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Learning Goals
� Understand purpose and goals of search space analysis.� Get an overview of basic concepts, approaches, and techniques

(particularly, ACC and FDC).� Understand relationships between search space features and

SLS performance.



Simple Properties of Search SpaceS

� search space sizejSj� number of (optimal) solutionsjS0j, solution densityjS0j=jSj� search space diameterdiam(GN )
(= maximal distance between any two candidate solutions)� distibution of solutions within the search graph



Example: Correlation between Number of Solutions

and Local Search Cost for SAT
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Search Landscapes

A search landscapeL = (GN ; g) comprises a neighbourhood graphGN = (S;N) and an evaluation functiong : S 7! R , assigning

each search states 2 S a solution quality,g(s).
LandscapeL is ...� non-degenerate(or invertible)

if 8s; s0 2 S : g(s) = g(s0) =) s = s0� locally invertible

if 8r 2 S : 8s; s0 2 N(r) [ frg : g(s) = g(s0) =) s = s0� non-neutral

if 8s 2 S : 8s0 2 N(s) : g(s) = g(s0) =) s = s0



Classification of search states

(according to evaluation function values of direct neighbours)

state type > = <

SLMIN (strict local min) + 0 0

LMIN (local min) + + 0

IPLAT (interior plateau) 0 + 0

SLOPE + 0 +

LEDGE + + +

LMAX (local max) 0 + +

SLMAX (strict local max) 0 0 +

“+” = present, “0” absent; table entries refer to neighbourswith larger

(“>”) , equal (“=”), and smaller (“<”) evaluation function values



Example: State type distributions for Random-3-SAT instances

instance avgls
 SLMIN LMIN IPLAT SLOPE LEDGE LMAX SLMAX

uf20-91/easy 13.05 0% 0.11% 0% 0.59% 99.27% 0.04%< 0:01%

uf20-91/medium 83.25 < 0:01% 0.13% 0% 0.31% 99.40% 0.06% < 0:01%

uf20-91/hard 563.94 < 0:01% 0.16% 0% 0.56% 99.23% 0.05% < 0:01%

(based on exhaustive enumaration of search space;ls
 refers to local search cost for GWSAT)

instance avgls
 SLMIN LMIN IPLAT SLOPE LEDGE LMAX SLMAX

uf50-218/medium 615.25 0% 47.29% 0% < 0:01% 52.71% 0% 0%

uf100-430/medium 3,410.45 0% 43.89% 0% 0% 56.11% 0% 0%

uf150-645/medium 10,231.89 0% 41.95% 0% 0% 58.05% 0% 0%

(based on sampling along GWSAT trajectories)



Local Minima

Note: Local minima impede local search progress.

Simple measures related to local minima:� number of local minima#lmin, local minima density#lmin=jSj� distibution of local minima within the search graph

Problem: Determining these measures typically requires

exhaustive enumeration of search space

Solutions: Approximations based on sampling or estimation from

other measures (such as autocorrelation measures, see below)



Epistasis

Epistasis: dependency between the solution quality contributions of

individual solution components

(Term originally motivated by interactions between sites on chromosomes

in biological evolution.)

Idea: High degree of epistasis makes problems hard for local

search approaches, particular EAs.



Epistasis measures:� Epistasis variance� Epistasis correlation

Note: Epistasis measures are only of very limited use for

explaining / predicting problem hardness.



NK Landscapes:� abstract stochastic model to explore the way in which epistasis

controls the properties (such as “ruggedness”) of a landscape;� widely used in analysis of search space structure

and EA behaviour.



Fitness-Distance Correlation (FDC)

Idea: Analyse (linear) correlation between solution quality

(fitness) and distance to (closest) optimal solution.

Measure for FDC: correlation coefficientrFD defined byrFD = dCovFDb�F � b�D (1)

with dCovFD = 1m mXi=1(gi � �g)(di � �d); (2)

b�F =vuut 1m mXi=1(gi � �g)2; and b�D =vuut 1m mXi=1(di � �d)2 (3)

Note: rFD depends on the given neighbourhood.



Fitness Distance Plots:

Graphical representation of fitness–distance correlation;

distance from (closest) optimal solutionvs. relative solution quality.

Measuring FDC:

Sample locally optimal candidate solutions, as determined

by a (simple) SLS algorithm,e.g., iterative improvement



Example: FDC Plot for TSPLIB Instancerat783
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Implications of FDC for SLS Behaviour:� High FDC (close to one):

– “Big Valley” structure of landscape provides guidance for

local search;

– high-quality local minima provide good starting points;

– search diversification: perturbation is better than restart;

– search initialisation: high quality starting points help;

– typical for TSP.� FDC close to zero:

– global structure of landscape does not provide guidance for

local search;

– indicative of harder problems, such as certain instance

types of QAP (Quadratic Assignment Problem)



Ruggedness

Idea: Rugged landscapes,i.e., landscape with with many local

minima, are hard to seach.

Measures for landscape ruggedness:� autocorrelation function [Weinberger, 1990; Stadler, 1995]� correlation length [Stadler, 1995]� autocorrelation coefficient [Angel & Zissimopoulos, 1997]



Autocorrelation Function �(d):
�(d) = 1� bE[(g(X)� g(Y ))2℄d(X;Y )=d2 � ( bE[g(X)2℄� bE[g(X)℄2) (4)

Note: �(d) depends on the given neighbourhood.

Autocorrelation Coefficient (ACC) �:� = 1=(1� �(1)) (5)



Implications of ACC on SLS Behaviour:� High ACC (close to one):

– “smooth” landscape;

– evaluation function values for neighbouring

candidate solutions are close on average;

– low local minima density;

– problem typically relative easy for local search.



� Low FDC (close to zero):

– very rugged landscape;

– evaluation function values for neighbouring

candidate solutions are almost uncorrelated;

– high local minima density;

– problem typically relatively hard for local search.



Measuring ACC:� measure seriesg = (g1; : : : ; gk) of evaluation function values

along uninformed random walk;� estimate ACC based on autocorrelation function ong,

where distance is measured in search steps.; computationally cheap, compared,e.g., to FDC analysis.

Note: (Bounds on) ACC can be theoretically derived in many

cases, including TSP with 2-edge-exchange neighbourhood.



Plateaus
� region: connected subgraph ofGN .� border of regionR: set ofs 2 S with direct neighbours

that are not contained inR (border states).� plateau region:region in which all states have

the same level,i.e., evaluation function value,l.� plateau:maximally extended plateau region,

i.e., plateau region in which no border state has any

direct neighbours at the plateau levell.



� exit of plateau regionR: direct neighbours of a border state

of R with lower level than plateau levell.� open / closed plateau:plateau with / without exits.



Plateau Structure
� plateau diameter= diameter of corresponding subgraph ofGN� plateau width= maximal distance of any plateau state to the

respective closest border state� plateau branching factor= fraction of neighbours of a plateau

state that are also on the plateau.� number of exits, exit density� distribution of exits within a plateau, exit distance distribution

(in particular: avg./max distance to closest exit)



Some Plateau Structure Results for SAT
� Plateaus typically don’t have an interiour,i.e., almost every

state is on the border.� The diameter of plateaus, particularly at higher levels, is

comparable to the diameter of search space. (In particular:

plateaus tend to span large parts of the search space, but are

quite well connected internally.)� For open plateaus, exits tend to be clustered, but the average

exit distance is typically relatively small.



Barriers and Basins
� statess; s0 aremutually accessibleat levell

if the s0 can be reached froms by a walk that that visits only

statest with g(t) � l� thebarrier heightbetween statess; s0

is the lowest levell at whichs0 is accessible froms.� basinbelow states = search states of levell < g(s)

accessible froms at heightg(s)� A gradient walkfrom states to s0 is a possible trajectory of

iterative best improvement (= gradient descent) froms to s0.� Thegradient basinof states is the sets of all statess0 such that

there is a gradient walk froms0 to s.



Barries Trees, Merging Graphs,

and Plateau Connection Graphs
� Barrier trees, merging graphs, and plateau connection graphs

are based on collapsing states on the same plateau or in the

same basin into “macro states” and illustrate connections

between these regions.� This type of search space analysis can give much deeper

insights into SLS behaviour and problem hardness than global

measures, such as FDC or ACC.� This type of analysis is computationally expensive and requires

enumeration of large parts of the search space.



Example:A single closed local minimum region that is very

attractive in the sense that most exits from higher plateauslead into

it can make a problem instance very hard. Evidence of such “traps”

can be found in multi-modal RTDs [Hoos, 2002].



Search space structure of easy Random 3-SAT instance
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Search space structure of hard Random 3-SAT instance
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Summary
� Search space analysis can help to understand what makes

problems hard for stochastic search.� Better understanding of impact of search space features on

search performance can help to improve ability to solve hard

and large problems.� Many open questions, much work remains to be done,

particularlyw.r.t. local aspects of search space structure

(plateau structure,etc.)



Important Concepts:� solution density / distribution� search landscape� epistasis� fitness-distance correlation (FDC)� ruggedness, autocorrelation length (ACL)� plateau region� barrier height, mutual accessibility� plateau and basin structure



Further Readings
� P. Merz and B. Freisleben:Memetic Algorithms for the Traveling

Salesman Problem.Complex Systems, vol. 13, no. 4, pp. 297-345,

2001.� L. Kallel, B. Naudts, and C. R. Reeves:Properties of Fitness

Functions and Search Landscapes. In: Theoretical Aspects of

Evolutionary Computing, pp. 175–206, Springer Verlag, Berlin,

Germany, 2001.� Work of Peter Stadleret al., in particular:

– Christoph Flamm, Ivo L. Hofacker, Peter F. Stadler, and Michael

T. Wolfinger:Barrier Trees of Degenerate Landscapes.Z. Phys.

Chem. 216:155–173, 2002.



� Some work by Holger Hoos, in particular:

– H.H. Hoos:Stochastic Local Search – Methods, Models,

Applications.Ph.D. thesis, FB Informatik, TU Darmstadt,
Germany, 1998. (Chapter 6 and 7)

– H.H. Hoos:SAT-Encodings, Search Space Structure, and Local

Search Performance.Proc. of IJCAI-99, pp. 296–302, 1999.

– H.H. Hoos:SLS Algorithms for SAT: Irregular Instances, Search

Stagnation, and Mixture Models (Extended Abstract).Proc. of
Fifth International Symposium on the Theory and Applications
of Satisfiability Testing (SAT 2002). University of Cincinnati,
OH, USA, 2001.� H.H. Hoos and T. Sẗutzle: Stochastic Local Search – Foundations

and Applications.Morgan Kaufmann Publishers, USA, to appear.
(Chapter 5)

(see course webpage / HH’s homepage)


