Generalised L ocal Search
M achines

In this chapter, we introduce Generalised Local Search Machines (GLSMs),
a formal framework for stochastic local search algorithms. The underlying
idea is that most efficient SLS algorithms are obtained by combining simple
(pure) search strategies using a control mechanism; in the GLSM model,
the control mechanism is essentially realised by a non-deterministic finite
state machine (FSM). GLSMs provide a uniform framework capable of rep-
resenting most modern SLS algorithms in an adequate way; they facilitate
representations which clearly separate between search and search control.

After defining the basic GLSM model we establish the relation between
our definition of stochastic local search algorithms and the GLSM model.
Next, we discuss several aspects of the model, such as structural GLSM
types, transitions types, and state types; we also show how various well-
known SLS algorithms are represented in the GLSM framework. Finally, we
address extensions of the basic GLSM model, such as cooperative, learning,
and evolutionary GLSMs.

105

106

3.1 TheBascGLSM Mode

Finite State Machines (FSMs) are one of the most prominent formal models
in the computing sciences [?]. They can be seen as abstractions of systems
that can be characterised by a finite number of states. Starting in a specific
state, the current state of an FSM can change as a response to certain events,
e.g. a signal received from its environment; these changes in system state
are called state transitions. FSMs are used to model algorithms in many
domains, e.g., in hardware design or state-of-the-art computer games.
Intuitively, a Generalised Local Search Machine (GLSM) for a given
problem class IT is an FSM each state of which corresponds to a simple lo-
cal search strategy for instances of II. The machine starts with an initial state
2o and executes one step of the local search method associated with the cur-
rent state. Then, according to a transition relation A, a new state is selected
in a nondeterministic manner. This is iterated until a termination condition
is satisfied; this termination condition typically depends on the search state
(e.g., evaluation or objective function value), search history (e.g., number of
local search steps or state transitions performed), or resource bounds (e.g.,
total CPU time consumed). In the case of SLS algorithms, the termination
predicate used typically depends more on the specific application context
than on the underlying search strategy (cf. Section 1.5, page 31). There-
fore, for simplicity’s sake, a termination condition is not explicitly included
in our GLSM model; instead, we consider it as part of the execution time
behaviour. (Note, however, that analogously to standard FSM models, ter-
mination conditions could easily be included in our GLSM model in the
form of absorbing final states, i.e., states upon reaching which the machine
halts and the search process is terminated, and appropriate state transitions.)

Definition 3.1 (Generalised Local Search Machine)

A Generalised Local Search Machine (GLSM) is formally de-
finedasatuple M = (Z, 20, A, 07,0, 77, 7a) Where 7 is a set
of statesand z; € Z the initial state. A C Z x Z is the transi-
tionrelation for M; o, and o are sets of state typesand tran-
sition types, respectively, while 7, : Z +— oz and 74 : A +— oa
associate the corresponding types to states and transitions. We
call 7z (z) the type of state z and 74 ((21, 22)) the type of transi-
tion (21, 22), respectively. O

3.1. THE BASIC GLSM MODEL 107

It is useful to assume that 0,0, do not contain any types that are not
associated with at least one state or transition of the given machine (i.e.,
Ty, Ta are surjective). In this case, we define the type of machine M by
v = (07,0A). However, we allow for several states of M having the
same type (i.e., 7z need not be injective). Note that we do not require that
each of the states in Z can be actually reached when beginning in state z;
as we will shortly see, it is generally not trivial to decide this form of reach-
ability. Thus, by adding unreachable states, the type of a given machine can
be extended in an arbitrary way such that for any two GLSMs M, M5, one
can always find functionally equivalent models A7, M} of the same type

(i-e, 7 = Tary)-

Example 3.1: Simple 3-State GLSM

The following GLSM models a hybrid SLS algorithm which after initial-
ising the search (state z;), probabilistically alternates between two search
strategies (states z; and z»):

M= ({ZO’ 21, 22}7 20, Aa 0z,0A,TZ, TA)

where
A i }(207 21)7 (}Zla 22)5 (227 21)7 (217 Zl)? (22’ 22)}
ox = {PROB()) | p € [0,1]}
Tz(ZZ') = Z, 1€ {1,2,3}
TA((ZU,Zl)) = PROB(lO)
TA((Zl,ZQ)) = PROB(pl)
7a((22,21)) = PROB(p»)
7a((z1,21)) = PROB(1 —p;)
7a((22, 22)) = PROB(1 — po)

Intuitively, transitions of type PROB(p) from the current state will be exe-
cuted with a probability p. The generic transition type PROB(p) formally
corresponds to unconditional, probabilistic transitions with an associated

108

PROB(1- p;) PROB(1- p,)
PROB(p)

() ()
(o) eomto QC@

/

PROB(p,)

Figure 3.1: Simple 3-state GLSM, representing a hybrid SLS algorithm that,
after initialising the search process, probabilistically alternates between two
search strategies.

transition probability p; it will be presented in more detail later in this sec-
tion. This type of GLSM can, for instance, be used to represented a variant
of Randomised Iterative Improvement (see also Section 3.3).

Remark: As long as the meaning is clear from the context, we
use the same symbols for denoting states and their respective

types.

We will usually specify GLSMs more intuitively using a standard graph rep-
resentation for the finite state machine part. In this graphic notation, GLSM
states are represented by circles labelled with the respective state types, and
state transitions are represented by arrows, labelled with the respective tran-
sition types; the initial state is marked by an incoming arrow that does not
originate from another state. The graphic representation for the GLSM from
Example ?? is shown in Figure 3.1.

GLSM Semantics

Having formally defined the structure and compontents of a Generalised
Local Search Machine, we now need to specify the semantics of this formal
model, i.e., the way it works when applied to a specific instance = of a
combinatorial problem IT1. The following example illustrates the intuitive
function of a simple GLSM.

3.1. THE BASIC GLSM MODEL 109

Example 3.2: Semantics of Simple 3-State GLSM

The semantics of the simple 3-state GLSM from Example ?? can be de-
scribed intuitively as follows: For a given problem instance =, the local
search process is initialised by setting the machine to its initial state z, and
executing one local search step corresponding to state type z, (this step is
designed to initialise the subsequent local search process, e.g., by randomly
generating or selecting a candidate solution). With a probability of one, the
machine then switches to state z;, executing one step of the local search
strategy corresponding to state type z;. Now, with a probability of p;, the
machine switches to state z,, performing one local search step of type z-;
otherwise it remains in z; and does a z;-step. When in z,, an analogous be-
haviour is observed. This results in a local search process which repeatedly
and nondeterministically switches between z; and z,-steps. However, only
once in each run of the machine, a zo-step is performed, and that is at the
very beginning of the local search process. As discussed above, a number
of different termination criteria can be used, but these are not part of the
GLSM model.

Remark: For the sake of simplicity, we will generally assume
that different state types always represent different local search
strategies.

When running a GLSM M for a given instance 7 of problem II, the opera-
tion of M is uniquely characterised by its state and the search space position
(candidate solution) of the local search process realised by M for any given
point in time (where time is measured in search steps). This information
can be captured in the form of two functions, the actual state trajectory and
actual searchtrajectory of M, respectively, which specify the machine state
and search position of M over time.

However, due to the inherent stochasticity of GLSMs and the SLS al-
gorithms they model, generally each actual search trajectory will only be
observed with a certain probability. Therefore, we have to use probability
distributions over machines states and search positions when formalising
the semantics of a GLSM. This leads to the notions of state trajectory and

110

search trajectory, which are functions defining the probability distribution
over machine states and search positions, respectively, over time.

Obviously, the semantics of any GLSM crucially depend on the search
strategies represented by its states and on the nature of the transitions be-
tween these states. We will further discuss transition types in the next sec-
tion and practically relevant examples of state types will be given in Sec-
tion 3.3.

In Depth: Formal Definition of GLSM Semantics

To formally define the semantics of a GLSM as motivated above, we assume that
the semantics of each state type 7 are defined and given in form of a search tran-
sition function v, : S — D(S), where S denotes the set of positions in the search
space induced by the given problem instance, and D(S) represents the set of dis-
tributions over S. Intuitively, v, determines for each position in the search space
the resulting position after one r-step has been performed; it corresponds to the
step function of the local search strategy associated with 7 and can be defined
functionally or procedurally (see also Chapter ??).

We further need the functions vz : S x Z — D(Z) which model the direct
transitions between states of the GLSM. These are defined on the basis of the
transitions from a given state s and their respective types.

The vz (s, z) are given by the specific transition types of 7((z, z'));
for T((ZZ', Zk)) = PROB(ka), ’YZ(S;ZZ') = DIZI with DIZI(Zk) = Dik-

Remark: To facilitate a concise formulation of the definitions, we
often use the functional form of discrete probability distributions; thus
forD ={...,(e,p),...}, D(e) is equal to p and denotes the probability
of event e.

The direct state transition functions vz can be generalised into functions ~, :
D(S) x D(Z) — D(Z), which map distributions of search positions and GLSM
states onto GLSM state distributions.

'le(DSaDZ) = Dlz

with D’ (z,) = Zses,zez
where DY = (s, z)

D7 (z1) - Ds(s) - D2(2)

Based on the functions v, and 7z, we next define the direct search transition func-
tion v : S x Z — D(S) which determines for a given search position and a state
distribution the search position distribution after one step of the GLSM.

’Y(Ska Z) = D./sl
with DY (s;) = P(go from state z to z') - P(in state z' go from s, to s;).

3.1. THE BASIC GLSM MODEL 111

P(gofromstatez toz') = D.(z)
where D’ = vz (s, 2)

P(instatez’ gofromsy, tos;) = D/(s;)
where D; = ’}/T(z/)(sk)

Again, this is generalised into the corresponding function v’ : D(S)xD(Z) + D(S).

v'(Ds, D) = Dj
with D) (si) = 3, c5.c7 D2 (%) - Da(s) - Da(2)
where DY = ~(s, z).

Finally, we inductively define the state and search trajectories v3 : N — D(Z)
and v* : N — D(S). The interlocked inductive definitions reflect the operation
of a GLSM, where in each step, the next search position and the next state are
determined based on the current state and position. The initial search position
so € S can be arbitrarily chosen, since usually the state distribution determined in
the first step does not depend on s.

~* and «7, are defined inductively by:
’}/*(0) = Dy with Do(SO) = 1,V8k €S — {80} : Do(Sk) =0
Yt +1) = (v (), 7z ()

It is now rather easy to formally define the notion of an actual search trajectory as
a function 6* : N — S. To this end, we use a function draw(D) that for any
probability distribution D randomly selects an element e’ from its domain such that
P(draw(D) = €') = D(e'). Based on this, we define functions ¢ : S x Z — S and
6z + S x Z — Z that for each given position and state randomly determine the
position and state after one step of the GLSM:

5(s,2) = draw(y'(s, 2))
52(s,2) = draw(y}(s,))

Assuming that the given GLSM is started in state zo and at search position sq, we
now define the actual position and state trajectory by another double induction:

0* : N+ S and ¢} : N— Z are defined inductively by:
o* (0) = S0
67 (t+1) = 6(6%(t),0% (1))

5}(0) = Z0
65 (t+1) =02(6"(t),0%(t))

112

Note the similarity between these definitions and the ones for v* and v;; the only
difference is in the use of the draw function to randomly select elements from the
underlying probability distributions.

GLSMsasModelsfor Local Search Algorithms

The GLSM model has been introduced as a means for representating SLS
strategies, particularly hybrid search techniques, more adequately. In par-
ticular, in the context of the formal definition of SLS Algorithms from Sec-
tion 1.5 (page 31), GLSMs allow a more detailed and explicit representation
of the step function.

Each GLSM, however, still realises a local search scheme and can there-
fore be described using the components of such a scheme. The notions of
search space and solution set are not part of the GLSM model. This is
mainly because both are not only problem- but actually instance-specific,
they thus form the environment in which a given GLSM operates. Conse-
quently, to characterise the behaviour of a GLSM when applied to a given
instance, both the machine definition and this environment are required.
Likewise, as explained before, we consider the termination predicate of an
SLS algorithm as a part of the respective GLSM’s operating environment.
The initial distribution is also not an explicit part of the GLSM model. The
reason for this is the fact that the initial state, which is part of the model, can
easily be used to generate arbitrary initial distributions of search positions.
The general local search scheme’s step function is what is actually realised
by the states of the GLSM and the finite control mechanism as given by the
state transition relation.

The remaining component of the general local search scheme, the neigh-
bourhood relation, generally does not have a direct representation in the
GLSM model. This is because for a GLSM, each state type can be based on
a different neighbourhood relation. However, for each GLSM as a whole,
a neighbourhood relation can be defined by constructing a generalised re-
lation which contains the neighbourhood relation for each state type as a
subset.

At the same time, each GLSM state represents a local search algorithm
of its own. While all these share the same search space and solution set, they

3.2. MACHINE, TRANSITION, AND STATE TYPES 113

O O
Jo O O

Figure 3.2: Sequential (Ieft) and alternating (right) 1-state+init GLSM.

generally differ in their neighbourhood relations and step functions. Initial
distributions for the individual local search algorithms are not needed since
they are defined by the context in which a GLSM state is activated. Further-
more, the termination predicates for this subsidiary local search algorithms
are given by the transitions to other states and their respective types.

3.2 Machine, Transition, and State Types

One of the major advantages of using the GLSM model for characterising
hybrid local search schemes is the clear distinction between search control
and the actual search strategies thus facilitated. By abstracting from state
and transition types, and thus concentrating on the structure of the search
control mechanism alone, GLSMs can be categorised into the following
structural classes:

1-state machines: This is the minimal form of a GLSM. Since initial-
isation of the local search process has to be realised using a GLSM state,
1-state machines realise a very basic form of local search which basically
only picks search space positions without doing actual local search. Con-
sequently, the practical relevance of this machine type is extremely limited.
It can, however, be used for analytical purposes, e.g. as a reference model
when evaluating other types of GLSMs.

1-state+init machines: These machines have one state for search ini-
tialisation and one working state, realising the search strategy. There are
two sub-types of these machines: 1-state+init sequential machines visit the
initialisation state only once, while alternating machinesmight visit it again
in the course of the search process, causing re-initialisations. The structure
of these machine models is shown in Figure 3.2.

2-state+init sequential machines: This machine type has three states,
one of which is an initialisation state that is only visited once while the other

114

Figure 3.3: Sequential (Ieft) and alternating (right) 2-state+init GLSM.

two are working states. However, once the machine has switched from the
first state to the second, it will never switch back (see Figure 3.3, left side);
analogously, the GLSM switches from the second to the third state only
once. Thus, each trajectory of such a machine can be partitioned into three
phases: one initialisation step, a number of steps in the first working state
and a number of steps in the second working state.

2-state+init alternating machines: Like the 2-state+init sequential ma-
chine, this machine type has one initialisation state and two working states.
Here, however, arbitrary transitions between all states are possible (see Fig-
ure 3.3, right side). An interesting sub-type of these machines is given by the
special case in which the initial state is only visited once, while the machine
might arbitrarily switch between the two working states. Another sub-type
that might be distinguished is a uni-directional cyclic machine model which
allows the three states to be visited only in one fixed order.

Of course, the categorisation can easily be continued in this manner
by successively increasing the number of working states. However, as we
will see later, to describe state-of-the-art stochastic local search algorithms,
three-state-machines are often sufficient. We therefore conclude this cat-
egorisation with a brief look at two potentially interesting cases of the k-
state+init machine types:

k-state+init sequential machines: As a straightforward generalisation
of the sequential 2-state+init machines, in this machine type we have k + 1
states which are visited in a linear order. Consequently, after a machine state
has been left, it will never be visited again (see Figure 3.4, left side).

3.2. MACHINE, TRANSITION, AND STATE TYPES 115

Figure 3.4: Sequential (left) and alternating (right) k-state+init GLSM.

/3 />3

Figure 3.5: Uni-directional (left) and bi-directional (right) cyclic k-
state+init GLSM.

k-state+init alternating machines: These machines allow arbitrary tran-
sitions between the k£ + 1 states and may therefore re-initialise the search
process and switch between strategies as often as desired (see Figure 3.4,
right side). Some special cases worth noting are the uni- and bi-directional
cyclic machine models which allow to switch between states in a cyclic
manner. In the former case, the cyclic structure can be traversed only in one
direction, in the latter case the machine can switch from any state to both its
neighbouring states (see Figure 3.5).

This categorisation of machines according to their structure is useful for
characterising the structural aspects of the search control as realised by the
GLSM model. Obviously, this is a very high-level view of GLSMs which
can be refined in many ways, but nevertheless it will prove to be useful for
capturing some fundamental differences between various stochastic local

116

search schemes.

Transition Types

In refining the structural view of GLSMs given above, we next focus on
transition types. As mentioned before, properties of the transition types are
used as a basis for defining GLSM semantics. Here, we will introduce tran-
sition types in terms of a hierarchy of increasingly complex or expressive
types and describe the semantics of each transition type.

Unconditional deterministic transitions, DET

This is the most basic transition type; DET transitions from state z; to state
2z cause, when the GLSM is in state z;, always a deterministic transition
into state z,. Note that this implies that each GLSM state can have only
one outgoing transition of type DET. The use of this transition type is fairly
limited, because it causes a state with such a transition as its source to be
left immediately after being entered. This obviously implies that for each
state there can be only one transition leaving it. Consequently, using exclu-
sively DET transitions, one can only realise a very limited class of GLSM
structures. However, at least for the transition leaving the initial state, DET
transitions are frequently used in practically occurring GLSMs.

Unconditional probabilistic transitions, PROB(p)

A transition of type PROB(p) from a GLSM state z; to another state z
takes a GLSM that is in state z; directly into state z;, with probability p.
Clearly, DET transitions are equivalent to a special case of this transition
type, namely to PROB(1). For now, we can therefore assume without loss of
generality that all transition types in a given GLSM are of type PROB. Note
that if the set of transitions leaving z; is given as {¢,...,t,}, and the type
of any t; is PROB(p,), the semantics of this state type require Z;;l p; =1
in order to ensure that the selection of the transition from z; is based on a
proper probability distribution.

Note that without loss of generality, by using PROB(0) transitions we
can restrict our attention to fully connected GLSMs, where for each pair of
states (z;, 2), a transition of type PROB(p;y.) is defined. This allows a more

3.2. MACHINE, TRANSITION, AND STATE TYPES 117

uniform representation of this class of GLSMs which in turn will facilitate
both theoretical investigations and practical implementations of this GLSM
type. Furthermore, the behaviour of these GLSMs can be easily modelled
using Markov processes [Cinlar, 1975], which facilitates their analysis, as
well-known techniques for studying Markov processes can be directly ap-
plied.

Conditional transitions, CPROB(C, p) and COND(C')

While until now we have focused on transitions whose execution only de-
pends on the actual state, the following generalisation from PROB(p) intro-
duces context dependent transitions. A CPROB(C), p) transition from state
z; 10 state z; is executed with a probability proportional to p only when
a condition predicate C' is satisfied. If C' is not satisfied, all transitions
CPROB(C, p) from the current state are blocked, i.e., they cannot be exe-
cuted.

Obviously, PROB(p) transitions are equivalent to CPROB(T, p) condi-
tional probabilistic transitions, where T is the predicate which is always
true. Without loss of generality, we can therefore assume that for a given
GLSM all transitions are of type CPROB(C, p). An important special case
of conditional transitions are conditional deterministic transitions. These
include the case COND(C') = CPROB(C, 1); they can also arise when for
a given GLSM state z;, all but one of its outgoing transitions are blocked
at any given time. Hence, one way to obtain deterministic GLSMs using
conditional transitions is to make sure that by their logical structure, the
condition predicates for the transitions leaving each state are mutually ex-
clusive. Generally, depending on the nature of the condition predicates used,
the decision whether a conditional transition is deterministic or not can be
very difficult. For the same reasons it can be difficult to decide for a given
GLSM with conditional probabilistic transitions, whether a particular state
is reachable from the initial state.

For practically using GLSMs with conditional transitions it is important
to make sure that all condition predicates can be evaluated in a sufficiently
efficient way (when compared to the cost for executing local search steps).
There are two kinds of condition predicates, the first of which is based on
the search space position and/or its local neighbourhood; the other is based
on search control aspects alone, like the time that has been spent in the

118

T awaystrue
count(k) total number of local search steps> k
countm(k) total number of local search stepsmodulo k£ = 0
scount(k) number of local search stepsin current state > k
scountm(k) number of local search stepsin current state modulo & = 0
Imin current local search position isloca minimum w.r.t. its direct neighbours
obf(z) current objective functionvalue < z
noimpr(k) objective function value could not be improved within last & steps

Table 3.1: Commonly used simple condition predicates.

current GLSM state, or the overall run-time. Naturally, these two kinds
of conditions can also be mixed. Some concrete examples for condition
predicates can be seen in Table 3.1. Note that all these predicates are based
on local information only and can thus be efficiently evaluated during the
search.

Usually, for each condition predicate, a positive as well as a negative
(negated) form will be defined. Using propositional connectives like “A”
or “Vv”, these simple predicates can be combined into complex predicates.
However, it is not difficult to see that every GLSM using complex condi-
tion predicates can be reduced to an equivalent GLSM using only simple
predicates by introducing additional states and/or transitions. Thus, using
complex condition predicates can generally be avoided without restricting
the expressive power of the model.

Transition actions

After discussing a hierarchy of increasingly general transition types, we
now introduce another conceptual element into the context of transitions:
transition actions. Transition actions are associated with the individual tran-
sitions and are executed whenever the GLSM executes the corresponding
transition.

Generally, transition actions can be added to each of the transition types
defined above, while the semantics of the transition (in terms of its effect
on the immediate successor state of the GLSM) are not affected. If 7" is a
transition type, we let 7' : A denote the same transition type with associated
action A. The nature of action A has to be such that it neither directly affects

3.2. MACHINE, TRANSITION, AND STATE TYPES 119

the state of the GLSM, nor its search space position. Instead, transition
actions generally can be used for

e modifying global parameters of one or more state types,
e realisation of input / output functionality in actual GLSM realisations,

e communication between GLSMs in cooperative GLSM models (this
extension of the basic GLSM model will be introduced in Section 3.4.)

By introducing an action NOP (“no operation”) without any effects we ob-
tain uniform GLSMs in which all transitions have associated actions. Note,
however, that we do not need multiple actions (i.e., sequences or sets of ac-
tions which are associated with the same transition), because by introducing
‘dummy’ GLSM states that do not modify the search position, the (intuitive)
semantics of multiple actions can be emulated.

From a minimalist point of view, even simple transition actions are not
strictly required because they, too, can be emulated by embedding the corre-
sponding actions into the search strategies associated with the GLSM states.
This, however, would confound two different concepts, namely the local
search strategies and the actions which are rather part of the search control
mechanism represented by the modified finite state machines underlying the
GLSM model. But the primary motivation of the GLSM model is to facili-
tate the adequate representation of complex SLS algorithms, and as we will
see in Section 3.3, the notion of transition action occurs naturally in several
widely known SLS techniques. Therefore, we prefer to model transition
actions explicitly in the way described above.

State Types

At this point, state types are the only component that remains to be covered
in order to be able to fully specify concrete GLSMs. For practical purposes,
state types will usually be defined in a procedural way, usually by using
some form of pseudo-code. In some cases, more adequate descriptions of
complex state types can be obtained by using other formalisms, such as de-
cision trees. Concrete examples for various state types will be give in the
next section and in subsequent chapters. For formally specifying the seman-
tics of a GLSM, the semantics of the individual state types are required to

120

be specified in the form of a trajectory =, : S +— D(S) (see also the “In
Depth” section on page 110).

Here, we want to focus on some fundamental distinctions between cer-
tain state types. One of these concerns the role of the state within the
general local search scheme presented in Section 1.5. Since we are mod-
elling search initialisation and local search steps using the same mechanism,
namely GLSM states, there is a distinction between initialisation states and
search step states. An initialisation state is usually different from a search
step state in that it is left after one corresponding step has been performed.
Also, while search step states correspond to moves in a restricted local neig-
bourhood (like flipping one variable in SAT), one initialisation step can lead
to arbitrary search space positions (like a randomly chosen assignment of
all variables of a SAT instance). Formally, we define an initialising state
type as a state type 7 for which the local search position after one 7-step
is independent of the local search position before the step; the states of an
initialising type 7 are called initialising states. Generally, each GLSM will
have at least one initialising state, which is also its initial state. A GLSM
can, however, have more than one initialising state and use these states for
dynamically restarting the local search process.

If for a given problem there is a natural common neighbourhood relation
for local search, we can also distinguish single-step states from multi-step
states. For the SAT problem, most local search algorithms use a 1-exchange
neighbourhood relation, in which two variable assignments are direct neigh-
bours if they differ in exactly one variable’s value. In this context, a single-
step state would flip one variable’s value in each step, whereas a multi-step
state could flip several variables per local search step. Consequently, initial-
ising states are an extreme case of multi-step states, since they can affect all
variable’s values at the same time.

3.3 Modedling SLSAlgorithmsUsing GLSMs

Up to this point, we have introduced the GLSM model and discussed vari-
ous types of GLSMs structures, transitions, and states. We now demonstrate
applications of the model by specifying and discussing GLSM representa-
tions for many of the well-known SLS techniques described in Chapter 2.
This way, important similarities and differences between SLS techniques are

3.3. MODELLING SLSALGORITHMSUSING GLSMS 121

i ; DET

/
Figure 3.6: GLSM for Random Picking

procedure step-RP(, s)
input problem instance 7 € II, candidate solution s € S(n)
output candidate solution s € S(n)
s := selectRandom(S)
return s’
end step-RP

Figure 3.7: Procedural specification of GLSM state RP; the
function selectRandom(S) returns an element of S selected
randomly according to a uniform distribution over S.

highlighted. GLSM representations of other SLS algorithms are covered in
later chapters or exercises.

Random Picking and Random Walk

The simplest possible SLS algorithm is Random Picking, as introduced in
Section 1.5. When cast into our SLS definition, the init and step functions
of Random Picking are identical and perform a random uniform selection of
a candidate solution from the underlying search space. The corresponding
GLSM is shown in Figure 3.6. It has only one state of type RP, formally
defined by 7zp(s)(s") = 1/|S] for all s’. As this kind of functional state
type definition can get rather complex and difficult to understand for more
advanced SLS strategies, we will often use procedural definitions of state
types in terms of step functions instead. Such a definition for the random
picking state type is shown in Figure 3.7.

The Uninformed Random Walk algorithm (cf. Section 1.5) requires an

122

procedure step-RW(, s)
input problem instance 7 € II, candidate solution s € S()
output candidate solution s € S(r)
s’ := selectRandom({s' | N (s, s')})
return s’
end step-RW

Figure 3.8: Procedural specification of GLSM state RW; the
function selectRandom(-) returns an element of the set selected
randomly according to a uniform distribution.

DET

m
@ DET ‘@

/

Figure 3.9: GLSM for Uninformed Random Walk

additional state type, RW, whose semantics are defined in Figure 3.8. In
its simplest form, the search is initialised by random picking, followed by
a series of uninformed random walk steps. The corresponding GLSM is
shown in Figure 3.9. In practice, many SLS algorithms are extended by
a restart mechanism, by which, in the simplest case, after every m search
steps (where m is a parameter of the algorithm), the search process is reini-
tialised. Generally, other restart conditions can be used for determining
when a reinitialisation should occur. Figure 3.10 shows the GLSM for Un-
informed Random Walk with Restart; it is obtained from the GLSM for
the basic Uninformed Random Walk algorithm without restart by a simple
modification of the state transitions. Note how the GLSM representation
for both algorithms indicates the fact that Uninformed Random Walk can
already be seen as a (albeit very simple) hybrid SLS algorithm, using two
types of search steps, Random Picking, and Uninformed Random Walk.

3.3. MODELLING SLSALGORITHMSUSING GLSMS 123

DET O COND(notR)
w T
/ \/

COND(R)

Figure 3.10: GLSM for Uninformed Random Walk with Restart; R is the
restart predicate, e.g., countm(m).

While using a restart mechanism for pure Random Walk does not appear
to be useful other than for illustrative purposes, the analogous extension of
Iterative Improvement covered in the next section leads to significant per-
formance improvements.

Iterative | mprovement

The GLSM model for Iterative Improvement (cf. Section 1.5) is similar to
that for Uninformed Random Walk. Again, we use an RP state to model the
search initialisation by random picking, but the second state now captures
the semantics of iterative improvement search steps. A procedural specifica-
tion of a GLSM state BI that models best improvement search steps is given
in Figure 3.11; Figure 3.12 shows the GLSM for Iterative Best Improvement
Search with Random Restart. Note that the random restart mechanism will
enable the algorithm to escape from local minima of the evaluation function
and can hence be expected to improve its performance. Notice that the only
difference between this GLSM and the one for Uninformed Random Walk
with Random Restart shown in Figure 3.9 lies in the type of one state (BI
vs RW). This reflects the common structure of the search control mecha-
nism underlying both of these simple SLS algorithms. Similarly, the GLSM
models for other variants of iterative improvement search, such as First Im-
provement, or Random Improvement, are obtained by replacing the Bl state
by a state of an appropriately defined type that reflects the semantics of these
different types of iterative improvement steps.

Using the RP, RW, and BI state types, it is easy to construct a GLSM
model for Randomised Iterative Improvement, one of the simplest hybrid

124

procedure step-Bl(, s)
input problem instance 7 € II, candidate solution s € S()
output candidate solution s € S(r)
g* :=min{g(s")|g' € N(s)}
s’ := selectRandom({s' | N(s,s') and g(s') = g*})
return s’

end step-BI

Figure 3.11: Procedural specification of GLSM state BI.

DET O COND(notR)

T
/\/

COND(R)

Figure 3.12: GLSM for lIterative Best Improvement with Random Restart;
R is the restart predicate, e.g., Imin.

SLS algorithms (cf. Section 2.2). The 2-state+init GLSM shown in Fig-
ure 3.13 represents the hybrid search mechanism in an explicit and intuitive
way. Since the addition of the Random Walk state enables the algorithm in
principle to escape from local minima, the restart mechanism included in
this GLSM is not as important as in the previous case of pure Iterative Best
Improvement. It may be noted that the same SLS algorithm could be mod-
elled by a 1-state+init GLSM, using a single state for Randomised Iterative
Improvement steps. This representation, however, would be substantially
inferior to the 2-state+init GLSM introduced above, since an important part
of the search control strategy is not captured by the structure of the GLSM
model.

3.3. MODELLING SLSALGORITHMSUSING GLSMS 125

CPROB(notR,p)
CPROB(not R, 1-p)

Figure 3.13: GLSM for Randomised Iterative Best Improvement with Ran-
dom Restart; R is the restart predicate, e.g., countm(m)

Simulated Annealing

To model Simulated Annealing by a GLSM, two approaches can be taken.
Both use a state type SA to represent the probabilistic iterative improvement
search steps that form the core of Simulated Annealing. This state type can
be specified procedurally by the step function introduced in Chapter 2 (cf.
Figure 2.3 on page 65). The difference between the two approaches lies in
the way they conceptually implement the annealing schedule. This can be
done by integrating temperature modifications into the search steps; in this
case, the probabilistic iterative improvement state type is extended such that
it includes temperature updates along with the basic search steps.

An alternative representation uses transition actions to capture the tem-
perature modifications comprising the annealing schedule. This leads to the
GLSM model shown in Figure 3.14. Conceptually, this representation is
cleaner, since it separates the basic search process (which corresponds to a
modification of the current position in the search space) from modifications
of search control parameters, such as the temperature 7.

Transition actions can be used in a similar way for modelling Reactive
Tabu Search (cf. Section 2.2). In this case, a state type representing ba-
sic tabu search steps is used along with transition actions that modify the

126

O DET : T:=update(T)
DET : T:=Tg
RP SA(T)

/

Figure 3.14: GLSM for Simulated Annealing; the initial temperature ¢, and
temperature update function update implement the annealing schedule.

tabu tenure parameter during the search. Additionally, an RW state can be
integrated to additionally diversify the search when required.

Iterated L ocal Search

Iterated Local Search is an excellent example of a hybrid SLS technique.
There are two basic types of search steps: The steps performed in the sub-
sidiary local search and perturbation steps. Obviously, these as well as the
search initialisation are modelled by separate GLSM states. A slight com-
plication is introduced by the acceptance criterion, which is used in ILS to
determine whether or not the search continues from the new candidate solu-
tion obtained from the last perturbation and subsequent local search phase.
There are various ways of modelling this feature in a GLSM. Figure 3.16
shows a GLSM representation of ILS, where the application of the accep-
tance criterion is modelled as a separate state, AC (for a procedural defini-
tion of AC, see Figure 3.15). Note the use of transition actions for storing the
current candidate solution before each perturbation phase, which is needed
when applying the acceptance criterion in state AC. Furthermore, it might
be noted that our GLSM model allows for several perturbation steps to be
performed; this is motivated by the fact that in some ILS applications, the
perturbation phase consists of several search steps of the same type (for an
example, see Chapter 7).

Ant Colony Optimisation

There are different approaches to representing population-based SLS al-
gorithms as GLSMs, corresponding to different views of the underlying

3.3. MODELLING SLSALGORITHMSUSING GLSMS 127

procedure step-AC(, s, t)
input problem instance 7 € II, candidate solution s € S()
output candidate solution s € S(r)
if C(m,s,t) then
return s
else
return ¢
end
end step-AC

Figure 3.15: Procedural specification of GLSM state AC; this
state type uses a candidate solution ¢ stored earlier in the search
process, and selection predicate C'(w, s, t) which returns T if s
is to be selected, and L otherwise. A selection predicate which
is often used in the context of ILS is better(m, s,t) := (g(s) <
g(t)), where g is the evaluation function for the given problem
instance, .

stochastic local search process itself. As briefly discussed in Section ??, one
can view populations of candidate solutions for the given problem instance
7 as search states; under this view, the search space of a population-based
SLS algorithm consists of sets of candidate solutions of 7. Ant Colony Op-
timisation, for instance, can then be represented as a GLSM as shown in
Figure 3.17. State CI initialises the construction search and state CS per-
forms a single construction step for all ants (cf. Example ??, page ??). The
LS state performs a single step of local search for the whole population of
ants. For a typical iterative improvement local search, this means that iter-
ative improvement steps are performed for all ants that have not obtained
a locally minimal candidate solution of the given problem instance; in this
case, usually a condition predicate CL is used that is satisfied when all ants
have obtained a locally minimal candidate solution. Initialisation and up-
date of the pheromone trails are modelled using transition actions.

An alternate GLSM model for ACO is based on a view under which the

128

COND(not CL)

COND(notCL)O COND(notCPb
:

DET COND(CL) : t:=pos
@ LS S COND(CL)

/
DET : t:=pos

Figure 3.16: GLSM representation of Iterated Local Search; CP and CL
are condition predicates which determine the end of the perturbation phase
and the local search phase, respectively (see text for further details).

search space consists of probability distributions of candidate solutions for
the given problem instance. Note that the probabilistic construction pro-
cess carried out by each ant induces a probability distribution in which,
ideally, higher quality candidate solutions have higher probability of being
constructed. The subsequent local search phase then biases this probability
distribution further towards better candidate solution. Finally, updating the
peromone values modifies the probability distribution underlying the next
construction phase. This representation has two disadvantages: Firstly, it
does not reflect the fact that ACO effectively samples the probability distri-
bution central to this model in each cycle in order to obtain a set of candidate
solutions for the given problem instance; secondly, it does not capture the
compact implicit representation of the probability distributions given by the
pheromone values. However, this view on ACO is interesting for theoretical
reason, e.g., in the context of analysing important theoretical properties of
ACO, such as the probability of obtaining a specific solution quality within
a given time bound. Also note that the GLSM model corresponding to this
view does not require transition actions for manipulating the pheromone
trails since these are now essential components of the search state.

Another general approach for modelling population-based SLS algo-
rithms as GLSMs is to represent each member of the population by a sep-
arate GLSM. The resulting cooperative GLSM models will be discussed in
more detail in the next section.

3.4. EXTENSIONS OF THE BASIC GLSM MODEL 129

COND(not CC)

COND(CC)

COND(CL) :
updateTrails

COND(not CL)

Figure 3.17: GLSM representation of Ant Colony Optimisation; the con-
dition predicates CC and CL determine the end of the the construction and
local search phases, respectively.

3.4 Extensionsof theBasic GLSM Modd

In this section we discuss various extensions of the basic GLSM model. One
of the strengths of the GLSM model lies in the fact that these extensions
arise quite naturally and can easily be realised within the basic framework.
Some extended GLSM models, in particular cooperative GLSMs, have im-
mediate applications in the form of existing SLS algorithms, while others
have not yet been studied in detail.

Cooperative GL SM models

A natural extension of the basic GLSM, which is particularly suited for
representing population-based SLS algorithms, is to apply several GLSMs
simultaneously to the same problem instance. In the simplest case, such an
ensemble consists of a number of identical GLSMs without any communi-
cation between the individual machines. The semantics of this homogenous
cooperative GLSVI model without communication are conceptually equiv-
alent to executing multiple independent runs of an individual GLSM. It is
particularly attractive for parallelisation, because it is very easy to imple-
ment, involves virtually no communication overhead, and can be almost
arbitrarily scaled in principle.

The restrictions of this model can be relaxed in two directions. One is

130

to allow ensembles of different GLSMs. This heterogeneous cooperative
GLSM model without communication is particularly useful for modelling
robust combinations of various SLS algorithms, each of which shows su-
perior performance on certain types of instances, when the features of the
given problem instances are not known a priori. This approach has been re-
cently studied in the context of complete algorithms for hard combinatorial
problems [Gomes and Selman, 1997b]: In this context the heterogenous en-
sembles were called algorithmportfolios. Generally, this cooperative model
has almost the same advantages as its homogeneous variant; it is easy to im-
plement and almost free of communication overhead.

Another generalisation is to allow communication between the individ-
ual GLSMs of a cooperative model. This is required for modelling explicitly
population-based SLS algorithms in which the individual search trajectories
are not independent. As an example, consider variants of Ant Colony Op-
timisation which allow only the ants that obtained the best solution qual-
ity in a given cycle to update the pheromone trails (iteration-best elitist
pheromone update) [Stiitzle and Hoos, 2000]; communication between the
ants is required in order to determine the best candidate solutions.

In principle, coooperative GLSM models can be extended with various
communication schemes, including blackboard mechanisms, synchronous
broadcasting, and one-to-one message passing in a fixed network topology.
There are various ways of formally realising these techniques within the
GLSM framework. One approach is to use special transition actions for
communication (e.g., send and receive); another option is to allow transi-
tion conditions and/or transition actions to access information that is shared
between the individual GLSMs.

Many population-based SLS algorithms can be naturally represented as
homogeneous cooperative GLSMs. Most ACO algorithms, for example Ant
System [Dorigo et al., 1991; 1996], can be easily modelled in the follow-
ing way: The basic GLSMs corresponding to the individual ants have the
same structure as the GLSM model in Figure 3.17 above; only now, the
GLSM states represent the construction and local search steps performed
by an individual ant and the transition action updateTrails performs a joint
pheromone trail update for all ants. Note that in this case, the pheromone
values are shared information between the individual ants” GLSMs.

Cooperative GLSMs with communication are more difficult to design
and to implement than those without communication, since issues like pre-

3.4. EXTENSIONS OF THE BASIC GLSM MODEL 131

venting and detecting deadlocks and starvation situations generally have to
be considered. Furthermore, the communication between individual GLSMs
usually involves a certain amount of overhead. This overhead has to be
amortised by the performance gains which may be realised in terms of
speedup when applied to a specific problem class, but also in terms of in-
creased robustness w.r.t. different problem classes.

Generally, one way of using communication to improve the performance
of cooperative GLSMs is to propagate search space positions with low ob-
jective function values (or other attractive properties) within the ensemble
such that individual GLSMs which detect that their search is not progress-
ing well can pick up these “hints” and continue their local search from
there. This can be easily realised as a homogeneous cooperative GLSM
with communication. In such a model, the search effort will be more fo-
cussed on exploring promising parts of the search space than in a coopera-
tive model without communication. Another general scheme uses two types
of GLSMs, analysts and solvers. Analysts do not attempt to find solutions
but rather try to analyse features of the search space. The solvers try to use
this information to improve their search strategy. This architecture is an in-
stance of the heterogeneous cooperative GLSM model with communication.
It can be extended in a straightforward way to allow for different types of
analysts and solvers, or several independent sub-ensembles of analysts and
solvers.

L earning via dynamic transition probabilities

One of the features of the basic GLSM model with probabilistic transitions
is the fact that the transition probabilities are static, i.e., they are fixed when
designing the GLSM. An obvious generalisation, along the lines of learning
automata theory [Narendra and Thathachar, 1989], is to let the transition
probabilities evolve over time as the GLSM is running. The search control
in this model corresponds to a variable structure learning automaton. The
environment in which such a dynamic GLSM is operating is given by the
evaluation function induced by an individual problem instance or by a class
of evaluation functions induced by a class of instances. In the first case
(single-instancelearning), the idea is to optimise the control strategy on one
instance during the local search process. The second case (multi-instance
learning), is based on the assumption that for a given problem domain (or

132

sub-domain), all instances share certain features to which the search control
strategy can be adapted.

The modification of the transition probabilities can either be realised
by an external mechanism (external adaption control), or within the GLSM
framework by means of specialised transition actions (internal adaption con-
trol). In both cases, suitable criteria for transition probability updates have
to be defined. Two classes of such criteria are those based on trajectory in-
formation, and those based on GLSM statistics. The latter category includes
state occupancies and transition frequencies, while the former comprises
primarily basic descriptive statistics of the objective or evaluation function
value along the search trajectory, possibly in conjunction with discounting
of past observations. The approach as outlined here captures only a spe-
cific form of parameter learning for a given parameterised class of GLSMs.
Conceptually, this can be further extended to allow for dynamic changes
of transition types (which is equivalent to parameter learning for a more
general transition model, such as conditional probabilistic transitions).

In principle, concepts and methods from learning automata theory can
be used for analysing and characterising dynamic GLSMSs; basic properties,
such as expedience or optimality can easily be defined. We conjecture, how-
ever, that theoretically proving such properties will be extremely difficult, as
the theoretical analysis of standard SLS behaviour is already very complex
and limited in its results. Nevertheless, we believe that empirical methodol-
ogy can provide a sufficient basis for developing and analysing interesting
and useful dynamic GLSM models.

Evolutionary GL SM models

For cooperative GLSMs, another form of learning can be realised by letting
the number or type of the individual GLSMs vary over time. The popula-
tion dynamics of these evolutionary GLSV models can be interpreted as a
learning mechanism. As for the learning GLSMs described above, we can
distinguish between single-instance and multi-instance learning and base
the process for dynamically adapting the population on similar criteria.

In the conceptually simplest case, the evolutionary process only affects
the composition of the cooperative ensemble: machines that are perform-
ing well will spawn off numerous offspring replacing individuals showing
inferior performance. This mechanism can be applied to both, homoge-

3.4. EXTENSIONS OF THE BASIC GLSM MODEL 133

neous and heterogeneous models for single-instance learning. In the former
case, the selection is based on trajctory information of the individual ma-
chines and achieves a similar effect as described above for certain types
of homogeneous cooperative GLSMs with communication: The search is
concentrated on exploring promising parts of the search space. When ap-
plied to heterogeneous models, this scheme allows the realisation of self-
optimising algorithm portfolios, which can be useful for single-instance as
well as multi-instance learning.

This scheme can be further extended by introducing mutation and possi-
bly recombination operators as known from Evolutationary Algorithms. Itis
also easily conceivable to combine evolutionary and indivual learning, e.g.,
by evolving ensembles of dynamic GLSMs. And finally, one could con-
sider models that additionally allow communication within the ensemble.
By combining different extensions we can arive at very complex and poten-
tially powerful GLSM models; while these are very expressive, in general
they will also be extremely difficult to analyse. Nevertheless, their imple-
mentation is quite simple and straightforward and an empirical approach for
analysing and optimising their behaviour appears to be viable. We believe
that such complex models, which allow for a very flexible and fine-grained
search control, will likely be most effective when applied to problem classes
with numerous and salient structural features (see also Chapter 5). There is
little doubt that, to some extent, this is the case for most real-world problem
domains.

Continuous GL SM models

The basic GLSM model and all extensions thereof discussed up to this point
model local search algorithms for solving discrete decision or optimisation
problems. Yet, by using continuous instead of discrete local search strate-
gies for the GLSM state types, the model can be easily extended to continu-
ous optimisation approaches. Although SLS algorithms for continuous op-
timisation problems are beyond the scope of this book, we believe that the
GLSM model’s main feature, the clear distinction between simple search
strategies and search-control, is also a useful architectural and conceptual
principle for continuous optimisation algorithms.

134

3.5 Further Reading and Related Work

The main idea underlying the GLSM model, namely to adequately repre-
sent complex algorithms as a combination of several simple strategies, is
one of the fundemantal concepts in computing science. Here, we applied
this general metaphor to local search algorithms for combinatorial decision
and optimisation problems using suitably extended finite state machines
for search control. The GLSM model is partly inspired by Amir Pnueli’s
work on hybrid systems [Maler et al., 1992] and Thomas Henzinger’s work
on hybrid automata; the latter uses finite state machines to model systems
with continuous and discrete components and dynamics [Alur et al., 1993;
Henzinger, 1996] and is therefore conceptually related to the GLSM model.

The GLSM definition and semantics are heavily based on well-known
concepts from automata theory (for a general references, cf. [Harrison,
1978; Rozenberg and Salomaa, 1997]). However, when using conditional
transitions or transition actions, the GLSM model extends the conventional
model of a finite state machine. In its most general form, the GLSM model
bears close resemblance to a restricted form of Petri nets [Krishnamurthy,
1989], where only one token is used. Of course, the same type of search
control mechanism could be represented using formal systems other than
a FSM-based formalism. First of all, other types of automata, such as
pushdown automata or Turing machines could be considered. However, we
feel that the FSM model, one of the simplest types of automata, is power-
ful enough for representing most interesting search-control strategies com-
monly found in the local search literature. Furthermore, it leaves sufficient
room for extension, while being analytically more tractable than more com-
plex automata models. Finally, FSMs offer the potential advantage of being
implementable in hardware in a rather straightforward way, which might
be interesting in the context of applying local search algorithms to time-
critical problems (cf. [Hamada and Merceron, 1997]). Summarising these
arguments, the use of FSMs for formalising the search-control mechanism
seems to be sufficient and adequate. Of course, formalisms equivalent to
the FSM model, such as rule-based descriptions, could be chosen instead.
While this might be advantageous in certain contexts (such as reasoning
about properties of a given GLSM), we find that the automaton model pro-
vides a slightly more intuitive and easier-to-handle framework for designing
and implementing local search algorithms whose nature is primarily proce-

3.6. SUMMARY 135

dural.

The GLSM model allows to adequately represent existing algorithmic
frameworks for local search, such as GenSAT [Gent and Walsh, 1993a] or
Iterated Local Search [Martin et al., 1991; Johnson, 1990]. These frame-
works are generally more specific and more detailed than the GLSM model;
however, they can be easily realised as generic GLSMs without losing any
detail of description. This is done by using structured generic state types to
capture the more specific aspects of the framework to be modelled. While
the GLSM model can be used to represent any local search algorithm, many
of these do not really make use of the search control mechanism it pro-
vides. Note, however, that some of the most successful local search algo-
rithms for various problem classes (such as R-Novelty for SAT [McAllester
et al., 1997], HRTS for MaxSAT [Battiti and Protasi, 1997a], and iter-
ated local search schemes for TSP [Martin et al., 1991; Johnson, 1990;
Johnson and McGeoch, 1997]) rely on search control mechanisms of the
type provided by the GLSM model.

The various extensions of the basic model discussed in this chapter are
closely related to established work on learning automata [Narendra and
Thathachar, 1989], parallel algorithm architectures [Jaja, 1992], and Evo-
lutionary Algorithms [Béck, 1996]. While most of the proposed extensions
have not been implemented and empirically evaluated so far, they appear to
be promising, especially when considering recent work on multiple inde-
pendent tries parallelisation [Shonkwiler, 1993; Gomes et al., 1998], algo-
rithm portfolios [Gomes and Selman, 1997b], and learning local search ap-
proaches for solving hard combinatorial problems [Boyan and Moore, 1998;
Minton, 1996].

3.6 Summary

Based on the intuition that adequate local search algorithms are usually ob-
tained by combining several simple search strategies, in this chapter we
introduced and discussed the GLSM model. This framework formalises the
search control using a finite state machine (FSM) model, which associates
simple component search strategies with the FSM states. FSMs belong to
the most basic and yet fruitful concepts in computer science; using them to
model local search control offers a number of advantages. First, FSM-based

136

models are conceptually simple; consequently, they can be implemented
easily and efficiently. At the same time, the formalism is expressive enough
to allow for the adequate representation of a broad range of modern local
search algorithms. Secondly, in our experience, the GLSM model facili-
tates the development and design of new, hybrid local search algorithms. In
this context, both conceptual and implementational aspects play a role: due
to the conceptual simplicity of the GLSM model and its clear representa-
tional distinction between search strategies and search control, hybrid com-
binations of existing local search algorithms can be easily formalised and
explored. Using a generic GLSM simulator, which is not difficult to imple-
ment, new hybrid GLSM algorithms can be realised and evaluated in a very
efficient way. Finally, there is a huge body of work on FSMs; many results
and techniques are in principle directly applicable to GLSMs which may be
of interest in the context of analysing and optimising SLS algorithms.

As we have shown, based on a clean and simple definition of a GLSM,
the semantics of the model can be formalised in a rather straightforward
way. We then discussed the tight relation between the GLSM model and a
standard generic local search scheme. By categorising GLSM types accord-
ing to their structure and transition types, we demonstrated how the general
model facilitates the systematic study of search control mechanisms. Most
modern SLS techniques can be represented by rather simple GLSMs; the
fact that the most efficient of them are structurally slightly more complex
than others suggests that further improvements can be achieved by devel-
oping more complex combinations of simple search strategies. Finally, we
pointed out several extensions of the basic GLSM model. Most of these are
very natural generalisations, such as cooperative or continous GLSMs; they
not only demonstrate the scope of the general idea but also suggest numer-
ous routes for further research. In subsequent chapters of this book, GLSMs
will be used for conceptualising and analysing SLS algorithms for various
combinatorial problems.

3.7 EXxercises

Exercise 3.1 (Easy) Explain how any local search algorithm can be for-
malised as a 1-state+init GLSM. Why is this formalisation not desirable?

3.7. EXERCISES 137

Exercise 3.2 (Easy) Find a good GLSM representation for the following
hybrid SLS algorithm for TSP. [hh: describe in detail: SA for 1000 iter-
ations repeat (3-opt until Imin; 4 x 4-opt - TODO(hh)]

Exercise 3.3 (Medium) Show how a genetic local search algorithm (see
Chapter 2, Section 2.3) can be modelled as a GLSM.

Exercise 3.4 (Medium) Consider the following skeleton of a GLSM for
Tabu Search. [ts: add skeleton — TODO(hh)] Assuming you don’t
like GLSMs with transition actions, specify an equivalent GLSM for Tabu
Search which does not use transition actions.

Exercise 3.5 (Hard) How could GLSMs be useful in analysing the be-
haviour of SLS algorithms? (Hint: Think of conditional transitions and
observations you can make from monitoring the actual state of the GLSM
during search.)

138

