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Example problem — TSP

given: fully connected,

weighted Graph� � �� � � � � �

goal: find shortest

Hamiltonian cycle

hardness:

�

-hard

interest: standard

benchmark problem for

algorithmic ideas
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Local search

Ingredients

(candidate) solution representation, search space definition

�

TSP: set of all possible permutations of the city indices

solution set

� � � �

TSP: set of all shortest Hamiltonian cycles (tours)

cost function

��� ��� 	 IR

�

TSP: sum of the weights of the edges in a tour

neighborhood relation

� �� �

TSP: e.g.

�

-exchange neighborhood;

two tours differ in (at most)
�

edges

an examination scheme of the neighborhood
how to search neighborhood and to choose a new solution
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Local search

Main issues

neighborhood definition
problem specific
essential influence on efficiency and effectiveness of
local search
tradeoff: size and solution quality vs. time to search

neighborhood examination mechanism
in which order to search neighborhood
which neighboring solution becomes new one
(pivoting rule)

remark: neighborhoods are typically defined through moves
that are applicable to solutions
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Disclaimer

in this presentation we only talk about issues when implementing
iterative improvement algorithms

procedure Iterative improvement
while

� � � � � � � � � � � � � � � � � � � � �� � � �

do

� � � �

end
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Advantages of local search

Why can local search be good (trivial reasons)?

cost of generating neighboring solutions
typically, for generating a neighboring solution the
computational complexity is much lower than
generating a new solution from scratch
for evaluating a neighboring solution, it often does not
need to generate it explicitly at all

cost of evaluating neighboring solutions
typically

�

-evaluation can be done in a computational
cost that is much less than computing solution cost from
scratch
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Disadvantages of local search?

iterative improvement may take exponential time in the
worst case
but usually this occurs only rarely and for few problems

exponential increase of the number of local minima with
instance size

short-sightedness of local search

general: problem of local optimality

Experience has shown that the disadvantages are for many
problems by far outweighted by the advantages
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Pivoting rules

gives a rule which of the neighboring solutions is accepted
best improvement
first improvement
(worst improvement) please, don’t use this one

"checkout-time"

it is problem dependent, which pivoting rule results in better
quality solutions or gives place to faster local search
algorithms

pivoting rules can have significant influence on the
performance of local search algorithms
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Example where first is faster than best

TSP, 2-opt, averages over 10 local searches
(CPU:UltraSparc 300MHz)

random starting solution

best imp first imp

secs No.moves

�

avg secs No.moves

�

avg

d198 0.93 220 4.8% 0.038 390 5.2%

lin318 4.35 380 7.9% 0.12 680 14.3%

pcb442 11.60 500 10.9% 0.23 950 11.6%

rat783 72.06 750 10.0% 0.84 1820 11.2%

pcb1173 — — — 1.99 2730 13.3%

fl1577 — — — 4.74 2900 12.1%

pr2392 — — — 10.1 5790 13.9%
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Neighborhood examination

order of searching the neighborhood
deterministic order
random order

where to continue the local search after an exchange
continue from where you are
restart from where you started scanning the
neighborhood

�best variant needs to be determined in an experimental
way
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-evaluation — TSP

2-opt

compute cost of a 2-opt move in constant time (

� �� �

) as

���� � � � �� � �� � � � � � � �� � � � � � �� � � � � �� � � �� �� � � � � � � � � � � �� �

i, s(i): city

�

and its successor in the tour
j, s(j): city

�

and its successor in the tour

cost of evaluation function evaluation from scratch: linear
time (

� �
	 �
)
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Example: QAP

given: 	 objects and 	 locations with

��� : flow from object

�

to object

�

��� �

: distance between location � and location �

goal: find an assignment (i.e. a permutation) of the 	 objects
to the 	 locations that minimizes

� ���
	 
 � �� �


��� �


� � �

��� � 	 � � � 	 �� �

� �� �

gives location of object

�

interest: it is among the “hardest” combinatorial
optimization problems; several applications
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Example: QAP

basic neighborhood for the QAP

LocalSearch: 2-opt

A C D E FB

A C DE FB

old

new

computation of the cost function from scratch in

� �
	 � �

for 2-opt we can again use

�

-evaluation

�a neighboring solution can be evaluated in

� �
	 �

one full neighborhood scan can be completed in

� �
	 � �
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Exchange of objects ��
�

�

for asymmetric instances

� � � � � � � � � � � � �
� � 	�� 	� � � 	�� 	��
� � � � � �
� � 	� 	�� � � 	�� 	�
� �

� � � �
� � 	�� 	� � � 	� 	��
� � � � � �
� � 	�� 	 � � � 	� 	�
� �


�� �

	

� �� � 	 �
� � � � �
� � 	� 	� � � 	 � 	�
� � � � � �
� � 	 � 	 � � � 	� 	�
� �

� � � �
� � 	� 	� � � 	�� 	� � � � � � �
� � 	 � 	� � � 	� 	 � � �

for symmetric instances

� � � � � � � � � �
�


�� �

	

� �� � 	 �
� � � � � � � �
�
�

� � 	 � � � 	 � � � � � 	 � � � 	 � � � �

(1)
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Fast update

� � results from � by exchanging objects � � �
computation of

� � � � � � � � �

, with

� � � �� � � � � �� � �

� ��� �
� �� 	 
 � � ��� � �� 	 
 � �� �� �  �� �  �� �  ��


��

�� �� ��� � � �� ���
� � � � ��� � � � � ���



� �� ��� �� � � � � ��
� � � � � � � � ��� ��

��

�� � � �  � � �  � � �  � �
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Fast update

fast update can be used within best improvement local
search (ie. also tabu search)

requires: additional memorization of the
� � � � � � � �

value for
all pairs � � � in a table

first local search iteration in

� �
	 � �
for initializing the table

in the subsequent iterations exchanges can be computed in� �� �

exception: objects that were moved in previous iteration
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Example — 2-opt for QAP

local search variants of 2-opt, average results over 100
restarts; times measured on a Pentium III 500MHz

best Imp. first Imp first Imp+dlbs

secs moves

�

avg secs moves
�

avg secs moves

�

avg

tai50b 0.06 56 6.9% 0.08 189 7.1% 0.04 186 7.2%

tai60b 0.12 72 8.3% 0.16 266 7.4% 0.08 261 7.5%

tai80b 0.33 100 6.3% 0.43 368 5.9% 0.22 356 6.0%

sko72 0.21 77 2.6% 0.27 210 2.5% 0.13 202 2.7%

sko80 0.31 89 2.3% 0.42 249 2.1% 0.19 240 2.3%

sko90 0.46 105 2.2% 0.62 288 2.2% 0.28 276 2.4%
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don’t look bits

a technique that allows to focus the local search around the
part where potentially there can happen something

allows to reduce the checkout time

only applicable with first-improvement pivoting rule

proceeds as
associate to each "component" a don’t look bit
if don’t look bit is zero, the component can be used in an
outer loop of an improvement search
if no improving move is found for the component: set its
don’t look bit to one
if a component is involved in a move: set don’t look bit
to zero
if for the "outer-loop component" no improving move is
found: set its don’t look bit to one
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don’t look bits

procedure iterative improvement

for

� � �

to � do

if dlb

� � � � �

then continue

improve_flag � false

for

� � �

to � do

CheckMove

� �� � 

if move improves then

ApplyMove
� �� � 


; dlb

� � � � �

, dlb

� � � � �

improve_flag � true

endfor

if improve_flag � false then dlb

� � � � �

end

end iterative improvement
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don’t look bits

often: significant speed-up at only low loss of solution
quality

integration possibilities between perturbation and local
search in ILS

reset don’t look bits to zero only of "moved" solution
components in a perturbation

same possibility is available for memetic algorithms after
applying recombination or mutation

some SLS methods do not allow for an easy integration of
don’t look bits
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Perturbation — Speed, ILS for TSP

compare No. local searches (here,

3-opt) in fixed computation time

�

LSRR: No. local searches with

random restart

�

LS1-DB: No. local searches with

one double bridge move as

Perturbation

�

LS1-DB

� �

LSRR: factor

between

�

LS1-DB and

�

LSRR

time limit: 120 sec on a Pentium II

266 MHz PC

instance

�

LSRR

�

LS1-DB
�

LS1-DB

� �

LSRR

kroA100 17507 56186 3.21

d198 7715 36849 4.78

lin318 4271 25540 5.98

pcb442 4394 40509 9.22

rat783 1340 21937 16.38

pr1002 910 17894 19.67

d1291 835 23842 28.56

fl1577 742 22438 30.24

pr2392 216 15324 70.94

pcb3038 121 13323 110.1

fl3795 134 14478 108.0

rl5915 34 8820 259.4

Thomas Stützle, Irina Dumitrescu, Topics in Local Search — MN Summerschool, Tenerife, 2003 – p.22



Neighborhood pruning

Example: TSP, 2-opt local search

important property: for any improving 2-opt move, there
is at least one node that is incident to an edge � that is
replaced by a different edge �

�

with lower weight

fixed radius nearest neighbour search
consider both tour neighbours of a node �� , say ��

search around �� for nodes � � for which holds� � �� � � � � � � � �� � �� �
for each such city � � delete unique edge to make
feasible 2-opt move and test for improvement
if fixed radius near neighbor searches for all nodes are
unsuccessful, the tour is 2-opt
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Neighborhood pruning

support fixed radius search by appropriate data structures

nearest neighbor lists for each city
for each node �� 	 � � �� � � �

gives the �–nearest neighbour
of ��

several possibilities available of how to construct
candidate sets

neighborhood pruning applicable similarly to many geometric
problems; for other problems often more complicated than for

TSP or not possible at all
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Example results: TSP

timings for 1000 local searches with 2-opt and 3-opt variants from random initial

solutions on a Pentium III 500 MHz CPU. std: no speed-up techniques; fr+cl: fixed radius

and unbounded candidate lists, dlb: don’t look bits

2-opt-std 2-opt-fr+cl 2-opt-fr+cl+dlb 3-opt-fr+cl+dlb

instance

�

avg

�
� � �

�

avg

�
� � �

�

avg
�

� � �

�

avg

�
� � �

kroA100 8.9 1.6 6.4 0.5 6.6 0.4 2.4 4.3

d198 5.7 6.4 4.2 1.2 4.3 0.8 1.4 30.1

lin318 10.6 22.1 7.5 2.1 7.9 1.5 3.4 65.5

pcb442 12.7 55.7 7.1 2.9 7.6 2.2 3.8 63.4

rat783 13.0 239.7 7.5 7.5 8.0 5.8 4.2 213.8

pr1002 12.8 419.5 8.4 13.2 9.2 9.7 4.6 357.6

pcb1173 14.5 603.1 8.5 16.7 9.3 12.4 5.2 372.3

d1291 16.8 770.3 10.1 16.9 11.1 12.4 5.5 377.6

fl1577 13.6 1251.1 7.9 25.8 9.0 19.2 4.0 506.8

pr2392 15.0 2962.8 8.8 65.5 10.1 49.1 5.3 878.1
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Efficient computation of move values

Example: SAT, GSAT local search architecture

1-opt neighbourhood

one of the first local search algorithms for SAT

best improvement pivoting rule
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Local Search for SAT

procedure local search for SAT
input CNF formula

�

, maxTries, maxSteps
output model for

�

or “no solution found"

for

�

:= 1 to maxTries do

� := initAssign

� � �

;

for

��� � �

to maxSteps do
if � satisfies

�

then return �;
else

	 := chooseVariable(

��

 �);

� := � with truth value flipped for 	;

end if
end for

end for
return “no solution found”;

end local search for SAT
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Implementation issues

for each iteration one needs to compute scores of variables

simple approach
recompute scores after each iteration from scratch
requires effort in

� � � � �� �	 � �

�: number of clauses,

�� ��� �

: bound on maximum clause length

efficient computation of flip effects required

idea
use dynamic update of the scores
use appropriate data structures to allow for the dynamic
update
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Implementation issues

central observation
only the score of variables � � is affected by flipping a
variable � that occur in a same clause as variable �

for an update of the score only clauses are interesting in
which the flipped variable � occurs

�

dep

� � � � � � ��� is a clause of

� � � appears in clause �

data structure
each variables has a list of clauses where it occurs
for each variable store truth value, score; for each clause
store it satisfaction status
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Score update

the score of variable � changes its sign

go through all the clauses � � �

dep

� � � � �
and for all

variables in each clause do
if the clause has become unsatisfied by flipping �, then
increase the score of the other variables by one
if the clause was unsatisfied and has become satisfied,
then decrease score of all other variables by one
if flipping � makes two variables instead of one
satisfying the clause, then search the other one and
increase its score by one

Analogous update schemes are essential for many problems like
graph coloring, time tabling, set covering, etc.
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Large neighborhoods

several local search algorithms search large, typically
exponentially sized neighborhoods

exploration of the neighborhoods through appropriate
techniques typically possible in polynomial time either
through

insight into neighborhood structure and searching it with
exact algorithms
a heuristically guided search in the neighborhood

advantages: typically much better solution quality reachable
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Variable depth search algorithms

complex moves are build as being a concatenation of a
number of simple moves

the number of simple moves composing a complex one is
variable and determined based on gain criteria

the simple moves need not be independent of each other

termination is guaranteed through additional conditions on
the simple moves

example

Lin-Kernighan algorithm for TSPs
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Lin-Kernighan for TSPs

at each complex search step a set of edges
� � � � � �� � � � � � �

is deleted and another set

� � ��� � �� � � � � � �

is added to a tour

the number of edges � is determined dynamically

the two sets

�

and

�

are constructed iteratively, element by
element

edges � � and � � as well as � � and � � 
 � must share an
endpoint (sequential moves)

at any point in the search there needs to be an edge � �
� such

that the complex step defined by

� � � � � �� � � � �� �

and

� � �� � �� � � � � �
� �

is a feasible tour

illustration:
�

-path
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Lin-Kernighan for TSPs

(a)

(b)

(c)

v

v

v

u

u w

w

v´

u

u vw

v´

w´

(d)
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-path

�

-path: (spanning tree plus one edge)

v
u w

u’

a delta-path
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convert a

�

-path into a tour

v
u w

u’

v
u w

u’
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new

�

-path from previous

�

-path

v
u w

u’

v
u w

u’

w’
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Limitations on moves

length restrictions
edges that are included in set

�

(added edges) may not
be deleted anymore
edges that are included in set

�
(deleted edges) may not

be added again

�bounds the depth of the search to a maximum of 	 moves

cost restrictions
stop the construction process of the complex move if the
resulting

�

-path has higher weight than the shortest tour
found in the process
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Search guidance in LK

at each step, try to include a least costly possible edge � �

if no improved complex move is found
apply backtracking on the first and second level of the
construction steps (choices of � � � � � � � � � � � )
consider alternative choices in order of increasing
weight of candidates up to a maximum number of
candidates
at the last level, consider different starting nodes for
search
backtracking assures final tour to be 2-opt and 3-opt

important are techniques for pruning the search
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Remarks

Lin-Kernighan algorithm is best performing local search for
TSP

many variants of the algorithm are available (see also recent
DIMACS challenge)

an efficient implementation requires sophisticated data
structures (several articles available on this subject)

implementation is quite time consuming, but

at least three very good implementations are publically
available (concorde, Helsgaun, Neto)

variable depth search algorithms are now available for many
problems and for many they show excellent performance
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Ejection chains

similar approach as in variable depth search algorithms

differences concern mainly that ejection chains allow for
more flexibility in move generation

complex moves are composed of a sequence of dependent,
simple moves

“Ejection moves”: moves that allow to do a transition to a
different solution by ejecting some solution components

“trial moves”: moves that try to restore feasible solutions
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Conclusions (1)

implementation aspects
efficient evaluation of cost functions (

�
–evaluation etc.)

seemingly minor implementation details can have
significant influence on search performance (pivoting
rules, order in which neighborhoods are scanned etc.)
exploitation of problem specific properties can improve
strongly the speed of local search
appropriate data structures are essential for efficient
implementations of local search algorithms

But: they do not make up for a poor choice of a neighborhood
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Conclusions (2)

complex (large-scale) neighborhoods
allow to obtain better solution quality in a single local
search step than simple exchange neighborhoods
often explore exponentially sized neighborhoods but that
are explored typically in polynomial time
often relatively complex to implement them efficiently
often require deep knowledge about the problem for
their development
but for several problems they are the (by far) best
performing local search algorithms
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