
Other Combinatorial Problems

The problems covered in the previous chapters are only some of many com-
binatorial problems to which stochastic local search algorithms can be ap-
plied successfully. In this chapter, we present and discuss SLS applications
to a selection of other combinatorial problems, which have been selected
partly because of their fundamental nature, partly because of their relevance
for certain application areas. In each of the main sections, we will introduce
one combinatorial problem, discuss its applications and commonly used
benchmark instances, and present one or more SLS approaches for solv-
ing this problem. The problems we cover are: Graph Colouring, Quadratic
Assignment, Set Covering, Combinatorial Auctions Winner Determination,
and DNA Code Design. All of these problems have interesting and impor-
tant applications in various application areas. While the first three of these
problems have been extensively studied in the literature for many years, the
latter two have only relatively recently gained their current prominence. The
algorithms presented in this chapter are primarily intended to illustrate the
application of SLS methods to the respective problems; pointers to other
SLS algorithms and more detailed information on the problems covered
here are provided in the “Further Readings and Related Work” section of
this chapter.

361

362

10.1 Graph Colouring

The Graph Colouring Problem (GCP) plays a central role in graph theory
and is at the core of many application relevant problems such as timetabling [Leighton,
1979; de Werra, 1985; Schaerf, 1999] and frequency assignment [Gamst,
1986]. It can be defined as follows: A

�
-colouring of an undirected graph�������	��

�

, where
�

is the set of � � � ���
vertices and

��������
is

the set of edges, is a mapping ��� ����������! "�$#$#$#%� �'&
that assigns a posi-

tive integer from
�����! "�$#$#$#%� �'&

(representing the colours) to each vertex such
that the endpoints of every edge in

have assigned a different colour, i.e.,(�*)+�-,.�0/1
 �2� �*)3�54� � �*,.� . The decision version of the Graph Colour-

ing Problem asks whether for a given graph
�

a
�
-colouring can be found.

In the optimisation version, the objective is to find the minimum number
�

such that a
�
-colouring exists; this minimum number

�
is also known as the

chromatic number 687 of
�

.

Example 10.1: Simple GCP instance

In Figure 10.1 we give a simple GCP instance with six vertices
,.9!�$#$#$#:�-,<;

;
each vertex is assigned one of the three colours

�����! "��= &
that are here repre-

sented by the colours red, blue and green. In this example we have � �*,.9-�	�
� �*,<;!�>� red

� � �*,<?!�@� � �*,BA%�@� blue
� � �*,<C!�@� � �*,<D%�@� green. 6E7 for this

graph is three. In fact, the left and the right triple of vertices form a clique
(a clique of a graph is a fully connected sub-graph) and it is clear that the
number of colours required is at least as large as the number of vertices in a
maximum clique, i.e., the size of the maximum clique gives a lower bound
for the chromatic number.

Alternatively to this formulation as an assignment problem, the GCP
can also be represented as a partitioning problem, in which a

�
-colouring

corresponds to a partition of the set of vertices into
�

sets
�F9!�$#$#$#:�!�HG

, such
that for no edge

�*)+�-,.�
in

the incident vertices
)

and
,

belong to the
same set

�JI
. This equivalent definition of the GCP has the advantage that

it avoids symmetric solutions, which are obtained in the assignment formu-
lation, because any permutation of the colours yields an isomorphic (i.e.,
equivalent) solution, since the numbering of the colours is not essential. For

10.1. GRAPH COLOURING 363

2
V

V

V

V

V

V

1

3

4

5

6

Figure 10.1: Simple GCP instance with six vertices; assignments are repre-
sented by colours.

example, the (unique) partition representation of Example 10.1 is given by�39
���B, 9%�-,<; & �!�H? � �B,<?$�-,BA & �!�HC0���B,<C �-,<D &
, while there exist six equiva-

lent solutions in the assignment case, which are obtained by changing the
colours assigned to vertices.

The decision version of the GCP is an
���

-complete problem that can be
seen as a special case of the Constrained Satisfaction Problem (CSP), as dis-
cussed in Chapter 6.5, Section 6.5. In the CSP formulation, all constraints
are binary inequality constraints; this special structure can be exploited to
derive algorithms that are more efficient that standard CSP solvers. Con-
sidering this as well as the central role of the GCP in graph theory and its
numerous applications, Graph Colouring Problems are typically treated in-
dependently of general CSPs.

It is well known that the optimisation version of the GCP is
���

-hard
[Garey and Johnson, 1979]. Furthermore, the GCP is not approximable
within a fixed ratio of the chromatic number, since it is known that achieving
a
�
-colouring within a ratio of � � �

9����	��

, for any ��
�� , of the optimum

solution is
���

-hard [Bellare et al., 1998]. Therefore, in some sense, GCP
is among the hardest combinatorial optimisation problems. In fact, the best
ploynomial-time approximation algorithm is only guaranteed to achieve an
approximation ratio of � � � � ��� � ����� ����� ��� � �� � ����� ��� ���

�
[Halldórsson, 1993].

364

Applications and Benchmark Instances

The GCP arises in many application relevant problems. Probably the most
intuitive application of the GCP is that of colouring maps, where each region
or country corresponds to a vertex of the graph and a connection between
two regions exists if they have a common border. (For an example of a
map-colouring problem recall Figure 6.6 on page 241). Other applications
of the GCP include the determination of lower bounds on the number of
time slots in timetabling problems [Leighton, 1979; de Werra, 1985; Carter,
1986], special cases of frequency assignment problems [Gamst, 1986], the
register allocation problem, in which variables are to be assigned to a limited
number of registers in a CPU [Briggs et al., 1994; Chaitin et al., 1981;
Chaitin, 1982; Chow and Hennessy, 1990], the estimation of sparse Jacobian
matrices [Coleman and Moré, 1983; Hossain and Steihaug, 2002], or the
testing for unintended short circuits on printed circuit boards [Garey et al.,
1976]. Recently, the Quasigroup Completion Problem (QCP), which is a
special case of the GCP, has received significant attention. Given an

� � �
quadratic grid and

�
colours, the objective it to assign a colour to each grid

cell in such a way that every row and column contains all
�

colours. Often,
in the QCP also some vertices are pre-coloured and their colour cannot be
modified by the algorithm.

Random GCP instances are often used as a benchmark for graph colour-
ing algorithms and are generated according to a number of different models.
One common class are

��� � � graphs, where
�

is the number of vertices, and
each among the

�	�*��� �B����
edges is included with probability � into the

graph. These graphs have been a popular class of benchmark instances for
GCP algorithms. Another class of widely used GCP benchmark instances
is based on 	 � �
 graphs; these are generated by first placing

�
vertices at

random positions in a two dimensional unit square, where the � and the �
coordinate are chosen according to a uniform distribution in
 � �$��� and in-
cluding an edge between vertices

)
and

,
, if the Euclidean distance between

the two vertices is smaller than some value � . While in
��� � � instances any

pair of vertices can have an edge independent of other pairs of vertices, this
is not the case for the geometric random 	 � �
 graphs. Empirical results sug-
gest that the latter class of graphs is easier for exact algorithms than the

��� � �
graphs [Mehrotra and Trick, 1996].

Other widely used classes of random graphs are generated with a known

10.1. GRAPH COLOURING 365

predetermined chromatic number. One such class are Leighton graphs that
are constructed by introducing cliques of size between two and the chro-
matic number.

A common way of generating guaranteed
�
-colourable graphs is to par-

tition the vertices in a graph into
�

sets and then to introduce edges only
between vertices that are not in a same parition; often edges are included
with a probability of � , independent of other edges. These graphs are gener-
ally referred to as

��� � � � G graphs. However, there are a large number of ways
of generating such instances, e.g. depending on whether the partitions are
generated as nearly as possible of a same size or whether restrictions on the
vertex degrees are introduced, a large number of different ways of generat-
ing

�
-colourable graphs can be defined; we refer to [Culberson et al., 1995]

for more details. One popular class of such
��� � � � G graphs are the flat graphs,

where an additional constraint on the degree of vertices is used to generated
instances with a small variation of vertex degrees; this restriction was found
to be useful when the goal is to generate hard GCP instances [Culberson
and Luo, 1996].

Currently, the largest collection of GCP instances that stem in part from
GCP applications is available via the web-page of COLOR02/03 at http://mat.gsia.cmu.edu/COLOR02/.
These include instances derived from register allocation problems, course
scheduling problems, quasi-group completion problems (also known as Latin
squares, with or without pre-coloured squares), several other combinatorial
problems, as well as randomly generated graphs. Additionally, several in-
stances for extensions of the basic GCP model are included.

Simulated Annealing for Graph Colouring

Among the first SLS algorithms applied to GCP is Simulated Annealing
(SA) [Chams et al., 1987; Johnson et al., 1991]. A systematic experimental
analysis of SA algorithms was presented by Johnson, Aragon, McGeoch,
and Schevon [Johnson et al., 1991], who compared three different variants
of SA for the GCP. All the three variants are based on a standard SA al-
gorithm that uses a geometric cooling schedule and that performs at each
temperature a number of moves that is proportional to the neighbourhood
size (see Example ?? on page ?? for a very similar SA application to the
TSP). The search is terminated, if the ratio of accepted moves over a num-
ber of successive temperatures is below a given threshold.

366

The first two variants exploit the partition-based formulation of GCP. In
the Penalty Function SA Algorithm, each candidate solution is a partition of�

into
�

non-empty colour classes
� 9!�$#$#$#:�!�HG

, which need not correspond
to a (feasible)

�
-colouring. The initial solution is a random partitioning of

the vertices into a given number of colour classes. A neighbouring solution
is generated by randomly picking first a non-empty colour class

� I
, then a

vertex
, /��JI

, and finally a new colour class
� � / � �39!�$#$#$#:�!�HG�� 9 & ; all ran-

dom selections are performed according to a uniform distribution over the
respective sets. (If a previously empty colour class

��� �
is chosen,

,
be-

comes the only element of this class.) Penalty Function SA uses a particular
evaluation function that on the one side favours large colour classes and on
the other side discourages edge constraint violations, i.e., edges whose two
endpoints are in a same colour class; this evaluation function is defined as

� ���B�	� �
G

�
I
	 9 � �JI �

? �
G
�
I
	 9 �� � �JI � � �
@I � � (10.1)

where

@I

is the set of all edges with both endpoints in
�'I

. It is easy
to show that all local minima of this objective function correspond to legal
colourings. Although this evaluation function function does not explicitely
count

�
, the first term gives a bias towards minimising the number of colour

classes, while the second will punish constraint violations, that are incurred
when reducing the number of colours too much; hence, it is hoped that

�
is

minimised as a “side-effect” of minimising this evaluation function [John-
son et al., 1991]. Additionally, the first term of � ���B� introduces a bias
towards unbalanced colourings rather than equal sized colour classes, due
to the use of the term � �HI �

?
.

In the Kempe Chain SA Algorithm, candidate solutions are restricted to
legal colourings, i.e., at each local search step no edge has its endpoints in a
same colour class. In this case, the evaluation function is reduced to

� ���B� � �
G

�
I
	 9 � �JI �

? #

An additional, major difference to the previously described Penalty function
SA Algorithm is the use of a Kempe chain neighbourhood, which at each
step modifies the colour of various vertices in a subgraph of

�
. A move in

the Kempe chain neighbourhood is generated as follows.

10.1. GRAPH COLOURING 367

Figure 10.2: Illustration of the Kempe chain neighbourhood for GCP. The
marked set of blue and red coloured vertices are connected by a path, form-
ing a Kempe chain and exchange their colours in one local search step.

� Randomly choose a non-empty colour class
�'I

, a vertex
, / �JI

, and
a non-empty colour class

� � , such that one can build a Kempe Chain
that contains vertex

,
;

� let
� �JI � be the maximally connected subgraph that contains vertex

,
and only vertices of colour classes

�'I
and

� � ; ��� I � is also called a
Kempe chain;

� swap the colours � and � for all vertices in
��� I � .

Figure 10.2 illustrates a Kempe chain move. Note that full Kempe chains,
i.e. chains comprising all vertices of

�'I
and

� � , are avoided, because they
would lead to a pure renaming of vertices.

The initial solution in the Kempe Chain SA is generated by the sequen-
tial algorithm, a constructive heuristic that assigns colours to vertices in
some given order and at each step a vertex is assigned to the colour class
with the lowest possible index.

Finally, the Fixed-
�

SA Algorithm solves a series of GCP instances with
a fixed number of colours,

�
, in a way analogous to how SLS algorithms

are often applied to MAX-CSP (see Section 7.3 for an overview of SLS al-
gorithms to MAX-CSP.). If for a specific

�
, a

�
-colouring is found,

�
is

reduced by one and the algorithms searches for a
� � �

-colouring of the

368

graph. In this approach the evaluation function only measures the number
of edges with endpoints having the same colour, i.e., the number of violated
edge constraints. A move is generated by first selecting a vertex involved
in a constraint violation uniformly at random and then assigning it to a uni-
formly at randomly chosen, different colour.

Experimental results with these three SA algorithms on a variety of GCP
instances based on random

��� � � , 	 � �
 , and flat graphs have shown that nei-
ther of them completely dominates the performance of the others. However,
it was observed that Fixed-

�
SA tended to achieve the best performance on

sparse graphs and the Kempe Chain SA Algorithm was better for denser
graphs. Interestingly, variants of truncated exhaustive search algorithms
where also shown to perform extremely well on some of the tested instances.

A Hybrid Evolutionary Algorithm for Graph Colouring

Among the currently most successful SLS algorithms for GCP we find the
Hybrid Evolutionary Algorithm (HEA). Like Fixed-

�
SA, HEA searches

�
-

colourings of a graph for fixed
�
; the optimisation variant of GCP can be

solved by repeatedly using this type of algorithm while iteratively decreas-
ing

�
. Candidate solutions in HEA are evaluated according to the number of

edge conflicts, i.e., the number of edges whose endpoints are assigned the
same colour.

The population in HEA is initialised by a greedy algorithm that con-
structs (infeasible)

�
-colourings based on a modification of the DSATUR

algorithm [Brélaz, 1979]. This construction heuristic is initialised with
�

empty colour classes. In each construction step, a vertex is chosen that has
the minimum number of allowed colour classes and the vertex is assigned to
the colour with the lowest possible index. Typically, this heuristic cannot as-
sign all vertices to colours such that a

�
-colouring results. Each unassigned

vertex is then assigned to a random colour class. Once a candidate solu-
tion is completed, it is improved by a Tabu Search algorithm, the same that
is also applied to solutions returned by a recombination and the mutation
operator.

In each iteration of HEA, one single candidate solution (offspring) is
generated through a recombination operator which combines two parents
that are chosen randomly according to a uniform distribution; the resulting
candidate solution is improved by an efficient Tabu Search algorithm and

10.1. GRAPH COLOURING 369

procedure ���������
	���
����������
input graph ����
����! "� , integer �
output solution #$
%'&
����(� or)
$+*-, ��.0/�.�1!
��2�(� ;
for 3 , �54 to 6 $+* 6 do$ I , �51�798�:<;�=>7@?BADCE
���� $ I �
end
#$
, ��89=GFH1G
��2��� $+* �
while (not 1I=�?�JK.0/L7M1I=M
������!FIN��) do$ 9 � $? , ��FG=GO�=HAP1Q��7@?>=G/R1QFS
��2��� $+* �$
, �T�
	EU�?>=HA>V@JW82
��2��� $ 9 � $? �$ � , ��1�798�:<;�=>7@?BADCX
��2��� $ �

if Y2
 $ �0�[Z\Y2
B#$ �
#$ � $ � ;

end$+*-, ��:HN^]M7M1I=G�^V>N[
���� $+* � $ �
end
return #$

end �����_���
	��
Figure 10.3: Algorithm outline of HEA for GCP; `RaBbdc �Qe � � � � �
denotes the individual from a population

� � with the best eval-
uation function value. (For details, see text.)

replaces the worse of the two parents. Different from typical Evolutionary
algorithms, HEA does not make use of a mutation operator. An outline of
the algorithm is given in Figure 10.3.

The main innovation by HEA is a particular recombination operator
called Greedy Partition Crossover (GPX). This crossover exploits the par-
tition representation of the GCP (and the candidate solutions) as a parti-
tioning of

�
into sets

� � 9!�$#$#$#:�!�HG &
, and tries to greedily transfer colour

classes of maximal size alternatingly from the two parents to the offspring.
GPX takes as its input two candidate solutions

��9 � � � 99 �$#$#$#:�!� 9G &
and�$? � � � ?9 �$#$#$#:�!� ?G &

and builds a new partition alternatingly selecting times
colour (sub)classes of each parent. At step � , � �����$#$#$#:� �

, it chooses in
parent

�<9
(if � is odd) or in parent

� ?
(if � is even) a colour class with the

370

maximum number of vertices to become colour class
� I

of the offspring;
after each step the vertices in the set

�'I
are removed from both parents. The

vertices that remaining unassigned are then added to a randomly chosen
partition.

The intuition behind the partition-based recombination is that the impor-
tant information to be transmitted to the offspring is which sets of vertices
belong to a same colour class in the parents, while the particular colour as-
signed to a vertex is not important. Intuitively, this is obvious, because a�

-colouring is unaffected by a permutation of the colours. The following
example illustrates how GPX works.

Example 10.2: Greedy Partition Crossover

Let us assume we have three colour classes and ten vertices. Parent one has
a partition �<92� � �����! "��=.��� & �:���"���.��� & �:�	�.��
.�$� � & &
and parent two a partition

�$? � � ���J���.���"��� & �:�����! "�$� � & �:�<=.���"��
 & & #
At the first step of GPX, the partition

� �����! "��=.��� &
of

��9
is copied to the

offspring candidate solution
�
�

and the vertices of this partition are deleted.
This results in candidate solutions

� � 9 � � ���"���.��� & �:�	�.��
.�$� � & & � � � ? � � �	�.���"��� & �:��� � & �:���"��
 & & � ���8� � �����! "��=.��� & & #
Next, the largest partition of

� � ? , �	�.���"��� & , is chosen and added to
�
�

and
again the corresponding vertices are deleted in both parents, resulting in

� � �9 � � ��� & �:�	
.�$� � & & � � � �? � � ��� � & �:���"��
 & & � ���	� � �����! "��=.��� & �:�	�.���"��� & & #
The next step leads, after copying colour class

�	
.�$� � & to
���

to

� � � �9 � � ��� & & � � � � �? � � ��� & & � ���2� � �����! "��=.��� & �:�	�.���"��� & �:�	
.�$� � & & #
At this point, the only remaining vertex

�
is assigned to a random colour

class in
���

.

10.2. THE QUADRATIC ASSIGNMENT PROBLEM 371

The candidate solutions obtained from GPX are improved by a Tabu Search
algorithm which uses a

�
-exchange neighbourhood consisting of all those

candidate solutions that are obtained by moving a single vertex from one
colour class to a different one (i.e., by assigning one vertex a different
colour). If the colour class of vertex

,
changes from

�'I
to
� � , it is forbidden

to assign colour � to vertex
,

in the next ��� iterations except such a move
would lead to an improvement over the best candidate solution seen up to
this point (aspiration criterion). Analogously to the Tabu Search algorithms
for the more general Constraint Satisfaction Problem (see Section 6.6), the
neighbourhood is restricted to vertices that are involved in some conflict,
i.e., that have the same colour as some adjacent vertex. Then, at each iter-
ation, a best possible non-tabu neigbhouring candidate solution is selected.
It should be noted that this Tabu Search algorithm is, when run as a stand-
alone algorithm on a time equalised basis, among the best available local
search algorithms for the GCP.

HEA was tested on large
��� � � , Leighton, and flat graphs and it was com-

pared to long runs of the same Tabu Search algorithm used within HEA.
Empirical results indicate that HEA achieves excellent performance, es-
pecially on large

��� � � graphs. For all instances (and number of colours)
tested it was (with only one exception) either much faster in identifying the
same

�
-colouring as the underlying Tabu Search algorithm or it found bet-

ter
�
-colourings. Furthermore, for the more structured flat graphs, HEA

was shown to perform very well. The excellent performance of HEA is
confirmed by the fact that for four 1,000 vertex graphs, three randomly gen-
erated

� � � � graphs and one flat graph, it was able to improve on the best
previously known colourings. In general, HEA appears to be currently one
of the best performing SLS algorithms for the GCP.

10.2 The Quadratic Assignment Problem

The QAP has been the subject of an enormous amount of research efforts
and, besides the Travelling Salesman Problem, it is one of the most studied
combinatorial optimisation problems [Çela, 1998]. It is of particular inter-
est in the context of SLS algorithms, which outperform all other types of
QAP algorithms by a very large margin. The QAP can best be described
as the problem of assigning a set of objects to a set of locations with given

372

distances between the locations and given flows between the objects, where
the may, e.g., correspond to the amount of material to be exchanged among
machines in a production environment. The goal then is to place the objects
on locations in such a way that the sum of the product between flows and
distances is minimal.

Formally, a QAP instance is specified by
�

objects and
�

locations,
where both the objects and locations are represented by integers from the
set � � �����$#$#$#%�-� &

, and two
� � �

matrices � �
 � I � � and � �
 ����� � , where
� I � is called the distance between locations � and � and �	��� is called the flow
between objects
 and

�
. (� and � are called the distance and flow matrix,

respectively.) The goal in the QAP is to find an optimal assignment, i.e., a
mapping � ��� �� � , from objects to locations such that (i) every object is
assigned to some location, (ii) every location is assigned at most one object
and (iii) the function

 � � �	�
�
�
I
	 9

�
�
� 	 9 �

I � ��� �
I
� � � � � (10.2)

is minimised. Here � � � � denotes the location of object � under assignment
� and the term � I � � � �

I
� � � � � intuitively represents the cost contribution of si-

multaneously assigning object � to location � � � � and object � to location
� � � � . In other words, given

�
, � and � , the objective of the QAP is to find

��� /������������'��
 � � � ��� / � � � � & , where � � � � is the set of all assignments
of objects represented by index set � to locations represented by the same
index set. In fact, given the problem constraints of the QAP, an assignment
� corresponds to a permutation of the objects.

Example 10.3: A Real-Life Quadratic Assignment Problem

As a real-world example of the QAP, consider the problem of optimising
the layout layout of a typewriter or computer keyboard. In this case, the
objects correspond to the letters of the alphabet and the locations to the
keys of a keyboard. In this problem are given the empirical frequencies of
letter pairs (e.g., �! #" gives the frequency that an “e” follows the letter “w”),
the empirically measured time required for pressing a pair of keys (e.g., � I �
is the time needed to press key “j” after having pressed key “i”), and the
optimisation objective measures the typing efficiency that corresponds to

10.2. THE QUADRATIC ASSIGNMENT PROBLEM 373

the total time required to type a typical text. Note that the flow and the
distance matrix are typically asymmetric matrices in this case. Intuitively,
in this case the objective function of the QAP measures the speed of typing
an arbitrary text.

This problem is called the Quadratic Assignment Problem because it can be
seen as an integer optimisation problem with a quadratic objective function.
Let � I � be a binary variable which takes value 1 if object � is assigned to
location � and 0 otherwise. Then, the QAP can be formulated as:

�����
�
�
I
	 9

�
�
� 	 9

�
�
� 	 9

�
�
G�	 9 � I � � G � � I G � � � (10.3)

subject to �
�
I
	 9 � I � � � � � ���$#$#$#:�-�

(10.4)

�
�
� 	 9 �

I � � � � � ���$#$#$#:�-�
(10.5)

� I � / � � �$� & � � � � ���$#$#$#%�-�
(10.6)

The constraints 10.4 and 10.5 enforce that every object is assigned to
some location and that every location is assigned exactly one object, re-
spectively; constraints 10.6 are the integrality constraints for the variables
� I � .

This formulation of the QAP corresponds to the so-called Koopman–
Beckman formulation [Koopmans and Beckmann, 1957]. Note that, as done
in the original paper by Koopman and Beckman, it is straightforward to in-
clude also a fixed assignment cost of objects to locations, which amounts
to adding a cost term �

�I
	 9�� I�
	 to Equation 10.8. Here, we use the formu-
lation without fixed assignment costs, because in the literature the variant
defined by Equations 10.8 and 10.3 to 10.6 is the most studied one. A more
general formulation of the QAP was introduced by Lawler [Lawler, 1963],
where a four-dimensional array of coefficients

� �
 � I � G � � is given and the
objective function becomes

 � � �@� �
�I
	 9 �

�
� 	 9�� I � � �

I
� � � � � . Clearly, a QAP

374

in the Koopman–Beckman formulation can be cast into the form proposed
by Lawler by setting

� I � G � � � I � ��
BG � .
The QAP is an

���
-hard optimisation problem [Sahni and Gonzalez,

1976]; even achieving approximation ratios of
� � � is

���
-hard. Fur-

thermore, it is considered as one of the hardest optimisation problems in
practice, since the size of QAP instances for which provably optimal so-
lutions can be found using complete algorithms is limited to around

� �
= � [Anstreicher et al., 2002; Hahn et al., 2001; Hahn and Krarup, 2000]. At
the time of this writing, the largest non-trivial QAP instance solved to op-
timality, instance ste36a, has only 36 locations [Brixius and Anstreicher,
2001; Nyström, 1999]; this has to be seen in relation to the state of the
art in complete algorithms for the TSP, where the largest instance that has
been solved to optimality comprises 15,112 cities. Despite the small size of
the instance, the computation times required are extremely high, taking ap-
proximately 180 hours of CPU time on a 800 MHz Pentium III PC [Brixius
and Anstreicher, 2001]. In contrast, the best performing SLS algorithms for
QAP typically require only a few seconds on a comparable machine to find
the optimal solution for this instance. Hence, in practice the only feasible
way to solve large QAP instances is to apply efficient SLS algorithms.

Applications and Benchmark instances

The QAP can be seen as an abstract model of a variety of practical lay-
out and location problems. Examples of problems that were formulated as
a QAP include backboard wiring [Steinberg, 1961], where computer com-
ponents have to be placed such that the total amount of wiring required
to connect them is minimised, hospital layout [Elshafei, 1977; Krarup and
Pruzan, 1978], where the goal is to place facilities of a hospital to buildings
such that the total amount of communication times distance is minimised,
a typewriter keyboard design [Burkard and Offermann, 1977], the problem
described in Example 10.3 or the printing of grey of a specific density [Tail-
lard, 1995] and many others [Burkard et al., 1998; Çela, 1998].

In the context of the numerous research efforts on the QAP and QAP
algorithms, a large number of benchmark instances have been used. Many
of these instances are available through QAPLIB, an online resource for
the QAP that comprises benchmark instances, several QAP solver imple-
mentations, and further information on the QAP. QAPLIB is accessible

10.2. THE QUADRATIC ASSIGNMENT PROBLEM 375

at www.seas.upenn.edu/qaplib/. The QAPLIB benchmarks stem from var-
ious classes of instances with strongly varying characteristics. It is well
known that the particular instance class and their corresponding charac-
teristics have a considerable influence on the performance of SLS meth-
ods [Taillard, 1995; Gambardella et al., 1999; Stützle and Hoos, 1999].
Generally, the QAPLIB instances can be classified into the following four
categories [Taillard, 1995]:

Class 1 Unstructured, randomly generated instances. In these instances,
the distance and flow matrix entries are generated randomly according
to a uniform distribution over a given range of values. These instances
are among the hardest for complete algorithms. Nevertheless, most
SLS algorithms find solutions within

� � ��
from the best known

solution quality relatively fast.

Class 2 Instances with grid-based distance matrices. In this class of in-
stances, the distance matrix stems from a

�89 � �3?
grid and the dis-

tances are defined as the Manhattan distance between grid points.
These instances have multiple global optima (at least 4 in case

� 904�
�3?

and at least 8 in case
�E9 � �3?

) due to the symmetries of the dis-
tance matrices. The flow matrices of these instances are generated
according to various distributions, but not necessarily uniform ones.

Class 3 “Real-life” instances. Instances from this class are “real-life” in-
stances from practical applications of the QAP like those described
above. The matrix entries of real-life QAP instances exhibit a clear
structure; in particular, the flow matrices have many zero entries and
the remaining entries are not uniformly distributed.

Class 4 Random “real-life like” instances. Most of the real-life instances
are of relatively small size. Therefore, Taillard proposed a new type
of randomly generated instances, where the matrix entries are gener-
ated in such a way that they resemble distributions found in real-life
instances [Taillard, 1995].

In addition, QAPLIB contains a number of additional instances, e.g., in-
stances from an instance generator with known optimal assignments [Li
and Pardalos, 1992] or instances that stem from encodings of weighted tree
problems [Christofides and Benavent, 1989].

376

Unfortunately, many of the QAPLIB instances are of relatively small
size (

��� � �) and do not appear to pose serious challenges to high perform-
ing SLS algorithms. In addition, QAPLIB does not provide sets of instances
with systematically varied characteristics, and hence does not support com-
prehensive studies of algorithm behaviour in dependence of instance fea-
tures.

To overcome these limitations, recent studies have proposed and used
a large number of additional instances. The largest instance collection has
been compiled by Stützle in the context of the research performed in the
Metaheuristics Network (see also www.metaheuristics.org). It comprises
instances of size between 50 and 500 with systematically varied character-
istics of the underlying distance and flow matrices. Large, randomly gener-
ated real-life like instances with up to 768 objects were proposed by Taillard
and are available via ina.eivd.ch/collaborateurs/etd/.

Several measures have been used to characterise QAP instances. One of
these is the flow dominance (fd), which is defined as the coefficient of vari-
ation of entries of the flow matrix � multiplied by 100, i.e., fd

� � �@� � � � ����� � � where ��� � 9� � � �
�I
	 9 �

�
� 	 9 � I � and 	
� ��� 9� � �H9 � �

�I
	 9 �
�
� 	 9 � � I � � ��� � .

A high flow dominance indicates that a large part of the overall flow is ex-
changed among relatively few items. Hence, randomly generated problems
according to a uniform distribution will have a rather low flow dominance,
whereas real-life problems, in general, have much higher flow dominance
values. The distance dominance can be defined analogously. Another fea-
ture that has been used to characterise QAP instances is the sparsity of the
flow or distance matrix, defined as

� � � ��
 �<� ?
, where

��

is the number of

zero-entries in the given flow or distance matrix.

Analyses of the search spaces of given QAP instances have shown that
the different problem characteristics also translate into different search space
characteristics. In general, real-life and real-like instances typically show a
much larger fitness-distance correlation than class 1 instances [Stützle and
Hoos, 2000]; in fact, FDC values for instances from class 1 are close to
zero. Similarily, systematic variations in autocorrelation lengths have been
reported between instances from the different classes [Merz and Freisleben,
2000a].

10.2. THE QUADRATIC ASSIGNMENT PROBLEM 377

Reactive Tabu Search for QAP

Most ‘simple’ SLS algorithms for the QAP are based on a 2–exchange
neighbourhood that contains all assignments that can be obtained by swap-
ping the locations of two objects, i.e., � � � � � � � � � ���
 � � ��
 4� ��� � � �
 �	�
� ���B��� � � ���B�2� � �
 � ��� � (� �/ �
 � � & ��� � � � �2� � � � � � & . This neighbourhood
provides the basis for the well-known Reactive Tabu Search algorithm for
the QAP (RTS-QAP).

The initial solution of RTS-QAP is a random assignment generated ac-
cording to a uniform distribution. RTS-QAP can be seen as an extension of
a simple best-improvement search procedure that uses the objective func-
tion of the QAP for evaluating candidate solutions. (It may be noted that by
using various speed-up techniques, including caching of the � -evaluation
of earlier iterations, each best-improvement search step can be performed in
time � �*�

? �
after the search has been initialised in time � �*�

C �
.) The tabu sta-

tus is associated with atomic assignments of individual objects to locations.
A search step is tabu if both objects
 and

�
involved in the respective ex-

change would become assigned to a location that they occupied in the most
recent ��� iterations. At any time, a search step that leads to an improvement
in the incumbent candidate solution can be performed regardless of its tabu
status (aspiration criterion).

During the search process, RTS-QAP dynamically adjusts the most crit-
ical parameter of this basic tabu search procedure, the tabu list length tl.
Furthermore, an escape mechanism is triggered when severe search stagna-
tion is detected. The mechanism used for dynamically adjusting tl is based
on the search history. More specifically, RTS-QAP stores all the candidate
solutions encountered in the search trajectory since the last escape phase
(or search initialisation) together with some additional information, such
as the iteration number or how often a given candidate solution has been
encountered (stored in variable � � " �) in a hash table (see, e.g., Chapter 11
in [Cormen et al., 2001]) to check whether the search process is cycling,
i.e., whether candidate solutions are revisited.

For the reaction mechanism, RTS-QAP uses the variables
� �

, the mov-
ing average of recurrences of candidate solutions in the search trajectory;
bdc	��
 , the number of iterations since the last change of the tabu tenure; and�#�

, which counts the number of frequently repeated candidate solutions.
These variables are initialised to zero at the start of the algorithm and after

378

procedure RTS-QAP(��� � ���)
input matrices

� ���
output permutation �
��� 	�
 ��
�
 ; ���� 	�� ; ����� 	��
while (not
�������
 ����
���� �!�"�#�%$�&'
����)() do

�+*,� 	.-/
���021�3�4�� �!�"����(
if (5�67�85�9�:;��0��%
<
�
<
 =%�>-)� �!�"�+*��"����() then

��� 	��+*
if ?�� �@(+AB?��C��@(then ��D	��

else
��� 	.EF-G5'�/0��H� �@(
����� 	I� end

end
return ��

end RTS-QAP

Figure 10.4: Outline of the RTS-QAP algorithm; for details, see text.

each application of the escape mechanism.

Figure 10.4 shows a high-level outline of the RTS-QAP algorithm. The
essential function for the reaction mechanism for parameter ��� is
/JXa
/KML"aGN a c � c ��O � b ,
which is given in Figure 10.5. Here, first the new candidate solution � � is
searched in the hash table. If this search is successful, the fact that with
� � a previously visited candidate solution is encountered indicates that the
search process may be trapped. There are two possible ways to react to such
a situation. As an immediate solution, one may increase the tabu tenure
c	� to avoid revisiting candidate solutions. This is done by increasing c	� by
a factor Increase; multiple such reactions lead to a geometric increase of
c	� and, hence, help to avoid revisiting candidate solutions. However, it still
may happen that a number of candidate solutions, which are stored in a set of
frequently revisited candidate solutions (FRS), are encountered many times;
this is taken as a sign that the search trajectory is trapped in a limited area
of the search space and the escape mechanism is triggered. In particular,
the escape mechanism is triggered if more than NR candidate solutions are
frequently revisited, where NR is a parameter of the algorithm set to three in
RTS-QAP. Technically, a candidate solution is considered “frequently vis-
ited” if it was encountered more than REP times since the last escape (or

10.2. THE QUADRATIC ASSIGNMENT PROBLEM 379

search initialisation).
However, if c	� is only increased, this may lead to a too strongly confined

search trajectory. To counteract this problem, occasionally the tabu tenure
is reduced by a factor Decrease; this is done, if more than

� �
iterations no

change of c	� occurred. Additionally, the tabu tenure is decreased whenever
a situation is encountered in which all possible search steps are tabu.

The escape mechanism first clears the hash table and the tabu status of
all tabu attributes, sets ���

� �
, and then applies a large random modification

to the current candidate solution. In particular, it applies
� � � � �
 � � � � ��

random search steps, where
 is a random number drawn according to a
uniform distribution in the interval
 � �$��� . In each of the steps, the pair of
objects to be exchanged is selected randomly according to a uniform distri-
bution ignoring the tabu status.

Experiments with RTS-QAP showed that it performs better than a strict
tabu search algorithm and the Robust Tabu Search [Taillard, 1991] for the
unstructured, randomly generated instances of Class 1. Further experiments
studied the role of the additional RTS parameters that are required to steer
the reaction mechanism; however, the essential point is that these parame-
ters are typically much less sensitive to particular instances than the origi-
nal parameter that is adapted. In fact, experiments with various parameter
settings showed that (i) the escape mechanism is important for achieving
optimal performance and that (ii) the parameter settings of Decrease and
Increase have only a minor influence on the performance of the algorithm,
if these were chosen within reasonable limits (Battiti and Tecchiolli recom-
mend values of 0.9 and 1.1, respectively). In general, RTS-QAP appears to
be particularly well-suited for solving unstructured QAP instances, where
it achieves state-of-the-art performance. However, on more structured in-
stances, it is often surpassed by hybrid SLS algorithms like the one pre-
sented in the following.

Population-based Iterated Local Search

One of the best performing Iterated Local Search algorithms for the QAP
is a particular population-based ILS extension. In the following, we will
first describe the underlying ILS algorithm (ILS-QAP) and then explain the
population-based extension.

ILS-QAP starts from a random assignment and applies a first-improvement

380

function checkRepetitions(�!�"� * �"���)
input candidate solution �!�"�@* , tabu tenure ���
output true or false

-/
��<5 � 	�-/
��<5����
�G���%
 -"
�
���� � 	.-'�G�)�/5�6	�;� -"6 3���
�� � � �+* (
if (revisited) do

5
�M	I5G=%� 0���
��':;���%
 -"
�
���������
<6M� �+* (
� *����� � 	�� *����� ��� % Increase No. repetitions of � *
if 5
��A�� �%$:;���%
 -"
�
���������
<6 then

������� -/
�� =��%
 �������)���'����� � �#���G5
��(
��� � 	���� �G&��C5��G�G� -'�
-/
��<5 � 	"!

end
if �+*�����$# : E&% then')()* � 	 ')()*,+ �+*

��� � 	B�������
if ��� #�- : then

��� � 	"!
return true % Execute an escape in this case!

end
else

 �7
<�G=��	��5G�.�;� -"6 3���
�� �H� �+* (
end
if (-/
��<5 # �#� or / � �@(10)

����� 	B��� ��2 �85��G�G� -'�
-/
��<5 � 	"!

return false
end checkRepetitions

Figure 10.5: Outline of the reaction mechanism in RTS-QAP. NR, REP and
Revisit Max are constants that are set to 3, 3, and 50, respectively in RTS-
QAP.

10.2. THE QUADRATIC ASSIGNMENT PROBLEM 381

2-opt local search procedure based on the same neighbourhood that is
used in RTS-QAP. One particularity of this local search procedure is that
the neighbourhood is scanned in a random but fixed order. Hence, even
when initialised with the same assignment, it may return different locally
optimal candidate solutions; in the context of the ILS algorithm, this has the
advantage that even after applying a relatively weak perturbation to a locally
optimal assignment � � , a subsequent local search is rather unlikely to return
to the same � � .

In order to achieve a performance improvement of this first-improvement
2-opt local search procedure compared to a best-improvement 2-opt
procedure that uses the same speed-up techniques as the best-improvement
search underlying RTS-QAP, it is essential to use don’t look bits that are
associated with each item (see also Section 8.2 on page 318). If during the
neighborhood scan for an item no improving move is found, its don’t look
bit is turned on (set to 1) and the item is not considered as a starting item for
a neighborhood scan in the next iteration. Whenever an item is involved in
a 2-exchange move and changes its location, the don’t look bit is turned off
again.

Each perturbation phase consists of a random
�
-exchange move. As

outlined in Section 318, the don’t look bit technique is integrated into the
perturbation by resetting to zero only the don’t look bits of those items
that change their location in the

�
-exchange move. In fact, this resetting

strategy of the don’t look bits results in an additional significant speed up
and, if

�
is not too large, it allows to increase strongly the number of lo-

cal searches that can be applied in a fixed computation time when com-
pared to the strategy of resetting all don’t look bits to zero. As in ba-
sic Variable Neighbourhood Search (VNS) [Hansen and Mladenović, 1999;
Hansen and Mladenovic, 2001], the value of

�
is dynamically modified dur-

ing the search. In particular, we vary
�

between two values
�

min and
�

max
starting at

�
min: If after the perturbation and the subsequent local search

no better candidate solution is found,
�

is increased by one; otherwise it is
set to

�
min. Whenever

�
reaches the value

�
max, it is reset to

�
min. An ex-

ception is made when starting the ILS: We start at
�

max and decrease
�

by
one after each iteration until we reach

�
min (backward VNS); only then we

change to the “forward” VNS. This mechanism for dynamically modifying�
makes the algorithm’s performance somwhat more robust compared to us-

ing a fixed value of
�
; this is particularly important, because there appears

382

to be no single fixed value for
�

that leads to very good performance across
a diverse set of instances.

The acceptance criterion selects the new assignment if and only if its
quality is equal to or better as as the previous locally optimal assignment;
hence, the ILS algorithm performs an iterated descent in the space of 2-
exchange local optima.

The population-based ILS extension of this algorithm, PBILS-QAP, fol-
lows, at least in principle, the same ideas as earlier population-based ILS
algorithm for the TSP (see Section ??, page ??ff.). In the QAP case, PBILS
applies to each assignment of the population one iteration of the ILS al-
gorithm described above. Then, the new population is determined by a
variant of the

� � ��� �
-selection that is frequently used in Evolution Strate-

gies [Schwefel, 1981]. In the original
� � ��� �

-selection, � is the popula-
tion size and

�
the number of offspring (in PBILS-QAP, we have � � �);

then the new population is comprised of the � best out of � ���
candidate

solutions. This selection mechanism strongly favours the best candidate
solutions and can hence easily lead to premature convergence of the pop-
ulation and subsequent search stagnation. In order to avoid this, we apply
two additional diversification techniques. Firstly, when selecting the sur-
viving assignments that will comprise the next generation, the � ���

given
assignments (current population + offspring) are considered in the order of
their solution quality. Before inserting an assignment � into the popula-
tion, first the distance to each of the assignments that are already included
in the population is measured. Here, we define the distance between two
assignments � and � � to be the number of objects that are placed on distinct
locations in � and � � , i.e., � � � � � � � � � � � � � � � � 4� � � � � � & � . This is a
direct extension of the well-known Hamming distance for bit strings. An
assignment is inserted into the population if the minimum distance to any
of the assignments already included in the population is larger than some
threshold distance ��� . In fact, we vary ��� dynamically during the run of
the algorithm by subsequently lowering the actual value of ��� during a run
up to some lower, minimum value � min. This ensures that a high degree of
diversification is achieved in early stages of the search process. Secondly,
PBILS-QAP uses a restart operator that applies a strong perturbation to all
the candidate solutions of the current population; this restart is invoked if
no improved assignment is found for a number of iterations or the average
distance between the elements in the population is below some threshold

10.2. THE QUADRATIC ASSIGNMENT PROBLEM 383

value.
PBILS-QAP shows better performance than several of the population-

based ILS variants described in Section ??, ILS-QAP, and several other ILS
variants that use only a single candidate solution ??. Experimental results
with PBILS-QAP have shown that it is a state-of-the-art algorithm for real-
life and real-life like QAP instances [Stützle, 1999]. In fact, an extensive
experimental evaluation of several metaheuristics for the QAP in the context
of the metaheuristics network (see www.metaheuristics.org) has shown that
PBILS-QAP performed best across a large set of QAP instances.

Generalisations and Related Problems

Several variants and generalisations of the QAP can be found in the litera-
ture. For example, the Bottleneck QAP is a variant of the standard QAP in
which the goal is to minimise the objective function

��!� � �2� ����� � � I � � � �
I
� � � � � �

� � � � � � � & # (10.7)

That is, in the Bottleneck QAP one tries to minimise the maximum cost
instead of the sum of the costs. The Bottleneck QAP first arose in the back-
board wiring application of Steinberg [Steinberg, 1961] in cases where the
goal is to minimize the maximum length of wires.

In the Quadratic Semi-assignment Problem (QSAP), ��� �
locations

are given and the goal is to assign all objects to locations such that (i) every
location is assigned at least one object and (ii) such that the sum of the flows
between the objects times the distances between the objects’ locations is
minimized. The QSAP is

���
-hard and apparently difficult to solve [?]; a

Tabu Search approach to the QSAP is proposed in [W. Domschke, 1992].
The Biquadratic Assignment Problem (BiQAP) is a generalisation of the

QAP to a quartic assignment problem, where two four-dimensional matrices� � � � � � �
matrices � � � � I � G � � and � � � �����	��
 � are given and, under

the straightforward extension of the assignment constraints the function

 � � �	�
�
�
I
	 9

�
�
� 	 9

�
�
G�	 9

�
�
� 	 9 �

I � G � ��� �
I
� � � � � � � � � � �

G
� (10.8)

has to be minimised. The BiQAP arises in the design of Very Large Scale
Integrated (VLSI) sequential circuits. Burkard et al. [Burkard et al., 1994]

384

give a detailed description of the VLSI design problem that leads to the
BiQAP. In addition, they investigated lower bounds for the BiQAP but found
that these still left a large gap to the optimal solution and concluded that
complete algorithms are likely to perform extremely poorly on the BiQAP [Burkard
et al., 1994]. Therefore, several SLS algorithms were proposed for the
BiQAP, including iterative improvement algorithms, Simulated Annealing,
Tabu Search (all these were implemented by Burkard and Çela [Burkard and
Çela, 1995]) and GRASP [Mavridou et al., 1998] and tested on randomly
generated instances with known optimal solutions based on a generator de-
scribed in [Burkard et al., 1994]. Of the SLS algorithms tested, the GRASP
appears to return the best quality solutions, however, at the cost of substan-
tial computation times.

10.3 Set Covering

The Set Covering Problem (SCP) is a well-known combinatorial optimi-
sation problem with a large number of applications. Given a finite set
� � � � 9%�$#$#$#:� ��� & and a family

� � ���29%�$#$#$#%��� � &
of � of subsets of � that

covers � , i.e., every element of � appears in at least one set in
�

. In the
minimum SCP, the goal is to find a minimum size subset � � � � that covers
� , i.e., to find � � / �����������'��� ���	� � � ��
 � � � & . In the weighted
SCP, additionally a weight function ��� � ���
 �

is given that assigns a
positive weight (or cost) to each element of F, and the objective is to find
a set cover

�
with total minimal weight, i.e.,

� � / �����������'� ��������� � � � �
� � � ��
 � � � & . Clearly, the minimum SCP can be seen as a special
case of the weighted SCP: Every minimum SCP instance is equivalent to a
weighted SCP instance in which all elements of

�
have the same weight.

For that reason, the minimum SCP is also know as the unicost SCP. In the
remainder of this section we will mainly focus on the more general weighted
SCP, which in the following we simply refer to as the SCP.

Frequently, the SCP is formalised as an integer programming (IP) prob-
lem. In this case, a variable � I is associated with each subset

�EI
and � I+� �

indicates that subset
�EI

is chosen to be in the current candidate cover � ,
while � IE� � indicates

�+I �/ � . Each set
�+I2� � / �����$#$#$#:�-� & � is represented

by a column in a � � �
matrix � � � � � I*� , with � � I ���

if � � /��+I and
� � I � � otherwise. Intuitively, each row of � corresponds to an element of

10.3. SET COVERING 385

� and we say that a column � covers a row � if element � is contained in
subset

�+I
, i.e., � � I@���

. Furthermore, let
� I@� � � �+I*� , the weight of

�EI
, be

the cost associated to having a column in a solution. The SCP can then be
represented by the following integer programming problem:

�����
 � � �2�
�
�
I
	 9 � I � � I (10.9)

subject to �
�
I
	 9 � � I � � I � � � � ���$#$#$#:� � (10.10)

� IE/ � � �$� & � � ���$#$#$#%�-�
(10.11)

The constraints 10.10 enforce that each element of � (i.e., each row of �)
is covered by at least one element of � (i.e., by a column � of � for which
� I � �

), and the integrality constraints 10.11 specify the domains of the � I .
Most of the literature on SLS algorithms for the SCP uses the IP for-

mulation; hence, in the following, we will follow the same convention and
refer to the elements of � as rows (of the matrix �), to the subsets

� I
as

columns, and to the weights � �
�+I*�

as column costs. Consequently, we say a
given column � covers a row � if

�EI
contains element � � , i.e., if � � I � �

.

Example 10.4: Set Covering Problem

Consider the following example of a minimum set covering problem, with
� � � � � � � � � � �����	
'� � & and

� � ���	9!�$#$#$#:���E; &
defined as follows:

�	9 � � � � � �	
'� � &
�E?�� � � � � � � &
�EC�� � � � � � � &
�+A � �����	
'� � &
�ED�� ��
'� � &
�E;�� � � �	
 &
� ��� � � &

Notice that
�E?

and
�ED

are a proper subset of
�29

, which is also the largest of
the sets

�+I
. However, the only possible solution that includes

� 9
, which is

386

�<9 �����	9!���EC ���+A ���E; &
, has a cardinality of four, while an optimal solution

requires only three subsets.

In the integer programming formulation, this SCP instance is represented
by the matrix

� �

���������
�

� ����� � � �� ����� � � �
� � ��� � � �
� � ��� � � �
� � ��� � � �� � ��� ��� �� �	��� �	� �

���������

where the columns corresponding to the
�8I

contained in a particular optimal
cover are shown in boldface. Note that the first column of � contains entries
� � I � �

for the four elements of
�29

, � � � �	
 and � . This leads to the following
integer programme (the indicator variables � I that have value 1 in an optimal
solution are printed in boldface):

�����
 � � �2�
�

�
I
	 9 � I

subject to

� 9 � � ? � ��� � �
� 9 � � ? � ��� � ���� � ���� � � � � ���� � �
� 9 � ��� � � D � ��� � �
� 9 � � ? � ��� � � D � �

(10.12)

� IE/ � � �$� & � � � ���$#$#$#:���
It may be noted that this SCP instance has two optimal covers; although
one of these covers each element of � exactly once and the other covers

10.3. SET COVERING 387

one element twice, both have the same objective function value (number of
subsets

�+IE/ �
) and are hence equally optimal.

The SCP is an
���

-hard combinatorial optimisation problem. In the case of
the minimum SCP, an approximation algorithm exists that is guaranteed to
return a solution that is at most by a factor of

� ��� � � worse than the min-
imum number of sets need to cover � [Johnson, 1974b]; the same bound
also holds for the weighted case [Chvátal, 1979]. However, even for the
minimum SCP, it can be shown that approximating it within a logarithmic
factor is

���
-hard[Raz and Safra, 1997], i.e., there does not exist an algo-

rithm that returns a solution that is only worse by some constant factor than
the optimal solution.

Applications and Benchmark instances

The SCP has many important real-world applications ranging from airline
crew scheduling [Housos and Elmoth, 1997], driver scheduling in public
transportation [Lourenço et al., 2001], and scheduling and production plan-
ning in several industries [Vasko and Wolf, 1988], which can all be modelled
as SCP instances. How these application problems are mapped onto the SCP
is illustrated in the following example.

Example 10.5: SCP in Crew Scheduling Applications

In this example, we outline how a particular problem that arises in the
context of scheduling crews in the airline industry can be formulated as
a weighted SCP. The problem is, given a timetable of flight legs, to assign
a crew to each flight leg so that the overall cost of a solution is as low as
possible. Each crew has a home base, and a schedule for a crew comprises
a series of flight legs that start and end at its home base. A possible sched-
ule has to obey legal and contractual rules such as prescribed rest times or
maximum working times.

To solve the problem of finding optimal schedules that cover every flight
leg, first a large number of possible schedules are generated for each crew
and their costs are computed. Such a schedule is also called a pairing, i.e.,
a pairing is a sequence of flight legs that can be performed by a single crew.

388

Second, a subset of the generated schedules is selected such that every flight
leg is included in at least one pairing and the total cost is minimised. Obvi-
ously, every flight leg needs to be covered, since there must be at least one
crew for each flight leg; however, it is possible that a flight leg is covered
several times and one crew is simply travelling on a flight as passengers. In
real applications, instances with up to a few thousand flight legs and hundred
thousands of possible schedules may be obtained [Wedelin, 1995b].

As can be expected, in this application, the cardinality of each of the sets�+I
, i.e., the number of non-zero entries in each column, is typically rather

small. In the IP formulation, this leads to matrices � with very low density,
i.e., matrices that contain a very small fraction of non-zero entries.

The application relevance of the SCP is witnessed by the fact that many
commonly used benchmark instances stem from real-world SCP applica-
tions, including the benchmark set introduced by Balas and Carrera [Balas
and Carrera, 1996], which is derived from applications in the airline indus-
try (aa*) or bus companies (bus*). The instances range in size from 105
to 681 rows (items in �) and from 2241 to 9524 columns (given subsets�+I@/ �

). As typical in most “real-world” SCP applications, the density of
the matrices is low, ranging between 0.51% and 4.11%, which reflects the
fact that the sets

�EI
are small compared to � .

Another prominent set of benchmark instances stems from the FASTER
(Ferrovie Airo Set covering TendER) competition, which was organized by
the Italian railway company; these instances are derived from a real-world
set covering problem arising in railway crew scheduling applications. The
smallest of the seven instances has 507 rows and 63,009 columns, while the
largest comprises 4872 rows and 968,672 columns. These instances also
show some particularities as all column costs are either one or two and a
column covers at most 12 rows.

Several SCP instances from crew-scheduling applications in the airline
companies were proposed by Wedelin [Wedelin, 1995a]. The original in-
stances were reduced by a preprocessing stage that eliminates columns and
/ or rows based on some simple criteria. The resulting instances range from
as few as 29 rows and 157 columns to 1,585 rows and 105,804 columns.
The matrix density drops from 8.2% for the smallest instance to 0.3% for

10.3. SET COVERING 389

the largest one.
Algorithms for the SCP are also often tested on randomly generated

instances. The most widely used set of such instances is available from
ORLIB at http://mscmga.ms.ic.ac.uk/info.html; it comprises instances from
200 rows and 1,000 columns up to 1,000 rows and 10,000 columns. These
instances are randomly generated in such a way that every column covers
at least one row, i.e. none of the

�8I
is empty, and every row is covered by

at least two columns. The column costs are randomly generated integers
from the interval
 ���$� � � � . The densities of these instances vary between
2% and 20%. In addition, one set of relatively small unicost instances with
50 rows and 500 columns is available. Interestingly, results from a recent
study indicate that these randomly generated instances differ from instances
derived from real-world SCP applications in terms of their search space
characteristics [Finger et al., 2002].

Iterated Greedy (IG) Algorithms

The first heuristic approaches to the SCP were greedy construction heuris-
tics [Chvátal, 1979; Balas and Ho, 1980], which iteratively add columns
(i.e., subsets) to a partial candidate solution until all rows (i.e., elements of
�) are covered. Greedy construction heuristics are also underlying some of
the currently best performing SLS algorithms for the SCP that can be seen
as Iterated Greedy heuristics [Pranzo and Stützle, 2003].

The main idea behind IG is to alternate construction search phases with
destruction phases, during which some solution components are removed
from a complete candidate solution. At the end of each construction phase,
a complete candidate solution

���
is obtained, and — analogously to Iterated

Local Search (ILS) — an acceptance criterion is used to decide whether the
search constinues from this new complete candidate solution or from the
one that served as the starting point of the most recent destruction phase.
(An outline of IG is shown in Figure 10.7.)

IG has strong analogies to Iterated Local Search (ILS): the construction
and destruction phases in IG correspond to the local search and perturba-
tion phases in ILS, respectively. Obviously, this general IG scheme can be
improved and extended in various ways, e.g., by adding an additional local
search phase. Furthermore, the performance of any algorithm based on this
scheme strongly depends on the heuristics and selection methods used in the

390

procedure
� c+a �!� c+a���� � a@a���� �Qe � �

input problem instance
e � /�� � , objective function

 �QeE�
output solution 	� /�
>�Qe � � or �� � � ���#� c �Qe � �
	� � � �
while not c+a � ����� � c+a �Qe � � b � do� �� � �2aBbdc ��

 c ��O ��� J � bHa �Qe � � �B�� � �
 O � bdc ��

 c ��O ��� J � bHa �Qe � � � �� �

if
�
 ��� � � �
 � 	�B� �
	� � � � � �

end� � �

@aGN c �Qe � � b � b � �
end
if 	� /�
 � then

return 	�
else

return �
end

end
� c+a �!� c+a���� � a@a����

Figure 10.6: Algorithmic outline of Iterated Greedy (IG). (For
details, see text.)

construction and destruction phases as well as on the acceptance criterion.
Jacobs and Brusco proposed the application of an IG heuristic to the

SCP (IG-JB) [Jacobs and Brusco, 1995]. (The authors actually refer to
the algorithm as a Simulated Annealing heuristic, however, a description
of the approach as an IG algorithms appears to be more appropriate.) In
the case of the Weigthed Minimum SCP, the candidate solutions are covers
of the given set � . As previously explained, these covers as well as the
partial covers that represent partial candidate solutions can be equivalently
represented as sets of columns of the matrix � from the IP formulation of
the given SCP instance. In the following we will use this representation
of partial covers. The core of the IG-JB algorithm follows the general IG

10.3. SET COVERING 391

outline as shown in Figure 10.7; however, after each construction phase an
additional procedure L"a ��O�� a L"a��
�� � ��� c � O �
���� b is applied to eliminate
redundant columns from the cover � � . A column � becomes redundant if
all the rows covered by it are also covered by one or more columns (i.e.
elements of � � that are added later during the construction process. In par-
ticular, L"a ��O�� a L"a��
�� � ��� c � O �
���� b examines the columns of the solution
in nonincreasing order of their cost and it is checked, whether a column can
be removed without resulting in an unfeasible solution.

The initial solution in IG-JB is generated using a greedy construction
heuristic based on an algorithm by Balas and Ho [Balas and Ho, 1980].
This greedy construction heuristic assumes that all columns are ordered ac-
cording to their cost values in nondecreasing order. It then iterates through
the following two steps until all rows are covered:

1. Randomly select a currently uncovered row � according to a uniform
distribution

2. Add the lowest cost column � that covers row � .

Once a cover is constructed, redundant columns are eliminated using proce-
dure L"a ��O�� a L"a��
�� � ��� c � O �
���� b .

The procedure DestructionPhase iteratively removes a fixed number of� 9 � � �5� columns from the current cover, where
� 9%� � � � 9 � �

is a
parameter and � �5� is the number of columns in a cover

�
. During this

process, the columns to be removed are chosen uniformly at randomly from
the remaining elements of � .

Next, in procedure ConstructionPhase a complete candidate solution is
regained as follows: First, a candidate set is built that consists of all columns
with cost less than

� ? �
 � � � , where
� ?$� � ?
 � is a parameter and

 � � �
is the objective function value of cover � before invoking the destruction
phase. The parameter

� ?
has a direct influence of the size of the candidate

set. Note that if the candidate set is too small, there is a risk to never find
an optimal cover. Second, for each of the columns in the candidate set the
cover value �

I � � I � � I is computed, where � I is the number of rows covered
when adding column � to the current partial cover. In other words, the cover
value gives the unit cost of covering one additional row. Last, a column
with minimum cover value � min is added to the partial solution; if there is
more than one column with minimum cover value, one of them is chosen

392

uniformly at random. These steps are iterated until a complete candidate
solution, i.e. a cover of � is obtained.

Finally, the acceptance criterion in IG-JB is taken from Simulated An-
nealing: If

 ��� � � �
 ���B�
,
� �

becomes the new incumbent solutions, other-
wise

� �
replaces

�
with a probability of � ��� � �
 ��� � � �
 ���B� ����� �

, where
�

is
the temperature parameter. For the acceptance criterion a standard geomet-
ric cooling schedule is applied.

Computational results show that IG-JB outperforms an earlier proposed
Lagrangian heuristic for the SCP by Beasley [Beasley, 1990], but it is now
outperformed by more recent SLS algorithms for the SCP [Brusco et al.,
1999; Caprara et al., 1999; M. Yagiura and Ibaraki, 2001], including the
IG-MS algorithm presented in the following.

The IG Algorithm by Marchiori and Steenbeck (IG-MS)

Another variation on an Iterated Greedy heuristic was proposed by Mar-
chiori and Steenbeck [Marchiori and Steenbeek, 2000a] (IG-MS). In addi-
tion to the standard procedures of IG, IG-MS uses (i) a procedure Recom-
puteCore that occasionally computes a new core problem, i.e., a smaller
SCP instance containing only a subset of the columns that are most likely
to appear in optimal solutions, and (ii) an additional local optimisation pro-
cedure that tries to improve upon the solution returned by procedure Con-
structionPhase.

Before explaining the components of the IG-MS algorithm in detail, we
need to introduce the heuristic values that control the the construction and
destruction phases of IG-MS are defined. Let � be a current (partial) cover
and

��� ,3� � � be the set of rows that are covered by � ;
��� ,3� � � � � is the set of

rows that are covered by column � , but are not covered by any columns in
��� � � & (recall that � can be seen as a subset the columns in �). We denote
with

�
min

� � � the minimum cost of a column that covers row � . Then, for
IG-MS the cover utility

� ,3� � � � � that evaluates the usefulness of column �
with respect to a cover � is defined as

� ,3� � � � �	� �
� �
	 �
 �

I � � �
�
min

� � �

Note that if
� ,3� � � � � � � , then column � is redundant with respect to � .

10.3. SET COVERING 393

procedure Greedy Construction IG-MS
input partial (or empty) cover �
output complete cover �
while

� � is not a complete cover
�

do
� � ��� a ��a
 c�� � � � � �
� � � ��� �
while

� L"a ��O�� a � O �
���� b � do
� � ��� a ��a
 c�L"a ��O�� a � � �
� � � ��� � � &

end
end

return � end Greedy Construction IG-MS

Figure 10.7: Algorithmic outline of the greedy construction
heuristic of IG-MS. (For details, see text.)

� ,3� � � � � is used to define a selection utility
�$,3� � � � � that is defined as

�$,3� � � � �	�
�� �
	 � if � is redundant w.r.t. ���
� I � � ,3� � � � �!� otherwise;

(10.13)

The greedy construction heuristic of IG-MS iteratively adds columns that
are not in a partial cover � with maximum selection value. Additionally,
columns may be removed from � if the predicate RemoveColumns is true;
this is the case if � contains at least one redundant column; otherwise, with
a probability � � , which is set to 0.3 in IG-MS [Marchiori and Steenbeek,
2000a], RemoveColumns is true and false in the remaining cases (and if
� � �). The procedure SelectRemove selects a column of � with maximum
selection value.

Once the greedy construction finishes with a cover � that does not con-
tain any redundant column, � is locally optimised. The local optimisation
tentatively adds a column � to � trying to make at least two of the columns
in � different from � redundant in such a way that the sum of the costs of
the columns that can be removed after adding � is larger than

� I
. If such a

394

column � can be found, the cost of a cover can be reduced; such a column
� is also called a superior column. The local optimisation procedure first
generates a list of superior columns that are ordered according to nonin-
creasing gains and, second, tests these columns for possible improvements
(after adding the first superior column, the remaining ones need not anymore
be superior).

The destruction phase is implemented as a selection procedure from a
set

of elite columns;

comprises all columns that are in the incumbent

cover 	� (i.e., in the best cover seen up to a given point in the search pro-
cess) and for which

� ,3� � � � �
 � I
. For each of the columns in

the number

of times they occured in an incumbent cover 	� is counted; the destruction
procedure selects from

the columns that occured rarely in an incumbent

cover, while the other columns are selected independently with a probability
that is set to a value chosen randomly in the interval
 � # ��� � #
 � . In general,
this desctruction phase returns a partial cover that contains a subset of the
columns of the best cover seen so far; it therefore corresponds to an accep-
tance criterion that only accepts improved solutions. Finally, a procedure
RecomputeCore recomputes the SCP core problem, i.e., a candidate list of
columns that are considered for inclusion in a candidate solution. The core
problem is built by first including columns from the set

with a very high

probability, second adding columns � for which a row � exists that is cov-
ered by � and we have

�
 � � I � �
min , and third adding a column � that

covers a row � that is covered by less than
� 9

columns. The core problem is
re-computed every 100 iterations of the algorithm.

IG-MS was compared to several SLS algorithms including the CFT
heuristic [Caprara et al., 1999], one of the currently best performing algo-
rithms for the SCP. IG-MS found the best solutions obtained by CFT on al-
most all instances tested including Wedelin’s and Balas-Carrera’s real-world
instances and the randomly generated instances available from ORLIB; the
only differences were that IG-MS found on two instances slightly better best
solutions and on one slightly worse ones. The computation time required by
IG-MS for obtaining these solution qualities appears to be very competitive
to CFT; however, because of differences in the experimental protocols used
for evaluating the two algorithms by their respective authors, further ex-
perimental research is required to establish their relative performance more
precisely.

10.4. COMBINATORIAL AUCTIONS 395

Related Problems

There are a number of subset problems related to Set Covering. The Mini-
mum

�
-set Covering Problem is an SCP with the additional restriction that

the cardinality of all sets in subsets � I of � is bounded from above by a con-
stant

�
; this variant is approximable within �

GI
	 9 9 I � � �� [Duh and Furer,
1997].

The Set Partitioning Problem arises if each element of � must appear
in exactly one subset � I . In this case, for all � I � � � / �

we have that
� I � � � � � and

 �I
	 9 � I � � . In the integer programming formulation this
results in replacing the “

�
” in Equation 10.10 on page 385 by an equality.

Similarily to the SCP, the Set Partitioning Problem arises in a wide variety of
applications like crew scheduling and vehicle routing [Balas and Padberg,
1976]. Differently from the SCP case, only few SLS algorithms for the
Set Partitioning Problem were proposed in the literature [Chu and Beasley,
1998; Maniezzo and Milandri, 2002].

In the Set Packing Problem we are given a set � �������$#$#$#%� � & of �
elements and

�
subsets � I � � � ���$#$#$# �

as in the SCP case, but the goal now
is to find the maximum number of sets such that all chosen subsets � I are
mutually disjoint, i.e., for all � I � � � / �

we have that � I ��� � � � . Again the
problem can be extended to the weighted case by assigning to each set � I
a positive real weight

� I
and in the weighted Set Packing Problem the goal

becomes to maximise the total weight of the sets in the set packing. Note
that the integer programming formulation of the problem is analogous to the
SCP formulation except that we have to replace the “

�
” in Equation 10.10

by a “
�

”. The Set Packing Problem often arises in applications where as
much demand as possible is to be satisfied, however, without creating con-
flicts.

10.4 Combinatorial Auctions

Auctions play an important role in economics as well as in multi-agent sys-
tems, where auction mechanisms are used for resource allocation and task
distribution. The items that are auctioned range from household goods to
radio frequencies, network bandwidth, and pollution rights. In a combina-
torial auction, bids can be placed on bundles of items. In situations where a

396

complete bundle of goods is required for a certain purpose or task, the ability
to bid directly for a bundle instead of bidding individually on all respective
items allows bidders to minimise their risk of getting stuck with incomplete
bundles. At the same time, overlaps between such bundle bids makes it diffi-
cult to determine an assignment of items to bids that maximises the revenue
of the auctioneer. SLS algorithms are amongst the best-performing meth-
ods for finding optimal or very high-quality solutions to this Combinatorial
Auctions Winner Determination Problem.

In this section we introduce the Combinatorial Auctions Winner Deter-
mination Problem (CAWDP) and present two high-performance SLS algo-
rithms for solving this

���
-hard combinatorial optimisation problem, the

Casanova and the Exponentiated Subgradient algorithms, both of which
are inspired by high-performance SLS algorithms for SAT. We also discuss
some generalisations of CAWDP as well as related problems.

Winner Determination in Combinatorial Auctions

In a combinatorial auction, a seller has a set of items � � � � 9!�$#$#$#:� � � & to
be auctioned. Potential buyers value different subsets or bundles of items,
 ���

, and submit bids of the form � � �
8� � � , where � , the price of � , is a
positive real number that represents the amount the buyer is willing to pay
for bundle

. An instance of a combinatorial auction is then given by a set

of items � and a set of bids � .
An allocation is a set of bids � � � that are considered winning. For

a given allocation � , all bids � / � are called satisfied or winning, and
all � �/ � are called unsatisfied. An allocation � � � is called feasible
if it does not contain any pair of bids that require the same item, i.e., if4 � � / �5� � �.�
8� � � / � � � /
 &
 �

; the set of all feasible allocations for
given sets of items and bids is denoted � � � � O
 � � � � � . The value of a feasible
allocation � , denoted

� � � � � � � � � � , is defined as the sum of the prices of the
bids satisfied under � .

The Combinatorial Auctions Winner Determination Problem (CAWDP)
is defined as follows: Given a set of items � � � � 9%�$#$#$#%� � � & and a set of bids
� � � � 9%�$#$#$#:� � � & , find a feasible allocation � � with maximal value, i.e., find
� � / ������� ���8� � � � � � � � � � � � � / � � � � O
 � � � � � & � �����������'� � � � � � � � � � � � �
� / � � � � O
 � � � � � & . (Although it may be more intuitive to think of CAWDP
as a maximisation problem, following our general convention, we present it

10.4. COMBINATORIAL AUCTIONS 397

here as a minimisation problem.) Typically, the output desired from a win-
ner determination algorithm is a set of winning bids, i.e., a feasible alloca-
tion, as well as an assignment of items to winning bids; the latter is easily
and efficiently computed from the former. Here and in the following, it is
assumed that any items that are not assigned to a winning bid do not cause
any direct cost to the auctioneer; if this so-called free disposal assumption is
not met, the winner-determination problem can become substantially harder
to solve (see, e.g., [Sandholm et al., 2002]).

Example 10.6: Simple CAWDP Instance

Consider a combinatorial auction with items � � � � � � � � � � ��� & and the fol-
lowing set if bids, � :

� 9 � � � � � � & ���"# ���
� ? � � � � � � � � & �$�����
� C � � � � & �$�B�
� A � � � � � � & �$�B ��
� D � � � � & ��� �
� ; � � � � ��� & �$� � �

Note that the combined value of the two bids for the individual items � and
� is lower than the value of the bundle bid for both (� A), which reflects the
complementarity of these items.

Both, � 9 � � � ? � � A & and � ?@� � � 9%� � A & are allocations, but clearly, while � ?
is feasible, � 9 is infeasible because � ? and � A both require item � . The value
of � ? , � � � � � � � � � ?!� is

���"# �
, which is the maximal value over all possible

feasible allocations for this problem instance. Under the optimal assignment
� ? , bids � 9 and � A win, with items � and

�
assigned to � 9 and � � � assigned to

� A . Note that
�

remains unassigned under this assignment; there is a feasible
assignment that assigns all items to bids (� C � � � 9%� � C � � ; &), but its value is
lower than

���"# �
.

CAWDP can be represented as a Boolean Linear Program (BLP). In this
formulation, allocations are represented using a binary variable � � for each
bid � � / � that indicates whether � � is part of the current allocation (� � � �

)

398

or not (� � � �). Optimal allocations correspond to solutions of� � / ����������� ��� �
�
� 	 9 � � � � � � � � 9!�$#$#$#:� � � � / � � �$� &

�
and(� / � � �

�
� 	 9�� I � � � � � � &

where
� I � � �

if � /
 � for some
�
 � � � � � / � , and � otherwise. Using

this BLP formulation, standard solvers for BLPs or more general Integer
Programs (IPs) can be applied to the Combinatorial Auction Winner Deter-
mination Problem.

Winner determination in combinatorial auctions is an
���

-hard prob-
lem. It has been shown that no polynomial-time algorithm can achieve ap-
proximation ratios better than or equal to

� 9���

, where

�
is the number of

bids, for any �
 � (unless
��� ��� � �

;
� � �

is the class of problems
that can be solved in expected polynomial time by a probabilistic algorithm
with zero error probability) [Sandholm, 2002; 1999]. The best known ap-
proximation algorithm for CAWDP achieves a worst case approximation
ratio of � �*� � � � � �*�F� � [Halldórsson, 2000].

Benchmark Instances for CAWDP

Along with the development of CAWDP algorithms, various classes of ran-
dom instance distributions have been proposed and used for empirical per-
formance evaluations. These instance distributions are based on generative
probabilistic models of varying complexity. The simplest instance gener-
ators are based on simple distributions for bundle sizes and compositions
as well as prices. The design of complex generators, on the other hand,
is based on features of various types of real-world application domains of
combinatorial auctions.

Given a number of items and bids, simple random instance distributions
are obtained by using a combination of probability distributions for deter-
mining for each bid � � �
8� � � independently the bid length (i.e., the size
of

), the items in

, and the price � . In one of the simplest cases, the

so-called “uniform” (or constant) model, the same fixed number of items
are used in each bid and the bid price is chosen uniformly at random from
the interval
 � �$��� [Sandholm, 1999]. Slightly more complex models use
uniform or parameterised normal, binomial, or exponential bid-length dis-
tributions in combination with various price distributions, including uniform

10.4. COMBINATORIAL AUCTIONS 399

distributions over an interval whose size is linear in the length of the respec-
tive bid, and normal distributions [Sandholm, 1999; Fujisima et al., 1999;
Boutilier et al., 1999; Andersson et al., 2000]. In all of these cases, the
items in

are drawn uniformly at random from the set of all items (without

replacement).
The CATS (Combinatorial Auctions Test Suite) benchmark collection

contains a number of instance distributions that are modelled based on (po-
tential) real-world applications of combinatorial auctions as well as genera-
tors for the artificial random distributions mentioned above [Leyton-Brown
et al., 2000c]. The CATS distributions model problems involving paths in
space, such as combinatorial auctions for truck routes or network band-
width; spatial proximity problems that corrspond to situations arising in
real estate or drilling rights auctions; temporal matching problems, where
corresponding time-slices must be secured on multiple resources, e.g., ma-
chines; and temporal scheduling problems, which essentially correspond to
distributed job-shop scheduling problems with one resource (see also Chap-
ter ??). These parameterised distributions are defined based on random gen-
eration mechanisms for bundles and bid prices that are based on simplified
models of realistic combinatorial auctions applications.

Since their introduction, CATS benchmark instances have been used for
a number of empirical studies on CAWDP algorithms. There is some evi-
dence, however, that most instances from the “real-world” CATS distribu-
tions (particularly those from the matching and scheduling models) tend to
be relatively easy compared to similarly sized instances obtained from some
of the artificial random distributions, including the uniform model men-
tioned above; at the same time, other artificial distributions have been shown
to produce mostly easy instances [Leyton-Brown et al., 2000b]. Current re-
search uses regression learning techniques to investigate features that ren-
der CAWDP instances computationally hard for state-of-the-art algorithms
[Leyton-Brown et al., 2000b].

The Casanova Algorithm

There are many ways in which SLS methods can be applied to the Com-
binatorial Auctions Winner Determination Problem. One approach is to
search the space of feasible allocations in such a way that in each step an
unsatisfied bid � �/ � is selected and added to the current allocation � ,

400

after all satisfied bids in � that overlap with � have been removed from
� . Formally, this approach uses the neighbourhood relation defined by
� � � � � � ��� �F�
 � � � � ���/ � ��� � � � � �.�
 � � � � & � �.�
8� � � / � �
��
 � 4� � & .
It may be noted that this neighbourhood relation is not symmetric: in gen-
eral, if � � � � � � � does not imply � � � � � � � . Consequently, the search steps
in SLS algorithms based on this neighbourhood relation are typically not
reversible.

The class of SLS algorithms for CAWDP that are based on this neigh-
bourhood relation is known as CASLS. Casanova is currently one of the best
performing CASLS algorithms [Hoos and Boutilier, 2000]; it is conceptu-
ally very similar to Novelty

�
, one of the best-performing SLS algorithms for

SAT. Like Novelty
�

, Casanova is based on a randomised best-improvement
method with a limited form of memory; the evaluation function used in
Casanova measures the sum of the revenue per item over all bids in the cur-
rrently satisfied bids, i.e., � � � � � � � � � ��� � � �
 �H� �
8� � � / ��� ; [NOTE:
� � �	� � � � � denotes a multiset of elements � satisfying a given condition
P(x); this notation will be motivated and introduced early in the book
and used consistently throughout.] the value � � �
 � is also called the
score of bid

�
8� � � .
Casanova works as follows: The search process starts from an empty al-

location. Then, in each step, with probability
 N (walk probability), a cur-
rently unsatisfied bid is selected uniformly at random (random walk step);
with probability

� �
 N a bid is selected “greedily” based on the score and
age of each bid, where the age of a bid � , � � a � � � , is defined as the number
of search steps since � last became satisfied, or, if � has never been satisfied
since the last search initialisation, the number of steps since the search was
last initialised. In a greedy selection step, first all bids are ranked according
to their score. Then, either the highest ranked bid � 9 or the second-highest
� ? is selected as follows: if

� � a � � 9-� � � � a � � ?%� , select � 9 ; otherwise select
� ? with probability

� N (novelty probability) and � 9 with probability
� � � N .

After
� ��� � c+aGNEb steps, the search is reinitialised with an empty allocation.

After a total of
� �����#� � aBb such independent tries, the search is terminated

and the best allocation, in terms of total revenue, found throughout the entire
search process is returned as the search result.

Empirical studies have shown that compared to CASS [Fujisima et al.,
1999], a state-of-the-art systematic search algorithm for CAWDP at the time
when Casanova was developed, Casanova achieves superiour performance

10.4. COMBINATORIAL AUCTIONS 401

E

C
P

R
O

B
(

)

COND(
)

COND()

C
P

R
O

B
(

)

PROB(

)

GC

RW

PROB()
no

t R
, w

p

no
t R

, 1
−

w
p

wp

1−wp

R

R

Figure 10.8: GLSM model for Casanova; the restart predicate � is equal to
countm(maxSteps), GSLM state E initialises the search at the empty allo-
cation, GC performs a greedy Casanova step, and RW performs a random
walk step (see text for details).

on a broad range of benchmark instances, both in terms of the CPU time re-
quired for obtaining optimal solutions (without proving optimality) as well
as in terms of the solution qualities obtained for fixed run-time. Casanova’s
performance advantage is particularly pronounced for certain types of struc-
tured randomised instances that are obtained from encoding generalised
types of bids, such as so-called CNF and

�
-of bids that can directly express

substitutabilities between bundles of items, into standard CAWDP instances
[Hoos and Boutilier, 2000] (see also page ??). There is also limited empiri-
cal evidence that Casanova outperforms CPLEX, a state-of-the-art commer-
cial integer programming package, on various types of CAWDP instances
from the CATS benchmark suite [Schuurmans et al., 2001]. While the rela-
tive performance of Casanova compared to the latest systematic search algo-
rithms for CAWDP (e.g., Sandholm et al.’s CABOB algorithm [Sandholm
et al., 2001]) is currently unclear, it is reasonable to assume that there is
considerable room for improving Casanova’s performance by optimising its
implementation as well as the underlying SLS technique.

402

1−npnp

has min age not have min age
best bid best bid does

select best bidselect 2nd best bid

select best bid

Figure 10.9: Decision tree representation of a greedy Casanova step. Deter-
ministic and probabilistic choices are represented by black and white circles,
respectively; edges are labelled with the respective conditions and probabil-
ities. Black boxes indicate bid selection actions.

The Exponentiated Subgradient Algorithm for CAWDP

Like Casanova, the Exponentiated Subgradient Algorithm for the Combi-
natorial Auction Winner Determination Problem (ESG-CAWDP) is closely
related to a high-performance SAT algorithm, ESG-SAT (see Chapter 6,
page ??). ESG-CAWDP is a Dynamic Local Search Algorithm that as-
sociates a penalty weight

� c�N � � � with each given item � and performs an
iterative best improvement search in the space of all allocations; it uses a
neighbourhood relation under which two allocations � and � � are neigh-
bours if they differ in exactly one bid, i.e., � � � � � � � � � � � / ��� � � � �
� � � � & or � � � � � � � & � , and a modified evaluation function of the form� � � � � � � � � � � � � � �
8� � � / ��� � � � � c�N � � � ��O�� � � � � � � � � / � � , whereO�� � � � � � �
� � �.�
8� � � / � � � /
 & � �

is the “overdemand” for item �
under allocation � , and

� c�N � � � is the penalty for item � , which is adjusted
during the search. Any item � with

O�� � � � � � �
 � for a given allocation �
constitutes a conflict in � ; feasible allocations are those that have no con-

10.4. COMBINATORIAL AUCTIONS 403

flicts.
ESG-CAWDP works as follows. The search is initialised by selecting an

allocation � uniformly at random such that for any given bid the probability
that is contained in � is 1/2; furthermore, all item penalties are set to one.
Then, a series of best improvement steps is performed; in each of these
steps, one of the allocations � � that are direct neighbours of the current
allocation � and that have a maximal evaluation function value � � � � � � � � � �
amongst all the neighbouring assignments of � , is selected uniformly at
random. When this best improvement search reaches a local maximum w.r.t.� � , with probability � , the search is continued by selecting a neighbour of �
uniformly at random; otherwise, the local search phase is terminated.

After each local search phase, the item penalties are updated in a two-
stage process: First, each item penalty

� c�N � � � is multiplied by a factor � � �
I
� ,

where � � � �2� � � ��
if � is not involved in a conflict in the current assignment

� , and � � � � � O�� � � � � � � � � �� otherwise (scaling stage); � is a parameter
of the algorithm. Then, all item penalties are smoothed using the formula� c�N � � ��� � c�N � � � ��� � � � ���"� � � c�N , where

� c�N is the average over all item
penalties after scaling, and

�
is a parameter between zero and one. The al-

gorithm terminates after a given number of iterations of local search phases
and subsequent penalty updates have been peformed or a specified solution
quality has been reached.

The ESG-CAWDP algorithm as described here can be easily generalised
to arbitrary Boolean Linear Programming problems; an efficient implemen-
tation of this more general version, ESG-BLP, has been used for a perfor-
mance evaluation on various sets of CAWDP instances [Schuurmans et al.,
2001]. Empirical results indicate that on a range of CAWDP instances from
the CATS benchmark suite, ESG-BLP does not quite reach the performance
of Casanova, in terms of the CPU time or number of search steps required
for finding optimal solutions. ESG-BLP typically also falls short of the per-
formance of CPLEX, when comparing the CPU time required for finding
optimal quality solutions (without proving optimality). However, in many
cases, its performance appears to be reasonably close to that of CPLEX
and Casanova. Interestingly, ESG-CAWDP has been shown to outperform
both Casanova and CPLEX on sets of CAWDP-encoded SAT problems,
which suggests that for certain types of structured CAWDP instances, ESG-
CAWDP is the best-performing algorithm currently known. It is unclear,
however, whether similar performance advantages can be obtained for more

404

practically relevant CAWDP instances.

Generalisations and Related Problems

Combinatorial Auctions can be generalised in various ways. One of the
most straightforward generalisations allows multiple units of the same item
to be offered and bid on (see, e.g., [Leyton-Brown et al., 2000a]). In prin-
ciple, the corresponding Multi-unit Combinatorial Auctions Winner Deter-
mination Problem can be easily cast as a (single unit) CAWDP instance ac-
cording to our definition, by listing each unit of each item separately (after
disambiguating their representation), making CAWDP algorithms applica-
ble. A natural and more compact representation can be obtained by asso-
ciating quantities with all items, both in the set of available items, as well
as for the items requested within any bid. This representation can be easily
transformed into a BLP formulation very similar to the one for the single-
unit case, and the resulting problem instances can in principle be solved
using ESG-BLP. Generally, one would expect algorithms that work directly
on the compact representation of multi-unit combinatorial auctions to solve
these problems more efficiently than conventional CAWDP algorithm ap-
plied to the respective CAWDP-encoded instances; however, the extent to
which this is the case is presently unclear.

Other variants and generalisations of combinatorial auction problems
are obtained by considering different bidding languages, which allow the
bidder to express various types of preferences and valuations over bundles
of items. One example for such a generalised bidding language allows the
bidder to submit sets of bids that are connected by an XOR-constraint; fea-
sible allocations can then include no more than one bid from any such set
[Sandholm, 1999; Nisan, 2000]. Such XOR-bids allow bidders to express
valuations under which the value of a bundle is less than the sum of thhe val-
ues of its components or subsets (substitutability). Combinatorial auctions
with XOR-bids can be easily and efficiently encoded into standard combi-
natorial auctions using so-called dummy goods that are included in each set
of XOR-bids [Sandholm, 1999; 2002; Fujisima et al., 1999].

Another way of allowing bidders to express substitutabilities and other
forms of complex valuations is to consider bids in the form of propositional
formulae, whose atoms corresponds to items [Hoos and Boutilier, 2000;
Boutilier and Hoos, 2001]. In such logical bidding languages, prices can

10.5. DNA CODE DESIGN 405

be attached to the formulae comprising the bids as well as to subformulae,
and the value of a bid is determined based on the satisfaction status of its
respective formula and subformulae, where each item is satisfied if and only
if it is assigned to the respective bid (for details, see [Boutilier and Hoos,
2001]). Standard combinatorial auctions correspond to a case where each
bid is a conjunction of items, and prices are only attached to entire bids.
A slightly generalised logical bidding language allows so-called CNF bids,
i.e., conjunctions of disjunctions of items, which provide another mech-
anism for expressing certain substitutabilities [Hoos and Boutilier, 2000].
Logical bidding languages allow certain types of complex valuations to be
expressed substantiallly more concisely than standard combinatorial auc-
tions or combinatorial auctions with XOR-bids [Boutilier and Hoos, 2001].

Finally, there are various problems that are closely related to combina-
torial auctions. In combinatorial reverse auctions, a buyer wants to obtain
certain items at the lowest possible cost, and various sellers submit offers
(also called asks) for bundles of these items; the objective is to find a cost-
minimal set of offers that covers the need of the buyer [Sandholm et al.,
2002]. Reverse combinatorial auctions have important applications, e.g., in
procurement.

Combinatorial exchanges are a market mechanism that allow multiple
users (who may each buy, sell, or both) to submit bids and asks for bundles
of items; here, the objective is to label the bids and asks as winning and los-
ing such that the supply does not exceed the demand, and the surplus, i.e.,
the difference between the total value of the winning bids and the total value
of the winning offers, is maximised [Sandholm et al., 2002]. Combinatorial
exchanges can be seen as a direct generalisation of both, combinatorial auc-
tions and reverse auctions; hence, the same hardness and inapproximability
results as for the CAWDP problem apply to the problem of determination
winners in combinatorial exchanges.

10.5 DNA Code Design

DNA is one of the most important classes of biomolecules, as the genetic
information of all organisms is stored in the form of long strands of DNA.
At an abstract level, a DNA strand can be represented as a string over a
four-letter alphabet

� � � � � �>��� & ; hence, DNA strands can in principle en-

406

code any kind of information, which can then be processed using estab-
lished laboratory techniques. This provides the basis for various approaches
to biomolecular computation, nanostructure design, and molecular tagging.
DNA molecules also play a crucial role in many biochemical techniques,
including PCR (Polymerase Chain Reaction) and DNA Microarray technol-
ogy, both of which have countless applications in the biological and biomed-
ical sciences. Many of these applications require sets of short DNA strands
that satisfy certain combinatorial constraints. The problem of designing
such sets in many ways resembles well-known problems from coding the-
ory, particularly problems in designing error-correcting codes, and is there-
fore also known as DNA Code Design Problem.

In this section, we first introduce and discuss the problem of designing
DNA codes for various combinations of combinatorial constraints. Next,
we briefly outline some prominent applications of DNA codes and describe
widely used benchmark instances. Then, we introduce a recent, state-of-
the-art SLS algorithm that has been successfully used for improving the
best known results for various code design problems. Finally, we give a
brief overview of some related code design problems.

DNA Code Design Problems

A DNA (deoxyribonucleic acid) strand is a linear biopolymer that consist
of nucleotide subunits each of which is formed by a section of a sugar-
phosphate backbone and a nitrogenous base. In DNA, four different nu-
cleotides occur, labelled � ,

�
,
�

, and
�

according to the bases they contain
(Adenine, Cytosine, Guanine, and Thymine). Each DNA strand has two
chemically distinct ends, called the 5’- and the 3’-end. In the context of
this section, DNA strands can be represented as strings over the four-letter
alphabet

� � � � ��� � � & , where the left end of such a string corresponds to
the 5’-end and the right end to the 3’-end of the strand. We call such DNA
strands DNA words.

Hydrogen bonds can form between � and
�

as well as between
�

and
�

;
the base pairs � � � and

� ���
(as well as

�>� � and
� ���

) are called comple-
mentary. The complementarity extends to entire strands: two DNA strands
are complementary if one can be obtained from the other by replacing every
base by its complement and reversing the orientation of the strand. For-
mally, this is captured in the following definition:

10.5. DNA CODE DESIGN 407

Definition 10.1 (DNA words and complementarity)

A DNA word is a string over the four letter alphabet
� � � � ��� � � & .

The length of a DNA word � is denoted � �0� . The complement
of a DNA word � � � 9 � ? � � � � G �H9 � G is defined as
 O � N � � � �>�
� G � G �H9 � � � � ? � 9 , where � � �

,
� � � ,

� � �
, and

� � �
.

�

For example, for � � � � � � � � � � , � �0� � �
and
 O � N � � � �	� � � � � � � � � .

Note that the complement of a complement of a word � is always � itself,
i.e.,
 O � N � �
 O � N � � � � � � � ; furthermore, complementarity is symmetric,
i.e., � �
 O � N � � � � � if and only if � � �
 O � N � � � � .

Two complementary DNA strands can bond to each other; this process
is called hybridisation and leads to the formation of the well-known double-
helix structure. The complementarity between bases or entire DNA strands
also underly many important biological and technological processes involv-
ing DNA, such as protein biosynthesis, DNA replication, and genetic recom-
bination. Hybridisation can also occur between strands that are not perfect
complements of each other, i.e., in cases where one of the two strands differs
in some positions from the complement of the other.

A DNA code is a set of (typically short) DNA words that satisfies certain
constraints. The constraints reflect properties of the DNA strands that min-
imise the potential for undesired hybridisation interactions and maximise
the efficiency of desired interactions. In many applications of DNA codes,
one set of code words is used for representing information, while the set of
the complements of these words is used for performing certain operations on
the information-carrying strands, such as marking occurrences of a certain
piece of information � by means of hybridisation between all strands con-
taining � , and strands containing the complement of the representation of � .
The following constraints have been considered in a number of DNA code
design applications, particularly in DNA computing [Frutos et al., 1997],
where DNA words are used for representing the data being processed.

The Hamming-Distance Constraint, HD(�)
Any two words � 9!� � ? from the set have Hamming distance at least � ,
i.e., disagree in at least � positions. This constraint intuitively ensures

408

that any two words are sufficiently different to not be “confused” in
any hybridisation-based operation on specific words.

The Complement Hamming Distance Constraint, CHD(�)
For any two words � 9!� � ? from the set (where � ? can be identical
to � 9), the Hamming distance between � 9 and
 O � N � � � ?!� is at least
� . This constraint intuitively ensures that hybridisations between dif-
ferent code words or between multiple copies of a code word do not
occur; such hybridisations can, for example, greatly decrease the effi-
ciency of a DNA-based computation.

The GC Content Constraint, GCC(�)
Any word � in the set contains

�
or
�

in exactly
� � � � �0� � positions,

where � , � � � � �
, is a parameter. Since base pairings involving

�
and
�

are stronger (i.e., thermodynamically more stable) than those
involving � and

�
, fixing the

� �
content of all code words ensures

that the desired hybridisation between any word and its complement
is of approximately equal strength.

The problem of designing a DNA code for a given combination of con-
straints and word length can now be defined as a combinatorial optimisation
problem as follows:

Definition 10.2 (The DNA Code Design Problem (DNA-CDP))

An instance of the DNA Code Design Problem (DNA-CDP) for
a given set of constraints

�
on sets of code words is given by a

word length
�

; the objective is to find a maximum size set

of
DNA words of length

�
that satisfies all constraints in

�
. Note

that by using an objective function

 �
2� � � �
 � , this can be

formulated as a minimisation problem.
�

Note that in DNA-CDP, the candidate solutions are sets of DNA words, and
these sets are feasible if they satisfy all given constraints. Many applica-
tions of DNA-CDP, particularly in DNA computing, require DNA codes of
a certain size – this obviously corresponds to the decision variants associ-
ated with the DNA-CDP problem as defined here.

10.5. DNA CODE DESIGN 409

Example 10.7: A Simple DNA Code Design Problem

Consider the problem of designing a maximum size DNA code with word
length

� � �
given the constraints HD

� � �
, CHD

� � �
, and GCC

� � # ��� . The set
+9
comprising the DNA words

AGCTCTGT GACGTTTG TTACGCGT GGTAGGAT
TGTCATCG GCTTCCTA CCCAAAAG

is a solution to this problem instance. Note that the CHD constraint en-
sures that every word � from this set and its complement,
 O � N � � � � have
Hamming distance at least 6.

If the first word, � 9 � AGCTCTGT, is replaced by � � 9 � AGCTCTGA, a
DNA code is obtained that still satisfies the given GCC constraint, but there
are conflicts between the words � � 9 and � ; � GCTTCCTA (the Hamming
distance between those words is 5) and between � � 9 and � C � TTACGCGT
(the Hamming distance between � � 9 and
 O � N � � � C!� is 5).

In fact, the 7-word set given above is the best solution (i.e., the largest DNA
code) for this problem instance currently known. When increasing the word
length to

� ��� � , codes of size up to 41 are known. When relaxing the
HD

� � � and CHD
� � � constraints to � � �

, solutions with up to 112 words
can be obtained. Similarly, for word length

� � �
when only using the

constraints HD
� � �

and CHD
� � �

, DNA codes of size
� � are known.

Although code design problems that are related to DNA code design have
been studied extensively in coding theory, not much is known regarding
the theoretical complexity of constructing or approximating maximum size
codes for the combinatorial constraints considered here. In our formulation,
the space of candidate solutions for a DNA Code Design problem is doubly
exponential in the given word length,

�
. While codes up to certain sizes

can be obtained efficiently using construction methods such as the Gilbert-
Varshamov algorithm [?], empirical evidence indicates that finding optimal
or close to optimal solutions to DNA code design problems requires at least
exponential time in the length of the code words [Tulpan et al., 2002].

410

Applications and Benchmark Instances

Currently, there are three main application areas in which DNA Code De-
sign problems arise: DNA computing, DNA nanostructure design, and DNA
tagging in chemical libraries.

In DNA computing, DNA words are used for encoding information in
the form of DNA strands. There are two main approaches for using DNA-
based computation for solving suitably encoded combinatorial problems,
such as the Hamiltonian Path Problem or SAT: In the solution-based ap-
proach, most of the crucial steps of a computation happen in solution, i.e.,
in a situation where all DNA strands can move relatively freely in a liq-
uid. In the surface-based approach, some of the information-carrying DNA
strands are fixed to a surface and crucial computation steps involve exposing
this surface and the affixed DNA strands to solutions containing other DNA
strands or reactive agents, in particular specific enzymes that replicate or
degrade DNA strands under certain conditions. In both approaches, estab-
lished biomolecular methods such as sequence-specific enzymatic digestion
(i.e., strand cleavage), PCR (for strand replication), gel electrophoresis (for
length-specific separation of DNA strands), and DNA microarray assays,
are used to perform the steps of these computations.

In DNA nanostructure design, DNA codes are used for creating DNA
molecules that assemble into larger structures with well–defined properties,
such as 2d-crystals, cubes, cages, and simple nanomechanical devices. Such
DNA nanostructures can be constructed from building blocks consisting of
multibranched complexes formed by partial hybridisation between several
strands of DNA; these building blocks attach to each other via “sticky ends”,
i.e., free ends of single stranded DNA. In this context, DNA codes are used
for designing DNA strands that will assemble correctly and efficiently into
the multibranched complexes required for building larger structures with
specific properties, such as a specific 2d-crystal [Seeman, 1990].

Specific DNA nanostructures can be used for performing self-assembly
computations. The underlying idea is to create “DNA tiles”, i.e., multi-
strand DNA complexes with sticky ends, for encoding data as well as com-
putation rules. The tiles are designed in such a way that specific tiles can
assemble into larger structures via hybridisation between their respective
sticky ends. It is known that the self-assembly of such tiles into larger struc-
tures can simulate the computation of a Turing machine and hence perform

10.5. DNA CODE DESIGN 411

arbitrary universal computations. Similar as in nanostructure design, DNA
codes are used for designing tiles that combine in such a way that the cor-
rectness of the self-assembly computation is ensured [Winfree et al., 1998]

Sequence specific hybridisations between complementary strands of DNA
can also be used in the context of DNA tagging, a technique that uses DNA
strands as “molecular barcodes” for identifying and accessing specific el-
ements from chemical libraries that can encompass thousands of distinct
chemical compounds, such as protein sequences. Such encoded combina-
torial chemical libraries can be used, e.g., for identifying proteins that show
specific interactions with a target molecule – a key step in many approaches
to drug design. Combinatorial chemistry methods can be used to create
resin beads to which multiple copies of a candidate protein as well as of a
unique DNA tag identifying that protein are bonded. In this context, DNA
codes are used for designing DNA tags that can be effectively detected and
isolated based on correct hybridisation with their respective complementary
strands [Brenner and Lerner, 1992].

Finally, DNA codes can be applied in the design of DNA tags used in
universal DNA microarrays. Here, DNA tags are used in specifically de-
signed “adaptors” that allow the reliable and massively parallel detection
of arbitrary genomic sequences using the same universal DNA microar-
ray. Designing and synthesising these adaptors is substantially easier and
cheaper than creating a customised DNA microarray, and through the use
of carefully designed DNA codes, the universal microarray system can be
designed in such a way that the potential for errors due to mishybridisa-
tions is typically much smaller than when using customly designed DNA
microarrays [Gerry et al., 1999].

So far, the sets of DNA words used for these “real-world” applications
have been mostly constructed manually using ad-hoc methods that in some
cases are based on results from coding theory.

The SLS-THC Algorithm

The recent DNA Word Design algorithm by Tulpan, Hoos, and Condon
is based on a randomised iterative improvement search method similar to
WalkSAT, one of the best known algorithms for the propositional satisfiabil-
ity problem [Selman et al., 1994b; McAllester et al., 1997] (see Chapter 6,
page ??) and Casanova, one of the best-performing algorithms for the win-

412

ner determination problem in combinatorial auctions [Hoos and Boutilier,
2000] (see Section 10.4, page ??). The search space used in this approach
consists of the DNA word sets with the target number of words. Two can-
didate solutions, i.e., DNA word sets, are direct neighbours, if and only if
one can be obtained from the other by changing exactly one position in one
word – this is called the 1-mutation neighbourhood.

The SLS-THC algorithm is based on an evaluation function � that counts
the number of word pairs in a given candidate solution

that violate the

given binary constraints; here, this can be any combination of the HD and
CHD constraints (a variant of the algorithm that allows supports the GCC
constraint will be discussed later). The main idea behind the algorithm is to
iteratively pick a pair of words that are in conflict w.r.t. a given constraint
and to modify one of them such that the number of conflicts (i.e., the number
of word pairs that violate at least one constraint) is maximally reduced.

An outline of the SLS-THC algorithm is shown in Figure 10.10. The
search process is initialised at a set of words that is determined by a simple
randomised process that generates any DNA word of length

�
with equal

probability. Note that the initial word set may contain multiple copies of the
same word.

In each step of the search process (i.e., one execution of the inner for-
loop from Figure 10.10), first, a pair of words violating one of the Hamming
distance constraints is selected uniformly at random. Then, for each of these
words, all possible single-base modifications are considered. As an example
of single-base modifications take the code word � � � � of length 4. A new
code word

� � � �
can be obtained by replacing letter � from the first code

word with letter
�

. For a pair of words of length
�

this yields
� �

new words,
some of which might be identical.

With a fixed probability � , one of these modifications is accepted uni-
formly at random, regardless of the number of constraint violations that will
result from it. In the remaining cases, a modification that leads to a max-
imal decrease in the number of constraint violations is accepted. (If there
are multiple such modifications, one of them is chosen uniformly at ran-
dom.) Note that using this scheme, in each step of the algorithm, exactly
one base in one word is modified. When counting the number of constraint
violations, the degree of violation is not considered, i.e., when considering,
e.g., the HDD

� ���
constraint, one violation is counted for any two words with

Hamming distance
� � �

, regardless of their actual Hamming distance
�

is

10.5. DNA CODE DESIGN 413

procedure SLS-THC
input: ����� : number of code words, ����� : word length, � : set of constraints

maxTries ��� , maxSteps ��� , �	��
 !��/�
�
output: Set

*
of � words that fully or partially satisfies �

for � := 1 to maxTries do*
:= initial set of words

�* := S
for � := 1 to maxSteps do

if �C� * ("! then
return

*
end if
Randomly select words ���)������� * that violate one of the
Hamming distance constraints� � := all words obtained from ��� by substituting one base� � := all words obtained from ��� by substituting one base
with probability � do

select word �!* from
� � +�� � uniformly at random

otherwise
select word �!* from

� � +�� � such that the number of constraint
violations is maximally decreased

end with probability
if � * � � � then

replace ��� by �!* in
*

else
replace ��� by �!* in

*
end if
if �C� * (+A��C� �* (then

�* :=
*

;
end if

end for
end for
return �*

end SLS-THC

Figure 10.10: Outline of the SLS-THC algorithm for DNA word design;� �
2� denotes the number of constraint violations in word set

(see text for
details).

414

3 or 0. The noise parameter � controls the greediness of the search process:
for high values of � , constraint violations are not resolved efficiently, while
for low values of � , the search has more difficulties to escape from local
optima of the underlying search space.

Throughout the run of the algorithm, the best candidate solution encoun-
tered so far, i.e., the DNA word set with the fewest constraint violations,
is memorised. Note that even if the algorithm terminates without finding
a valid set of size

�
, a valid subset can always be obtained by iteratively

selecting pairs of words that violate a Hamming distance constraint and re-
moving one of the two words involved in that conflict from the set. Hence,
a word set of size

�
with � constraint violations can always be reduced to a

valid set of at least size
� � � .

To obtain good performance it is crucial to implement this algorithm
in such a way that Hamming distances between words and/or their reverse
complements are not recomputed in each iteration of the algorithm; instead,
these are computed once after generating the initial set, and updated after
each search step. This can be done very efficiently, since any modification
of a single word can only affect the Hamming distances between this word
and the

� � �
remaining words in the set.

This basic SLS algorithm can be easily extended to also accomodate the
GCC constraint, by restricting the candidate solutions to sets of words that
all satisfy a given GCC constraint [Tulpan et al., 2002]. Furthermore, a vari-
ant of the SLS-THC algorithm that initialises some of the DNA words to el-
ements of a previously determined word set, while the remaining words are
generated randomly as described above, can be used for extending known
DNA codes.

Empirical analyses have shown that run-time distributions that charac-
terise the run-time behaviour of SLS-THC on hard word design problems
often suffer from search stagnation that severely compromises its perfor-
mance. This can be overcome by extending the algorithm with a mech-
anism for diversifying the search by occasional random replacement of a
small fraction of the current set of DNA words [Tulpan et al., 2002]. It
has been empirically demonstrated that SLS-THC in many cases reaches or
exceeds the best known construction with theoretical guarantees; particu-
larly impressive results have been reported for word lengths ranging from
4 to 12 under combinations of HD and CHD constraints, where for 56 out
of 57 problem instances previously best theoretical results could be empir-

10.5. DNA CODE DESIGN 415

ically matched or improved [Tulpan et al., 2002; Marathe et al., 2001] and
practically relevant problem instances with combinations of HD, CHD, and
GCC constraints [Tulpan et al., 2002; Frutos et al., 1997]. Recent empirical
results indicate that compared to current implementations of the Gilbert-
Varshamov algorithm, SLS-THC consistently finds larger word sets when
run sufficiently long [?].

There is some indication that by using different neighbourhood relations
that allow more than one base to be modified in each search step, the perfor-
mance of the SLS-THC algorithm can be further improved, not only in terms
of the number of search steps, but also in terms of the CPU time required
for solving given instances of the DNA-CDP problem [?]. Furthermore, a
hybrid SLS algorithm consisting of a GV construction phase followed by a
SLS-THC local search phase that starts from the word set obtained from the
construction phase appears to perform better than SLS-THC with random
initialisation [?].

Generalisations and Related Problems

There are many variants of the DNA Code Design Problem that use ad-
ditional or alternative constraints to the HD, CHD, and GCC constraints
discussed here. As an example, consider constraints on Hamming distance
between misaligned strands and constraints on overlapped pairings involv-
ing three or more strands (see Figure 10.11); both types of constraints play
an important role in applications where information is encoded into DNA by
concatenating individual code words, similar to the character-by-character
encoding of text strings into bit vectors. The SLS algorithm presented ear-
lier in this section can be extended to accomodate these additional con-
straints.

As previously motivated, the Hamming distance constraints considered
here are designed to optimise desired hybridisation pairings between code
words while reducing the occurrence of erroneous pairings as much as pos-
sible. In reality, however, the number of complementary base pairs between
two strands is only a very crude measure for their probability of bonding
and the strength of the pairing. It is therefore often useful to consider more
accurate models of DNA hybridisation that, for instance, reflect the different
strength of the bonds underlying GC and AT pairings, or the distribution of
mismatched base pairs over an imperfectly hybridised pair of DNA strands

416

�� � � �� �� �	
��
 �� � �� ����� ��

���������������������
�
��

!!"
"

#�#�#�#�#$�$�$�$�$%%&
&
'' (
(
))*
*

+�+�+�+�+,- ./ 01 23 4�4�4�4�4�45�5�5�5�56 789:;< = >? @A

B�B�B�B�B�BC�C�C�C�C�CDDE
E

FFG
G
HHIIJJK

K
LLM
M
NN O
O

P�P�P�P�P�PQ RSTUVW X YZ [\

]�]^_�_`�`a�ab c�cde�efg�gh�h

i�ijk�kl�lm�mn�no�op�p

qrs�st�t u�uv�v wx

yz {| }�}~ ��

���� ������������

����

�������������������������
�
�����
�

�� �
�

���
�
���
�
���
�
���� ¡

ACAGAGCT

(a)

GTGTCGGA

TGTCATCGAGCTCTGT

ACTACGGT

(b)

(c) (d)

ACAGAGCT

ACAGAGCT

TATGTGGC

TGTCAGCT

ACAGAGCT

GTGTC GA
G

Figure 10.11: Illustration of strand interactions that give rise to additional
constraints for DNA code design: (a) Slide misalignment leads to 5 com-
plementary base pairings compared to only 2 pairs for the same two strands
under perfect alignment; (b) overlap between three strands can lead to ad-
ditional correct pairings; (c) a given number of base pairs can be distribute
differently, leading stability of the duplex; (c) DNA secondary structure for-
mation (here a single buldge loop) can increase thermodynamic stability.
(The black circles indicate pairings between complementary bases.)

(see Figure 10.11). Based on thermodynamic models of DNA hybridisa-
tion, Gibbs free energy values can be calculated for pairs of DNA strands,
which can then be used for predicting the temperature at which a given hy-
bridised pair of strands tends to separate into single strands under specific
reaction conditions (melting temperature of the duplex). Thermodynamic
constraints, i.e., constraints on the free energies or melting temperatures of
pairs of DNA strands, can be used for designing DNA codes with more
accurately controlled physical properties. While results from coding the-
ory can be exploited to some extent for DNA code design using Hamming
distance constraints, the use of thermodynamic constraints requires differ-

10.6. FURTHER READINGS AND RELATED WORK 417

enr approaches. Interestingly, the SLS algorithm presented above can be
extended to deal with thermodynamic constraints in a rather natural way.

Additional complications in the design and application of DNA codes
arise from the fact that DNA strands can pair in ways that do not correspond
to a double helix structure where each base in one strand as juxtaposed to
exactly one base in the other strand, to which it may or may not be com-
plementary. Instead, strands may pair in ways that give rise to asymmetric
bulges or loop structures (see Figure 10.11). Furthermore, under certain
conditions, a single strand can partially hybridise with itself. In general, the
structures that arise from such types of base pairings are known as DNA
secondary structures. (Primary structure refers to the base sequence of a
DNA strand, and tertiary structure to its three-dimensional conformation.)
Constraints that reflect certain aspects of DNA secondary structure can be
used in the design of DNA codes for applications where the formation of
secondary structure, e.g., of DNA strands corresponding to individual code
words or concatenations of multiple code words, interferes with desired hy-
bridisation pairings. Such constraints are typically based on thermodynamic
models of DNA secondary structure.

Finally, RNA (ribonucleic acid) molecules share many of the salient
properties of DNA and play a similarly crucial role in many biological pro-
cesses. Most of the considerations and techniques for the design of DNA
codes discussed in this section apply analogously to closely related RNA
code design.

10.6 Further Readings and Related Work

The Graph Colouring Problem has been widely studied and a large number
of heuristic GCP algorithms have been proposed in the literature. Construc-
tive methods include (i) greedy constructive methods, where, given some
predefined order of the vertices, these are assigned colours according to
some heuristic, (ii) the DSATUR algorithm [Brélaz, 1979], which at each
step chooses the next vertex to colour as one that is adjacent to the largest
number of distinctly coloured vertices (which is called the saturation degree
of a vertex, hence, the name of the algorithm) breaking ties by the maxi-
mal degree of a vertex in the uncoloured subgraph, and (iii) the Recursive
Largest First (RLF) algorithm [Leighton, 1979], which builds colour classes

418

successively according to some heuristic searching for large independent
sets that leave the number of edges in the uncoloured subgraph minimal.
Good results are reported by a randomised extension of RLF, XRLF, that
uses limited enumeration once a subgraph becomes small enough [Johnson
et al., 1991].

A wide range of SLS methods have been applied to the GCP. These
include several Tabu Search algorithms [?; Fleurent and Ferland, 1996a;
Dorne and Hao, 1999; Galinier and Hao, 1999], the most effective being
a straightforward extension of the successful TSGH algorithm by Hao and
Galinier for binary CSPs to graph colouring (see Section 6.6), GRASP [La-
guna and Martı́, 2001]; Iterated Local Search [Chiarandini and Stützle,
2002]; distributed local search [Morgenstern, 1996]; various pure and hy-
brid Evolutionary Algorithms [Fleurent and Ferland, 1996a; Davis, 1991;
Eiben et al., 1998; ?]; Iterated Greedy algorithms [Culberson and Luo,
1996]; and ACO algorithms [?; Costa and Hertz, 1997; ?]. Although the
performance of these and other SLS algorithms for the GCP strongly varies
across different classes of graphs, one common trend appears to be that hy-
brid algorithms such as the one presented in Section 10.1 are among the
top performers [Galinier and Hao, 1999]. Search space analysis methods
yielded some insights into the factors underlying the performance of SLS
algorithms for the GCP [Hamiez and Hao, 2001]; however, further signif-
icant research efforts appear to be necessary to gain a better understanding
of the behaviour of these algorithms.

The Quadratic Assignment Problem has been the subject of a large num-
ber of studies and continues to be of significant interest to many researchers.
For general overviews with a special emphasis on more mathematical back-
ground, we refer to two overview papers [Pardalos et al., 1994; Burkard et
al., 1998] and the book by Çela [Çela, 1998]; these also provide more de-
tails on extensions of the QAP, special cases, and asymptotic results on the
behaviour of specific classes of QAP instances.

The literature on SLS algorithms for the QAP is vast, primarily because
the QAP is extremely difficult to solve for complete algorithms, and large
instances can only be solved by SLS methods and because, similar to the
TSP, the QAP plays a central role as a benchmark problem for compu-
tational approaches to

���
-hard optimisation problems. While pure con-

struction heuristics do not play a very important role for the QAP, most
of the research on SLS algorithms is concentrated on “simple” SLS al-

10.6. FURTHER READINGS AND RELATED WORK 419

gorithms and hybrid SLS techniques. These include applications of Sim-
ulated Annealing [Burkard and Rendl, 1984; Connolly, 1990], Threshold
Accepting [Nissen and Paul, 1995], Tabu Search [Battiti and Tecchiolli,
1994; Skorin-Kapov, 1990; Taillard, 1991; Misevicius, 2002], Memetic Al-
gorithms [Fleurent and Ferland, 1994; Merz and Freisleben, 2000a; Vazquez
and Whitley, 2000], Evolution Strategies [Nissen, 1994], GRASP [Li et
al., 1994], ACO Algorithms [Gambardella et al., 1999; Maniezzo, 1999;
Maniezzo et al., 1994b; Stützle, 1997; Stützle and Hoos, 2000], and Scatter
Search [Cung et al., 1997]. As in the case of the GCP, the performance
of these SLS algorithms depend strongly on characteristics of the given
problem instance. While for unstructured, randomly generated instances
algorithms based on Tabu Search are the currently best performing ones,
state-of-the-art performance on structured, real-life QAP instances and large
randomly generated real-life like instances is achieved by hybrid SLS algo-
rithms like Memetic Algorithms or Ant Algorithms. Because the Set Cover-
ing Problem is of enormous practical relevance, a large number of solution
approaches, including complete and incomplete algorithms, have been pro-
posed for this problem. Complete algorithms can solve instances with up
to a few hundred rows and few thousand columns; a comparison of exact
algorithms can be found in [Caprara et al., 1998]. It is worth noting that
among the complete SCP algorithms, general-purpose integer programming
software like CPLEX performs extremely well, outperforming several other
complete algorithms that were specifically developed for the SCP. How-
ever, complete algorithms are restricted to rather small sized SCP instances
and SLS algorithms are important for generating good solutions to large
instances.

Many SLS algorithms for the SCP are based on greedy construction
heuristics. Currently, several of the best performing heuristic algorithms are
based on Lagrangian relaxation with subgradient optimisation. The essen-
tial idea is to compute surrogate costs (Lagrangian costs) that give an indica-
tion of the utility of selecting a specific column. Several such heuristics were
proposed [Balas and Ho, 1980; Beasley, 1990; Balas and Carrera, 1996;
Ceria et al., 1998; Caprara et al., 1999]. In recent years, an increasing
number of general-purpose SLS techniques has been applied to the SCP.
These include Genetic Algorithms [Beasley and Chu, 1996; Eremeev, 1999]
and especially SLS algorithms that are based on the principles of the It-
erated Greedy Heuristic [Brusco et al., 1999; Jacobs and Brusco, 1995;

420

Marchiori and Steenbeek, 2000a; M. Yagiura and Ibaraki, 2001]. In gen-
eral, the best performance appears to be reached by the algorithm of Mar-
chiori and Steenbeck [Marchiori and Steenbeek, 2000a] (presented earlier
in this chapter), and the SLS algorithm by Yagiura, Kishida and Ibaraki
that exploits a novel 3-exchange neighbourhood for the SCP [M. Yagiura
and Ibaraki, 2001]. These latter two algorithms and the CFT heuristic by
Caprara, Fischetti and Toth [Caprara et al., 1999] are currently the best per-
forming SLS algorithms for the SCP.

Although the Combinatorial Auctions Winner Determination Problem
has not received as much attention as the GCP, QAP, or SCP, there is a
substantial (and steadily growing) body of literature on the CAWDP and re-
lated problems. A recent article by Sandholm [Sandholm, 2002] provides
a good and detailed introduction to combinatorial auctions and the winner
determination problem, complexity results, and various earlier approaches
for solving the CAWDP. Recent high-performance systematic search algo-
rithms include CASS [Fujisima et al., 1999] and its multi-unit generalisation
CAMUS [Leyton-Brown et al., 2000a], as well as CABOB ??. Currently,
the two algorithms described in this chapter are the only SLS algorithms
for CAWDP. However, CAWDP is equivalent to the Maximum Weighted
Set Packing Problem, a well-studied problem that is conceptually closely
related to the SCP, and winner determination in multi-unit combinatorial
auctions is equivalent to the multi-dimensional knapsack problem; for both
problems, various SLS algorithms and construction heuristics have been
proposed and studied (see, e.g., [DeVries and Vohra, to appear; Holte, 2001;
Arkin and Hassin, 1997; Chandra and Halldórsson, 2000], but there is cur-
rently no indication that these algorithms reach or exceed the performance
of Casanova or ESG-CAWDP. Finally, for an overview of generalisations of
the CAWDP as well as related problems we refer the interested reader to a
recent article by Sandholm et al. [Sandholm et al., 2002].

The design of DNA codes subject to various combinatorial constraints
is a relatively young area subject of study, yet already a number of re-
searchers have worked on this problem. A recent paper by Brennemann
and Condon [Brenneman and Condon, to appear] provides a good introduc-
tion to DNA code design problems and their applications. Besides the SLS-
THC algorithm described here, several Evolutionary Algorithms have been
used for solving DNA-CDP instances with various constraints in the context
of particular applications in DNA computing [Deaton et al., 1996; 1999;

10.7. SUMMARY 421

Zhang and Shin, 1998]; however, these algorithms are not described in suf-
ficient detail to assess their performance compared to other DNA-CDP al-
gorithms. Generally, DNA code design is strongly related to the problem of
designing other types of codes, particularly constant weighted binary codes,
which has been studied extensively in coding theory. A good introduction to
code design problems and local search algorithms for these problems can be
found in a book chapter by Honkala and Östergård [Honkala and Östergård,
1997]. In fact, various SLS methods, including Simulated Annealing and
Evolutionary Algorithms, have been successfully applied to binary code de-
sign problems [Gamal et al., 1987; Comellas and Roca, 1993].

10.7 Summary

In this chapter we gave an overview of SLS applications to five combina-
torial problems. While these problems may not be the most representative
for the types of problems that have been solved successfully using SLS al-
gorithms, they illustrate a range of computational problems for which SLS
methods achieve state-of-the-art performance. We introduced the Graph
Colouring Problem, the Quadratic Assignment Problem, the Set Cover-
ing Problem, the Combinatorial Auctions Winner Determination Problem,
and the DNA Code Design Problem; we briefly discussed their respective
computational complexity, applications, and commonly used benchmark in-
stances; we presented selected SLS algorithms for each of the problems; and
we gave a brief overview of generalisations and related problems.

The Graph Colouring Problem (GCP) is a well-studied combinatorial
problem in graph theory that involves assigning colours to the vertices of
a given graph such that there is no edge between any two vertices of the
same colour. This problem can be seen a special case of the Constraint Sat-
isfaction Problem (see Chapter ??), but is typically solved with specialised
algorithms. We first presented three variants a Simulated Annealing algo-
rithms that uses a standard geometric cooling schedule. They mainly differ
in the evaluation function used and the neighbourhood definition. The sec-
ond algorithm we described is the Hybrid Evolutionary Algorithm (HEA) of
Galinier and Hao that combines a genetic algorithm using a partition-based
crossover with an effective tabu search algorithm to improve solutions. HEA
is currently one of the best performing SLS algorithms for the GCP.

422

In the Quadratic Assignment Problem (QAP), the objective is to assign a
number of objects to locations such that the product of the distances between
the locations and the flow between the corresponding objects is minimised.
The QAP serves as an abstract model for a number of practical layout and
location problems; as such, it is one of the most widely studied combinato-
rial optimisation problems. We presented a Reactive Tabu Search algorithm
that is particularly successful for randomly generated, unstructured QAP in-
stances. The central goal of the reaction mechanism used in that algorithm
is adapt the tabu list length, a critical parameter in tabu search algorithm, at
computation time. The second algorithm we discussed is a population-based
extension of a simple iterated local search (PBILS) that tries to achieve a
balance between exploration and exploitation by enforcing a minimum dis-
tance among pairs of candidate solutions in the population which is varied
at computation time and the use of restart operators. PBILS was shown
to perform particularly well on real-world and large, randomly generated
real-world like instances.

The Minimum Weighted Set Covering Problem (SCP) is another hard
combinatorial optimisation problem with many real-world applications. Here,
given a set � the objective is to select a number of subsets from a given
family of sets such that every element in � is covered by that selection and
that the sum of the weights associated with the selected subsets is mini-
mal. For the SCP we described two Iterated Greedy (IG) algorithms. The
first, IG-JB, is a rather straightforward adaptation of the IG principles to
the SCP, which achieved good results at the time when the algorithm was
first presented; however, nowadays it is outperformed by a number of other
algorithms among which we have the IG algorithm of Marchiori and Steen-
beck (IG-MS), which achieves state-of-the-art performance. The most no-
table features of IG-MS are that it uses a more complex construction phase,
where also occasional removals of solution components are considered, it
adds an iterative improvement algorithm to improve solutions returned from
the constructive phase, and it iteratively modifies the core problem that de-
fines the sub-set of solution components that is considered for constructing
solutions.

The Combinatorial Auctions Winner Determination Problem (CAWDP)
is a very application-relevant problem which recently has received a steadily
increasing amount of attention in the AI and OR communities. This prob-
lem models an auction in which bids are submitted for bundles of items, and

10.8. EXERCISES 423

the objective is to determine a feasible, i.e., non-overlapping set of winning
bids such that the revenue of the auctioneer is maximised. We presented
the first SLS algorithm devised for this problem, Casanova. This algorithm,
whose performance is still considered state-of-the-art, is based on a rela-
tively simple randomised best-improvement method with a limited form of
memory similar to the Novelty

�
algorithm for SAT (see Chapter ??). We

also covered ESG-CAWDP, another recent SLS algorithm for the CAWDP
based on Dynamic Local Search. Like Casanova, CAWDP was inspired by
and bears close resemblance to a high-performance SLS algorithm for SAT,
ESG-SAT. Overall, very little research has been done on SLS algorithms
for CAWDP, which suggests that compared to GCP, QAP, or SCP, there is
considerable more potential for the development of improved algorithms.

The final problem, the DNA Code Design Problem (DNA-CDP), arises
from applications in biomolecular computing and biotechnology. In this
hard optimisation problem, the goal is to find maximum size sets of DNA
sequences (words) that satisfy given combinatorial constraints, e.g., on the
Hamming distance between pairs of words. Although, different from all
the other problems covered in this chapter, DNA-CDP is not proven to be���

-hard, it appears to be very hard to solve in practice. We described
SLS-THC, a recent SLS algorithm for this problem that was successfully
used to obtain improvements over the best known solutions to a number of
prominent DNA Code Design Problems. Similar to the Casanova algorithm
for the Combinatorial Auctions Winner Determination Problem, SLS-THC
is a relatively simple randomised best-improvement method motivated by
well known SLS algorithms such as the WalkSAT algorithm family for SAT
and the Min Conflicts Heuristic for CSP.

10.8 Exercises

Exercise 10.1 (Medium) Prove that in the Penalty Function SA Algorithm
for the Graph Colouring Problem, described in Section 10.1, all local min-
ima correspond to legal colourings of the given graph

�
.

Exercise 10.2 (Medium) Sometimes, benchmark instances for several of
the problems treated here are obtained by encodings of other problems.

424

Common examples include

� Encodings of the Travelling Salesman Problem and the Graph Parti-
tioning Problem as Quadratic Assignment Problems.

� Encodings of SAT as Combinatorial Auctions Winner Determination
Problem

� #$#$#
Give for each of these examples the corresponding encoding. Do you expect
any advantages from using these encodings?

Exercise 10.3 (Hard) Derive the formula for the � -evaluation in the QAP
for an instance, where both matrices can be asymmetric and then simplify
this formula for the symmetric case with a zero diagonal. What is the com-
putational complexity of the � -evaluation?

Now, let � � be the solution which is obtained by exchanging objects

 and

�
in solution � . Show that for exchanging objects

)
and

,
, with� �B)+�-, & � �
 � � & � � � the move can be evaluated in constant time.

Exercise 10.4 (easy) Consider Example 10.4. Formulate and solve it as a
Set Partitioning Problem and as a Set Packing Problem.

Exercise 10.5 (Easy) Compare the Casanova algorithm for the Combina-
torial Auctions Winner Determination Problem (CAWD) with the Novelty

�
algorithm for SAT. Point out common aspects and differences of the under-
lying search techniques and relate these to the common features and differ-
ences of the CAWD and SAT.

Exercise 10.6 (Medium) Specify an extension of the SLS-THC algorithm
for DNA Code Design that finds DNA codes satisfying the HD

� � �
constraint

and an additional SHD
� � � � constraint that ensures a minimal Hamming dis-

tance of
� � between any two DNA words under any possible slide misalign-

ment (see Figure ??). Discuss implementation and algorithmic efficiency
issues of your extended algorithm.

10.8. EXERCISES 425

Exercise 10.7 (Implementation) Implement a simple Iterated Local Search
algorithm for the QAP along the lines of the one underlying the population-
based ILS presented in Section 10.2. Only accept better or at least equally
good solutions in the acceptance criterion. Study the run-time behaviour of
such an ILS algorithm, especially taking into account a possible stagnation
behaviour, along the lines discussed in Section 4.4 of Chapter 4.

Does your run-time analysis give an indication, why a population-based
ILS extension may be a viable way to improve performance?

Study also other possibilities of improving performance by (i) allowing
larger perturbations or (ii) accepting also worse solutions in the acceptance
criterion. Which of the two possibilities would you prefer?

