initialises the search process not after a
fixed cutoff time, but depending on search progress. A simple example of
such a dynamic restart strategy is based on the time that has passed since the
currently best solution (w.r.t. evaluation function value) was found; if this
time interval exceeds a threshold

�
, a restart is performed. (In this scheme,

best solutions are not carried over restarts of the search.) The time thresh-
old

�
is typically measure in search steps;

�
corresponds to the minimal

time interval between restarts and is often defined depending on syntactic
properties of the given problem instance, in particular, instance size.

Example 4.14: Improving SLS Behaviour Using Dynamic Restarts

Figure 4.14 (right) shows the effect of the simple dynamic restart strategy
described above on the ILS algorithm and TSP instance from Example 4.13.
Here, for a TSP instance with � vertices,

� � is used as the minimal time-
interval between restarts . Interestingly, the RTD of ILS with this dynamic
restart mechanism is basically identical to the RTD of ILS with static restart
for the optimal cutoff-time determined in the previous example. This indi-
cates that the particular dynamic restart mechanism used here is very effec-
tive in overcoming the stagnation behaviour of the ILS algorithm without
restart.

188

Restarting an SLS algorithm from a new initial solutions is typically a rather
time-consuming operation. Firstly, a certain setup time is required for gen-
erating a new candidate solution from which the search is started and for
initialising the data structures used by the search process accordingly. This
setup time is often substantially higher than the time required for performing
a search step. Secondly, after initialising the search process, SLS algorithms
almost always require a certain number of search steps to reach regions
of the underlying search space in which there is a non-negligible chance
of finding a solution. These effects are reflected in extremely low success
probabilities in the extreme left tail of the respective RTDs. Furthermore,
they typically increase strongly with instance size, rendering search restarts
a costly operation.

These disadvantages can be avoided by using diversification techniques
that are less drastic than restarts in order to overcome stagnation behaviour.
One such technique called fitness-distance diversification has been used to
enhance the ILS algorithm for the TSP mentioned in Example 4.13; the re-
sulting ILS variant shows substantially better performance than the variant
using dynamic restarts from Example 4.14. (Details on this enhanced ILS
algorithm can be found in Chapter 8.) Another diversification technique
that also has the theoretical advantage of rendering the respective SLS algo-
rithm probabilistically approximately complete (PAC), is the so-called ran-
dom walk extension [?]. In terms of the GLSM model of the respective SLS
algorithms, the random walk extension consists of adding a random walk
state in such a way that throughout the search, arbitrarily long sequences of
random walk steps can be performed with some (small) probability. This
technique was used to obtain state-of-the-art SLS algorithms for SAT, such
as Novelty

	
(for details, see Chapter 6). Generally, effective techniques for

overcoming search stagnation are an important component of advanced SLS
strategies and improvements in these techniques can be expected to play a
major role in designing future generations of SLS algorithms.

Multiple Independent Runs Parallelisation

Las Vegas algorithms lend themselves to a straightforward parallelisation
approach by performing independent runs of the same algorithm in parallel.
From the discussion in the previous sections we know that if an SLS algo-
rithms has an exponentially distributed RTD, such a strategy is particularly

4.4. CHARACTERISING AND IMPROVING LVA BEHAVIOUR 189

effective. Based on a well-known result from the statistical literature [Ro-
hatgi, 1976], if for a given algorithm the probability of finding a solution in

�
time units is exponentially distributed with parameter � , then the probabil-
ity of finding a solution in at least one of 	 independent runs of time

�
each is

exponentially distributed with parameter � � 	 . Consequently, if we run such
an algorithm once for time

�
, we get exactly the same success probability as

when running the algorithm 	 times for time
� � 	 . By executing these 	 inde-

pendent runs in parallel on 	 processors, an optimal parallelisation speedup��� �
	 � � �
	 � 	 is achieved, where �
	 � �
is the sequential run-time

and �
	 � � � 	 is the parallel computation time, using 	 processors. This
theoretical result holds for arbitrary numbers of processors.

In practice, SLS algorithms do not have perfectly exponential RTDs; as
explained above, there are typical deviations in the left tail which reflect
the setup time and initial search phase. Therefore, when the number of
processors is high enough that each of the parallel runs becomes very short,
the parallelisation speedup will generally be less than optimal. Given an
empirical RTD, the parallelisation speedup

���
for reaching a certain success

probability 	 � can be calculated as follows. �
	 � , the sequential run-time
required for reaching a solution propability 	 � , can be directly determined
from the given RTD; technically, �
	 � � ����� � � � � ��� � �
	 � � �
 ��	 � � .
Then the parallel time required for reaching the same solution probability
by performing multiple independent runs on 	 processores is given by

�
	 � � ��� � � � � � ��� � �
	 � � �
 � � � � � � 	 �
 ��� � � (4.4)

Using this equation, the minimal number of processors required for achiev-
ing the desired success probability within a maximal parallel run-time

� �	��

can be easily determined. It is interesting to note that for tighter success
guarantees, i.e., for higher 	 � , the maximal number of processors for which
optimal parallelisation can be achieved, is generally also higher.

Example 4.15: Speedup Through Independent Parallel Runs

Figure 4.15 shows the parallelisation speedup
���

as a function of the num-
ber of processors (computed based on Equation ??) for a high-performing
SLS algorithm for SAT (Novelty) applied to two well-known benchmark
instances for SAT, the SAT-encoded planning problems bw large.b and
bw large.c. The underlying empirical RTDs (determined using instance

190

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

pa
ra

lle
lis

at
io

n
sp

ee
du

p

number of processors

bw_large.c (hard)
bw_large.b (easier)

Figure 4.15: Speedup achieved by multiple independent runs parallelisation
of a high–performing SLS algorithm for SAT applied to two SAT-encoded
instances of a hard planning problem. The diagonal line indicates optimal
parallelisation speedup. Note that for the easier instance, the parallelisation
speedup becomes suboptimal for smaller number of processors than for the
harder instance. (For details, see text.)

specific optimal noise parameter settings of Novelty) are based on 250 suc-
cessful runs each, and all points of the speedup curves are based on no less
than then runs. A desired success probability of 	 � � � �

�
was used for

determining the sequential and parallel runt-times.

bw large.c is much harder than bw large.b, and allows approx. opti-
mal speedup for more than 70 processors; the underlying RTD is almost per-
fectly approximated by an exponential distribution. For the easier instance,
the parallelisation speedup becomes suboptimal for � � � processors; this is
due to the larger relative impact of the setup time and initial search phase on
overall run-time.

Generally, using multiple independent runs is an attractive model of paral-
lel processing, since it involves basically no communication overhead and
can be easily implemented for almost any parallel hardware and program-
ming environment, from networks of standard workstations to specialised
MIMD machines with thousands of processors. The resulting parallel SLS
algorithms are precisely captured by the homogeneous cooperative GLSM

4.5. FURTHER READINGS AND RELATED WORK 191

model without cooperation introduced in Chapter 3. They are of interest for
SLS applications to time-critical tasks (like robot control or online schedul-
ing) as well as for the distributed solving of very large and hard problem
instances.

4.5 Further Readings and Related Work

The term Las Vegas algorithm was originally introduced by Laszlo Babai
[Babai, 1979]. Although the concept is widely known, the literature on
Las Vegas Algorithms is relatively sparse. Luby, Sinclair, and Zuckerman
have studied optimal strategies for selecting cutoff times [Luby et al., 1993];
closely related theoretical work on the parallelisation of Las Vegas algo-
rithms has been done by Luby and Ertel [Ertel and Luby, 1994]. The ap-
plication scenarios for Las Vegas algorithms and norms of LVA behaviour
covered here have been introduced by Hoos and Stützle [Hoos, 1998a; Hoos
and Stützle, 1998].

Run-time distributions have been occasionally observed in the litera-
ture for a number of years [Taillard, 1991; Battiti and Tecchiolli, 1992;
Taillard, 1994; ten Eikelder et al., 1996]. Their use, however, has been
typically restricted to purely descriptive purposes or to obtaining hints on
the speedup achievable by performing independent parallel runs of a given
sequential algorithm [Battiti and Tecchiolli, 1992; Taillard, 1991]. Tail-
lard specifies general conditions under which super-optimal speedups can be
achieved through multiple independent tries parallelisation [Taillard, 1994].
The use of RTDs at the core of an empirical methodology for SLS algo-
rithms was first presented by Hoos and Stützle [Hoos and Stützle, 1998].
Since then, RTD-based methods have been used for the empirical study of
a broad range of SLS algorithms for numerous combinatorial problems [?;
Hoos and Stützle, 2000a; ?; ?].

There is some related work on the use of search cost distributions over
instance ensembles for the empirical analysis of complete search algorithms.
Kwan shows that for different types of random CSP instances, the search
cost distributions for recent complete algorithms cannot be characterised by
normal distributions [Kwan, 1996]. Frost, Rish, and Vila use continuous
probability distributions for approximating the run-time behaviour of com-
plete algorithms applied to randomly generated Random-3-SAT and binary

192

CSPs from the phase transition region [Frost et al., 1997]. In [Rish and
Frost, 1997], this approach is extended to search cost distributions for un-
solvable problems from the over-constrained region.

Gomes and Selman studied run-time distributions of backtracking al-
gorithms based on the Brelaz heuristic for solving Quasigroup problems, a
special type of CSP, in the context of algorithm portfolios design [?]. Inter-
estingly, the corresponding RTDs for the randomised systematic search al-
gorithms they studied can be approximated by “heavy-tailed” distributions,
a fact which can be exploited for improving the performance of these algo-
rithms by using a static restart mechanism [Gomes et al., 1997]. Similar
results have been obtained for randomised complete algorithms for SAT; at
the time, the resulting algorithms showed state-of-the-art performance on
many types of SAT instances [Gomes et al., 1998]. Interestingly, the RTDs
for some of the most widely known and best-performing SLS algorithms
for SAT appear to be well approximated by exponential distributions [Hoos,
1998a; Hoos and Stützle, 1999; ?] or mixtures of exponentials [?]. To our
best knowledge, heavy-tailed RTDs have generally not been observed for
any SLS algorithm.

A number of specific techniques have proven to be useful in the con-
text of certain types of experimental analyses: Estimates for optimal so-
lution qualities for combinatorial optimisation problems can be obtained
using techniques based on insights from mathematical statistics [Golden
and Steward, 1985; ?]. Using solution quality distributions, interesting re-
sults have been obtained regarding the behaviour of SLS algorithms as in-
stance size increases [Schreiber and Martin, 1999]. Techniques from exper-
imental design were shown to be helpful in deriving automated (or semi-
automated) procedures for tuning algorithmic parameters [Xu et al., 1998;
Coy et al., 2000; Birrattari et al., 2002].

Various general aspects of empirical algorithms research are covered in
a number of works. There have been several early attempts to provide guide-
lines for the experimental investigation of algorithms for combinatorial op-
timisation problems and to establish reporting procedures that improve the
reproducibility of empirical results [Crowder et al., 1980; Jackson et al.,
1990]. Guidelines on how to report results that are more specific to heuris-
tic methods, including SLS algorithms, are given in [Barr et al., 1995].

Hooker advocates a scientific approach to experimental research in Op-
erations Research and Artificial Intelligence [Hooker, 1994]; this approach

4.6. SUMMARY 193

is based on the formulation and careful experimental investigation of hy-
potheses about algorithm properties and behaviour. General guidelines for
the experimental analysis of algorithms are also given by McGeoch and
Moret [McGeoch, 1996; McGeoch and Moret, 1999; Moret, 2002]. A re-
cent article by Johnson provides an extensive collection of guidelines and
potential pitfalls in experimental algorithms research, including some very
practical advice on the topic [Johnson, 2002]. Smith et al. give a a sim-
ilar but more limited overview of potential problems in the experimental
analysis of algorithms [?].

Statistical methods are at the core of any empirical approach to investi-
gate the behaviour and the performance of SLS algorithms. Cohen’s book
on empirical methods in artificial intellligence [Cohen, 1995] is becom-
ing a standard text and reference book for the presentation and application
of statistical methods not only in AI but also in other fields of Computer
Science. For an additional introduction to statistical methods we also rec-
ommend [?]. The handbook by Sheskin [Sheskin, 2000] is an excellent
guide to statistical tests and their proper application; a more specialised
introduction to non-parametric statistics can be found in [Conover, 1999;
S. Siegel, 1988]. Furthermore, for general techniques of experimental de-
sign and the analysis of experimental data we refer to the work of Dean and
Voss [Dean and Voss, 2000], and Montgomery [Montgomery, 2000].

4.6 Summary

Empirical methods play a crucial role in analysing the performance and be-
haviour of SLS algorithms, and appropriate techniques are required for con-
ducting empirical analyses competently and correctly. In this chapter, we
motivated why run-time distributions provide a good basis for empiricially
analysising the behaviour of SLS algorithms and more generally, members
of the broader class of Las Vegas algorithms. We discussed the asymptotic
behaviour of Las Vegas algorithms and introduced three application sce-
narios with different requirements for empirical performance analyses. We
then introduced formally the concepts of run-time distributions, qualified
run-time distributions, and solution quality distributions, as well as time-
dependent solution quality statistics and solution quality dependent run-time
statistics. Empirical RTDs can be easily obtained from the same data re-

194

quired for stable estimates of mean run-times or time-dependent solution
quality. We presented and discussed RTD-based methods for the empiri-
cal analysis of individual LVAs as well as for the comparative analysis of
LVAs, on single problem instances and instance ensembles. We also con-
trasted peak-performance and robustness analysis and argued that the latter
is important to capture dependencies of an algorithm’s performance on pa-
rameter settings, problem instances, or instance sizes.

The measures of efficiency and stagnation are derived from a given RTD
and characterise an algorithm’s performance over time; intuitively, these
measures indicate how much an algorithm’s performance can be improved
by a fixed cutoff restart mechanism.

Functional approximations of RTDs with known probability distribu-
tions can be used to summarise and mathematically model the behaviour
of Las Vegas algorithms. The regularities of LVA behaviour captured by
such functional characterisations can facilitate performance analysis, e.g.,
by suggesting simplified experimental designs in which only the parameter
values of a functionally characterised family of RTDs are analysed instead
of the complete distributions. Applied to SLS algorithms, this approach can
also suggest fundamental properties of the algorithm and provide deeper
insights into its behaviour.

Results from the empirical analysis of a SLS algorithms can provide
significant leverage for further improvement of their performance. We gave
an overview of various approaches to achieving such improvement, includ-
ing static and dynamic restart mechanisms, adaptive diversification, random
walk extension, and parallelisation based on multiple independent tries.

Overall, the importance of empirical analyses in the development and
application of SLS algorithms can hardly be overestimated. We believe that
the methods and techniques presented in this chapter provide a solid basis
for sound and thorough empirical studies on SLS algorithms and thus facil-
itate the development of better algorithms and an improved understanding
of their characteristics and behaviour.

4.7. EXERCISES 195

4.7 Exercises

Exercise 4.1 (easy) Give three examples for Las Vegas Algorithms and
identify all stochastic elements in these.

Exercise 4.2 (easy) Describe a concrete application domain where the value
of a solution to a given problem instance changes over time.

Exercise 4.3 (medium) You are comparing the performance of two SLS
algorithms A and B for a combinatorial decision problem. Applied to a
well-known benchmark instance you observe the RTDs shown in Figure ??.
What do you learn from these RTDs? Which further experiments do you
suggest to decide which algorithm is superior? [hh: add figure with cross-
ing RTDs, A: PAC, B: essentially incomplete – TODO(hh)]

Exercise 4.4 (medium) Explain why it is desirable to mathematically model
observed RTDs using functional approximations. Do the approximations
have to be perfect to be useful?

Exercise 4.5 (medium) [Given: specific description of empirial study -
dectect flaws and suggest improvements – TODO(hh)]

Exercise 4.6 (hard) [Outline empirical approach to decide a competition
an the best SLS algorithm for TSP. Given: algorithms, TSPLIB instances,
you are an expert on TSP and know many applications. – TODO (ts)]

196

