
Simulated Annealing, Dynamic Local
Search, GRASP, Iterated Greedy

—
an overview

Thomas Stützle

stuetzle@informatik.tu-darmstadt.de

http://www.intellektik.informatik.tu-darmstadt.de/˜tom.

Darmstadt University of Technology

Department of Computer Science

Intellectics Group

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.1

Outline

simulated annealing
basics
theory
applications

dynamic local search
basics
applications

greedy randomized adaptive search procedures (GRASP)
basics
applications

iterated greedy
basics
applications

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.2

Escaping local optimality

occasionally accept worse solutions
tabu search
simulated annealing

modify evaluation function at run time
dynamic local search

generate new solutions (for a local search)
iterated local search
memetic algorithms / EAs
ant colony optimization
GRASP

constructive methods
ant colony optimization
iterated greedy

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.3

Notation

�

: set of (candidate) solutions

�: solution in

�

�

: cost function

� � � �

: cost function value of solution �

� � �

: neighborhood of �

here, we assume that we solve minimization problems

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.4

What is Simulated Annealing (SA)?

Simulated Annealing is an SLS method that tries to avoid local
optima by accepting probabilistically moves to worse solutions.

Simulated Annealing was one of the first SLS methods

now a "mature" SLS method
many applications available (ca. 1,000 papers)
(strong) convergence results

simple to implement

inspired by an analogy to physical annealing

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.5

Physics analogy: annealing

annealing is a thermal process for obtaining low energy
states of a solid through a heat bath.
1. increase the temperature of the solid until it melds
2. carefully decrease the temperature of the solid to reach a

ground state (minimal energy state, cristaline structure)

computer simulations of the annealing process
models exist for this process based on Monte Carlo
techniques
Metropolis algorithm
simulation algorithm for the annealing process proposed
by Metropolis et al. in 1953

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.6

Metropolis algorithm

generates a sequence of states

1. given state

�

with energy

��� , generate subsequent state

�

with

energy

��� by some perturbation mechanism

2. If

�� � �� � 	

, then accept

�

, otherwise accept

�

with

probability

� � �
�� � ��

�� � �

�� : Boltzmann constant,
�

: temperature

if temperature is lowered slow enough, the solid may reach thermal

equilibrium at each temperature

thermal equilibrium characterized by Boltzman distribution
��� �

X � � � �

 � � � � �� � �� � � �

�
 � � � � �� � � � � �

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.7

Phys. annealing vs. optimization

physical system comb. optimization problem

state �� candidate solutions
energy of a state �� cost function
ground state �� optimum solutions
temperature �� control parameter (temperature)
rapid quenching �� iterative improvement

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.8

SA — high level procedure

generate some neighboring solution �
� � � � �

if

� � �
� � � � � � �

, then accept �
�

if

� � �
� � � � � � �

, then a probabilistic yes/no decision is made
if outcome is yes, then �

�

replaces �

if outcome is no, � is kept

probabilisitic decision depends on
the difference

� � �
� �

�

� � � �

a control parameter

�

, called temperature

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.9

Simulated Annealing — Procedural view

procedure Simulated Annealing

� � 	

; set initial temperature

���

� � GenerateInitialSolution; �
best

� �

while outer loop criterion do

while inner loop criterion do

� � � ���	 �
 � �� �� ��� � � � 	 � � �

� � ��� � �� � �	 � � �
 � ��
 � � 	 � ���� �� � � �

if

�� � � ��� � � �
best

� �

�
best

� �

end

��� � � � UpdateTemp

� � � �

, � � � !

end

return �

best

end
Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.10

SA — general issues

generation of neighboring solutions
often: generate a random neighboring solution

�
� � � � �

possibly better: systematically generate neighboring
solutions� at least one is sure to sample the whole
neighbourhood if no move is accepted

acceptance criterion
often used: Metropolis acceptance criterion

if

� � �
� � � � � � �

then accept �
�

if

� � �
� � � � � � �

then accept it with a probability of

�� � �
� � �

� �

�

� � � �

�

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.11

SA — cooling schedule

open questions
how to define the control parameter?
how to define the (inner and outer) loop criteria?

cooling schedule
initial temperature

��
�

(Example: base it on some statistics about cost values, acceptance ratios etc.)

temperature function — how to change the temperature
(Example: geometric cooling,

�
� � � � �� �
�� � � � � �
�	 	 	 ,

�
 �
 �

)

number of steps at each temperature (inner loop
criterion)
(Example: multiple of the neighbourhood size)

termination criterion (outer loop criterion)
(Example: no improvement of �

best for a number of temperature values and acceptance

rate below some critical value)

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.12

Simulated Annealing — Theory

consider a variant of SA where
the temperature is fixed to

� � �

the number of steps is infinite
neighboring solutions are drawn randomly

model this algorithm as a (homogeneous) Markov chain

a Markov chain is a stochastic process, in which transition
probabilities only depend on the current state

probabilities of state transitions can be summarized in a
matrix

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.13

Transition probabilities (1)

how to compute the transition probabilities?

decompose transition probability from �� to � � � � �� �

into
perturbation probability

�� � �
�

�
���

�
	
��� � 	� if � � � � �� ���

�� otherwise;

(1)

acceptance probability

�� � �
�

���
�����

�� if

� � � � � � � � �� ���

�� � �
� � �� ��� � ��� �

� otherwise;
(2)

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.14

Transition probabilities (2)

the transition probability between two solutions �� and � �

can be computed as

� � � � � � �
�

�������������
�������������

�
	
� �� � 	 if

� � � � � � � � � � �� � � � � � ���

�
	
� �� � 	 �
 � �

�
�

� � �� ��� � � �� �

�

�
if

� � � � � � � � � � �� � � � � � ���

! � �
�

� � � � � � � � � � if

� � ��

	

otherwise;

under some mild assumptions on the neighborhood
structure, the resulting Markov chain is ergodic

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.15

Limiting state distribution

let � � � � �� �

be the probability that �� is the current solution
after

�

steps of the algorithm at temperature
�

state probability vector: � � � � � � � � � � � �� � � � � � � � �� �� � � � �

for ergodic Markov chains, the state probability vector
converges to a limiting probability vector

�� ���� 	

� � � � � �

in particular, one can proof that

�� ���� 	

� � � � �� � �

�� � �
�

� � �� �� � �

� � � �� � �
�

� � � � �� � �

(Boltzmann distribution)

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.16

Limiting distribution for �

consider two solutions �� and � � with

� � �� � � � � � � �

in this case we have

� � � � �� �

� � � � � � �

��� 	

� � �� � �

�
� � �� �� � �

�� � �
�

� � � � �� � �

� �� �
� � � � �

�

� � �� �

�

� � �
� � �

the last assertion is due to the assumption

� � � � �

�

� � �� � � �

since � � � � �� �

is a probability, we have � � � � �� � � �

convergence to � is only possible if we have
�� ���� 	

�� �� � �
� � � � � � � � �

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.17

Limiting distribution

hence, we have proved that
for a feasible solution �,

��� � �, and

� �

the probability

� � � � � �

converges to

�

, if � is not an optimal solution:

� � ��� 	

�� �� � �
� � � � � � � �

additionally one can prove that if � is an optimal solution,
then we have

� � ��� 	

�� �� � �
� � � � � � �

�
� �

opt

�

where

�

opt is the set of all optimal solutions

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.18

Observations

if SA can be run long enough
with an infinite number of temperature values and
for each temperature value with an infinite number of
steps

one can be sure to be at an optimal solution at the end

however, it is not clear what end means

in addition, when run at a single temperature level long
enough

we can be sure to find the optimum solution
hence, an optimal solution can be found without
annealing
one only needs to store the best solution found and
return it at the end

BUT: we need

��� � � to guarantee optimality
Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.19

What do the proofs say?

from the proofs we can also conclude that
better solutions are becoming more likely

this gives evidence that after
a sufficient number of temperature values and
a sufficient number of steps at each temperature value

chances are high to have seen a good solution

however, it is unclear what sufficient means

remark: stronger results than the ones presented before are
available. See Hajek’s article from 1988

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.20

SA example: TSP (1) Johnson, McGeoch 1997

simple implementation
start from a random initial solution
neighborhood: 2-opt
simple cooling schedule

�
� is chosen such that ca. 3% of the moves are

rejected
geometric cooling with � � � � ��

temperature length � � � �
� �

outer loop criterion: 5 temperature values without
improvement and acceptance rate below 2%� relatively poor results (worse than 3-opt at 300

times higher computation times)

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.21

SA example: TSP (2) Johnson, McGeoch 1997

Improvements
look-up table for acceptance probabilities
restriction of the neighborhood to small candidate sets
using nearest neighbor lists of length 20
good initial solution
low temperature starts
systematic scan of the neighborhood
inclusion of 3-opt moves

� significantly improved results, comparable to
random-restart LK for same computation time

comparison to other techniques� SA quite far behind state-of-the-art of TSP solving

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.22

Graph bipartitioning

Given A graph

� � �� � � �

.

Goal Find a partition of the graph in two node sets
� � and

� �

with

� � � � � � � � � and

� � � � � � �

, such that the number of
edges with endnodes in the two different sets is minimized.

BA

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.23

SA example: graph bipartitioning Johnson et al. 1989

tests were run on random graphs (

��� � �) and random
geometric graphs

�� � �

modified cost function (�: imbalance factor)

� �� �� � � � � �� ��� � 	 � � � � � � � �
 	 � � � � � � � � � � � � �
� � � � � �

� allows infeasible solutions but punishes the amount of
infeasibility

side advantage: allows to use 1–exchange neighborhoods of
size

 � � �

instead of the typical neighborhood that
exchanges two nodes at a time and is of size

 � � � �

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.24

SA example: graph bipartitioning Johnson et al. 1989

initial solution is chosen randomly

standard geometric cooling schedule

experimental comparison to Kernighan–Lin heuristic
Simulated Annealing gave better performance on

� � � �

graphs
just the opposite is true for

�� � � graphs

several further improvements were proposed and tested

general remark: Although relatively old, Johnson et al.’s experimen-

tal investigations on SA are still worth a detailed reading!
Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.25

SA example: course timetabling

abstraction of a real course timetabling problem studied in
the metaheuristics network

problem
given is a set of events visited by a set of students
goal: assign events to timeslots and rooms subject to
hard constraints and optimization criteria

hard constraints
no student attends more than one event at the same time
room is big enough and satisfies all features required by
the event
at any timeslot, there is at most one event in a room

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.26

SA example: course timetabling

optimization criteria through soft constraints
student has event in last slot of a day
student has more than two events in a row
student has a single class on a day

soft constraint violations are penalized

objective
find a feasible solution with minimum number of soft
constraint violations

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.27

SA example: course timetabling

this problem was attacked in the Metaheuristics Network

and is part of the International Timetabling Competition!!

implemented SLS methods
Ant Colony Optimization
Iterated Local Search
Simulated Annealing
Tabu Search
Evolutionary Algorithms

all the SLS methods were implemented by the expert labs in
the metaheuristics network

and extensively evaluated on a set of benchmark problems
(results courtesy of Michael Sampels)

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.28

Course timetabling:

implementations were done in two phases

first phase
all labs were given a same local search
all labs were given one month of development time
then all algorithms had to be submitted and were
evaluated

here: results of this first phase

second phase: more in depth studies and further
developments

the computational results were analyzed with
non-parametric statistical tests based on ranks

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.29

Results: Small size instance

500 1000 1500 2000 2500

0
5

10
15

20
25

Instance: small04.tim Time: 90 sec

Rank

S

of
t C

on
st

ra
in

t V
io

la
tio

ns

ACO
GA
ILS
SA
TS

ACO GA ILS SA TS

0

5

10

15

20

25

Soft Constraint Violations

ACO

GA

ILS

SA

TS

500 1000 1500 2000 2500

Ranks

ACO GA ILS SA TS

Percentage of Invalid Solutions

SLS Method

P
er

ce
nt

0
20

40
60

80
10

0

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.30

Medium size instance

0 50 100 150 200 250

10
0

15
0

20
0

25
0

Instance: medium04.tim Time: 900 sec

Rank

S

of
t C

on
st

ra
in

t V
io

la
tio

ns

ACO
GA
ILS
SA
TS

ACO GA ILS SA TS

100

150

200

250

Soft Constraint Violations

ACO

GA

ILS

SA

TS

0 50 100 150 200 250

Ranks

ACO GA ILS SA TS

Percentage of Invalid Solutions

SLS Method

P
er

ce
nt

0
20

40
60

80
10

0

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.31

Large size instance

0 10 20 30 40 50 60 70

70
0

80
0

90
0

10
00

11
00

12
00

Instance: large02.tim Time: 9000 sec

Rank

S

of
t C

on
st

ra
in

t V
io

la
tio

ns

ACO
GA
ILS
SA
TS

ACO GA ILS TS

700

800

900

1000

1100

1200

Soft Constraint Violations

ACO

GA

ILS

SA

TS

0 10 20 30 40 50 60 70

Ranks

ACO GA ILS SA TS

Percentage of Invalid Solutions

SLS Method

P
er

ce
nt

0
20

40
60

80
10

0

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.32

Additional issues � � � not covered here

Non-monotone cooling schedules

parallelization

inhomogeneous theory

results on speed of convergence

optimal cooling schedules

related approaches (threshold accepting etc.)

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.33

Summary

Simulated Annealing is historically one of the first SLS
methods

very easy to implement

interesting for
practitioners: short development times
mathematicians: convergence

good results but often at the cost of substantial computation
times

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.34

Literature

� E.H.L. Aarts, J.H.M. Korst, and P.J.M. van Laarhoven. Simulated Annealing. In E.H.L. Aarts and

J.K. Lenstra, editors, Local Search in Combinatorial Optimization, pages 91–120. John Wiley &

Sons, 1997.

� V. Cerný. A Thermodynamical Approach to the Traveling Salesman Problem. Journal of

Optimization Theory and Applications, 45(1):41–51, 1985.

� B. Hajek. Cooling Schedules for Optimal Annealing. Mathematics of OR, 13:311–329, 1988.

� D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Optimization by Simulated Annealing:

An Experimental Evaluation: Part I, Graph Partitioning. Operations Research, 37(6):865–892, 1989.

� D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Optimization by Simulated

Annealing: An Experimental Evaluation: Part II, Graph Coloring and Number Partitioning.

Operations Research, 39(3):378–406, 1991.

� D.S. Johnson and L.A. McGeoch. The Travelling Salesman Problem: A Case Study in Local

Optimization. In E.H.L. Aarts and J.K. Lenstra, editors, Local Search in Combinatorial Optimization,

pages 215–310. John Wiley & Sons, 1997.

� S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi. Optimization by Simulated Annealing. Science,

220:671–680, 1983.

� F. Romeo and A. Sangiovanni-Vincentelli. A Theoretical Framework for Simulated Annealing.

Algorithmica, 6:302–345, 1991.

� W.M. Spears. Simulated Annealing for Hard Satisfiability Problems. Technical report, Naval

Research Laboratory, Washington D.C., 1993.
Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.35

What is dynamic local search?

Dynamic local search is a collective term for a number of
approaches that try to escape local optima by iteratively

modifying the evaluation function value of solutions.

different concept for escaping local optima

several variants available

promising results

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.36

Dynamic local search

guide the local search by a dynamic evaluation function

evaluation function

� � � �

composed of
cost function

� � � �

penalty function

penalty function is adapted at computation time to guide the
local search

penalties are associated to solution features

related approaches
long term strategies in tabu search
noising method
usage of time-varying penalty functions for (strongly)
constrained problems
etc.

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.37

Issues in dynamic local search

timing of penalty modifications
at every local search step
only when trapped in a local optimum w.r.t.

�

long term strategies for weight decay

strength of penalty modifications
additive vs. multiplicative penalty modifications
amount of penalty modifications

focus of penalty modifications
choice of solution attributes to be punished

Example: Guided Local Search
PhD thesis Voudouris; Voudouris, Tsang, Mills 1995 –	 	 	

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.38

Guided local search

guided local search (GLS)
modifies penalties when trapped in local optima of

�

variants exist that use occasional penalty decay
uses additive penalty modifications
chooses few among the many solution components for
punishment

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.39

Guided local search — Procedural view

procedure Guided Local Search

� � ��� � � � � �� � � � � � � 	
�� 	� � � � �

� � � � � � 	 ��� � �� � � 	 � ��� �

while (termination condition not met) do

� � ComputeAugmentedObjectiveFunction

�� � �� � � 	
� � � � � � � �� �� � �

��� � � �� �� � � 	 � � � � � �� �
end while
return �

best
end procedure

Attention: to get �

best, check in LocalSearch solutions also w.r.t. the cost function

�

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.40

GLS — details

penalties are associated to solution attributes
cost contribution

�� � � �

for solution attribute

�

penalty costs �� for solution attribute
�

an indicator function

�� � � �

says whether solution
attribute

�

occurs in solution �

evaluation function

� � � �

becomes

� � � � � � � � � � ���

�
��� �

�� � �� � � �

: number of solution attributes�

: determines the influence of the penalty costs

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.41

Guided local search — details

LocalSearch
uses

� � � �

for evaluating solutions
runs until stuck in a local optimum

� � w.r.t.

�

once stuck, penalties are modified

modification of penalties
define the utility of solution attributes as

Util

� ��� � � �
�� � �� �

� � ��

for all solution attributes with maximum utility set

�� � �� � �

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.42

Propositional Satisfiability Problem (SAT)

Simple SAT instance (in CNF):

��� � � �
 ��� � � � � �

models

� � true�
� � false

� � false�
� � true

SAT Problem – decision variant: For a given propositional
formula

�

, decide whether

�

has at least one model.

SAT Problem – model finding variant: For a given
propositional formula

�

, if

�

is satisfiable, find a model,
otherwise declare

�

unsatisfiable.

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.43

GLS example: SAT/MAX-SAT Mills, Tsang, 2000

best-improvement 1–opt local search (GSAT architecture)

uses in additions a special tie-breaking criterion that favors
flipping a variable that was flipped the longest time ago
(taken from HSAT)

if in � consecutive iterations no improved solution is found,
then modify penalties

solution attributes are clauses

when trapped in a local optimum, add penalties to clauses of
maximum utility

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.44

GLS example: SAT/MAX-SAT

computational experience
good results especially for very hard SAT instances
currently one of the best available algorithms for
weighted MAX-SAT

further applications
TSP
QAP
Vehicle Routing
Constraint Satisfaction Probleme
workforce scheduling

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.45

Literature

� A. Davenport, E. Tsang, C.J. Wang, and K. Zhu. GENET: A Connectionist Architecture for Solving

Constraint Satisfaction Problems by Iterative Improvement. In Proceedings of the 14th National

Conference on Artificial Intelligence. MIT press, 1994.

� F Hutter, D. Tompkins, and H.H. Hoos. Scaling and Probabilistic Smoothing: Efficient Dynamic

Local Search for SAT. In Proc. CP’02, 2002.

� P. Mills and E. Tsang. Guided local search for solving SAT and weighted MAX-SAT problems. In

I. Gent, H. van Maaren, and T. Walsh, editors, SAT’2000. IOS Press, pp. 89–106, 2000.

� P. Morris. The Breakout Method for Escaping from Local Minima. In Proceedings of the 11th

National Conference on Artificial Intelligence, pages 40–45. MIT press, 1993.

� D. Schuurmans, and F. Southey, and R.C. Holte. The Exponentiated Subgradient Algorithm for

Heuristic Boolean Programming. In Proceedings of the 17th International Joint Conference on

Artificial Intelligence, pages 334–341. Morgan Kaufmann, San Francisco, USA.

� C. Voudouris, and E. Tsang. Guided local search and its application to the traveling salesman

problem. European Journal of Operational Research, 113, pages 469–499, 1999.

� Z. Wu and W. Wah. An efficient global-search strategy in discrete lagrangian methods for solving

hard satisfiability problems. In Proceedings of the 17th National Conference on Artificial Intelligence,

pages 310–315. AAAI Press / The MIT Press, Menlo Park, CA, USA, 2000.

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.46

What is GRASP?

Greedy Randomized Adaptive Search Procedures (GRASP) is an
SLS method that tries to construct a large variety of good initial

solutions for a local search algorithm.

predecessors: semi-greedy heuristics

tries to combine the advantages of random and greedy
solution construction

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.47

Greedy construction heuristics

iteratively construct solutions by choosing at each
construction step one solution component

solution components are rated according to a greedy
function
the best ranked solutions component is added to the
current partial solution

examples: Kruskal’s algorithms for minimum spanning
trees, greedy heuristic for the TSP, � � �

advantage: generate good quality solutions; local search
runs fast and finds typically better solutions than from
random initial solutions

disadvantage: do not generate many different solutions;
difficulty of iterating

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.48

Random vs. greedy construction

random construction
high solution quality variance
low solution quality

greedy construction
good quality
low (no) variance

goal: exploit advantages of both

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.49

Semi-greedy heuristics

add at each step not necessarily the highest rated solution

repeat until a full solution is constructed:
rate solution components according to a greedy function
put high rated solution components into a restricted
candidate list (RCL)
choose one element of the RCL randomly and add it to
the partial solution
adaptive element: greedy function depends on the partial
solution constructed so far

Hart, Shogan, 1987

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.50

Generation of the RCL

mechanisms for generating RCL
cardinality based: include the

�

best rated solution
components into RCL
value based: include all solution components with
greedy values better than a given threshold

�� � � �� � based RCL
let

�

min (

�

max) be greedy values of best (worst) ranked
solution component
include solution components � with greedy values

� �
�

� � �

min

� �� � �

max �

�

min

�

� � � �� � �

is a parameter

� � �

corresponds to a greedy construction heuristic

� � �
corresponds to a random solution construction

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.51

GRASP

GRASP tries to capture advantages of random and greedy
solution construction

iterate through
randomized solution construction exploiting a greedy
probabilistic bias to construct feasible solutions
apply local search to improve over the constructed
solution

keep track of the best solution found so far and return it at
the end

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.52

GRASP — local search

local search from random solutions
high variance
best solution quality often better than greedy (if not too
large instances)
average solution quality worse than greedy
local search requires many improvement steps

local search from greedy solutions
average solution quality better than random
local search typically requires only a few improvement
steps
low (no) variance

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.53

GRASP — Procedural view

procedure GRASP

Initialize Parameter

while (termination condition not met) do

� � ConstructGreedyRandomizedSolution

� �

� � � LocalSearch
� � �

if

� � � � � � � � �

best
�

�

best
� � �

end
return �

best
end GRASP

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.54

GRASP Example: SAT

solution components are value assignment to variables

greedy-Function
number of still unsatisfied clauses that would become
satisfied by a value assignment

� �
� : set of additionally satisfied clauses if � � � true

�� � : set of additionally satisfied clauses if � � � false

�� � � �� � based RCL
Let

� � � � �� � � � �
� �� � �� � � �

over all free variables ��

�� � true � RCL if

� � �
� � � �� � �

�� � false � RCL if

� �� � � � �� � �

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.55

GRASP Example: SAT

variable selection
if an unsatisfied clause contains only one single still
uninstantiated variable, try to satisfy this clause
otherwise choose randomly an element from the RCL

local search
best-improvement 1-opt local search (GSAT
architecture)

performance
at the time the research was done reasonably good
performance
however, nowadays by far outperformed by more recent
local search algorithms for SAT
the same is true for weighted MAX-SAT

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.56

GRASP extensions

convergence of GRASP (not guaranteed if � � � �
)

introduction of a bias when choosing elements from the RCL
different possibilities of using, e.g. ranks (e.g.
bias

��� � � �� �)
choose a solution component with a probability
proportional to bias

reactive GRASP (tuning of �)

addition of a type of long term memory to bias search
path relinking
use of previous elite solutions to guide construction

parallelization of GRASP

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.57

GRASP — concluding remarks

straightforward extension of construction heuristics

easy to implement

few parameters

many different applications available

several extensions exist

can be used to generate initial population in
population-based methods

however, as a stand-alone procedure often not
state-of-the-art results

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.58

Literature

� T.A. Feo and M.G.C. Resende. A Probabilistic Heuristic for a Computationally Difficult Set

Covering Problem. Operations Research Letters, 8:67–71, 1989.

� P. Festa and M. G. C. Resende. GRASP: An annotated bibliography. In P. Hansen and C. C.

Ribeiro, editors, Essays and Surveys on Metaheuristics. Kluwer Academic Publishers, 2001.

� J. P. Hart and A. W. Shogan. Semi-greedy Heuristics: An Empirical Study. Operations Research

Letters, 6:107–114, 1987.

� M.G.C. Resende, T.A. Feo. A GRASP for Satisfiability. In D.S. Johnson and M.A. Trick, editors.

Cliques, Coloring, and Satisfiability, volume 26 of DIMACS Series on Discrete Mathematics and

Theoretical Computer Science. pages 499–520. American Mathematical Society, 1996.

� M.G.C. Resende, L.S. Pitsoulis, and P.M. Pardalos. Approximate solution of weighted MAX-SAT

problems using GRASP. In J. Gu and P.M. Pardalos, editors, Satisfiability problems, volume 35 of

DIMACS Series on Discrete Mathematics and Theoretical Computer Science, pages 393–405.

American Mathematical Society, 1997.

� M. G. C. Resende and C. C. Ribeiro, Greedy randomized adaptive search procedures, in Handbook

of Metaheuristics, F. Glover and G. Kochenberger, eds., Kluwer Academic Publishers, pp. 219-249,

2002

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.59

What is Iterated Greedy?

Iterated Greedy is an SLS method that builds a sequence of
solutions by iterating over greedy construction heuristics through

destruction and construction phases.

straightforward extension of iterated local search to the
context of greedy construction heuristics

very good results in a variety of applications

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.60

Greedy — procedural view

procedure Greedy Construction Heuristic

� � � empty solution
while � � is not a complete solution � do

� � GreedyComponent

� � �
�

� � � � � � �

end while

� � � �

return �

end procedure

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.61

Greedy construction heuristics

give seed solutions to local search / EAs etc.

sometimes additional features applied
use look-ahead
use local search on partial solutions

construction heuristics also used inside several SLS methods
like ACO, rollout/piloting method, GRASP

different approach:
destruct part of the solution
reconstruct a full solution
iterate through these two phases

� iterated greedy (IG)

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.62

IG — procedural view

procedure Simple Iterated Greedy

� � GenerateInitialSolution
repeat

� � � DestructionPhase
� � �

�
� � ConstructionPhase

� � �
�

� � AcceptanceCriterion

� �� �
� �

until termination condition met
end

closely related to iterated local search but using as an underlying heuristic

a greedy construction one

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.63

IG — algorithm

destruction phase
fixed vs. variable size of destruction
stochastic vs. deterministic destruction
uniform vs. biased destruction

construction phase
not every construction heuristic is trivially applicable
e.g. nearest neighbor construction heuristic for TSP would need some adaptations

typically, adaptive construction heuristics preferable
speed of the construction heuristic is an issue

acceptance criterion
very much the same issue as in ILS

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.64

IG — enhancements

usage of history information to bias destructive/constructive
phase

use lower bounds on the completion of a solution in the
constructive phase

combination with local search in the constructive phase

use local search to improve full solutions� destruction / construction phases can be seen as a
perturbation mechanism in ILS

exploitation of constraint propagation techniques

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.65

IG example: Set covering

given:
finite set

� � � � �� � � � � � �
�

of objects
family

� � � � �� � � � ��
�

of subsets of

�

that covers

�

weight function �� � � � IR
�

� � �

covers

�

if every element in

�

appears in at least
one set in

�

, i.e. if

� � �

goal: find a subset
� � � �

of minimum total weight that
covers

�

.

interest: arises in many applications,

�

-hard

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.66

IG example: Set covering

IG approach by Brusco and Jacobs from 1995

assumption: all subsets are ordered according to
nondecreasing costs

construct initial solution using a greedy heuristic based on
two steps

randomly select a uncovered object � �

add the lowest cost subset that covers � �

DestructionPhase removes a fixed number of

� � � � �

subsets;

� � is a parameter

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.67

IG example: Set covering

ConstructionPhase proceeds as
build a candidate set containing subsets with cost of less
than

� � � � � � �

compute the cover value � � � � �� � �

� � : number of objects covered when adding subset

� �

add a subset with minimum cover value

complete solution is post-processed by removing redundant
subsets

AcceptanceCriterion: Metropolis acceptance criterion
from SA

computational experience
good performance with this simple approach
more recent IG variants are state-of-the-art algorithms
for SCP

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.68

IG — concluding remarks

simple principle

analogous extension to greedy heuristics as ILS to local
search

not a very strongly explored SLS method

provides an additional tool to SLS researchers

for some applications so far excellent results

can give place to more effective combinations of tree search
and local search heuristics

Thomas Stützle, SA, DLS, GRASP, IG — MN Summerschool, Tenerife, 2003 – p.69

	Outline
	Escaping local optimality
	Notation
	What is Simulated Annealing (SA)?
	Physics analogy: annealing
	Metropolis algorithm
	Phys. annealing vs. optimization
	SA --- high level procedure
	Simulated Annealing --- Procedural view
	SA --- general issues
	SA --- cooling schedule
	Simulated Annealing --- Theory
	Transition probabilities (1)
	Transition probabilities (2)
	Limiting state distribution
	Limiting distribution for $Tmapsto 0$
	Limiting distribution
	Observations
	What do the proofs say?
	SA example: TSP (1)
{	iny Johnson, McGeoch 1997}
	SA example: TSP (2)
{	iny Johnson, McGeoch 1997}
	Graph bipartitioning
	SA example: graph bipartitioning {	iny Johnson et al. 1989}
	SA example: graph bipartitioning {	iny Johnson et al. 1989}
	SA example: course timetabling
	SA example: course timetabling
	SA example: course timetabling
	Course timetabling:
	Results: Small size instance
	Medium size instance
	Large size instance
	Additional issues $dots $ {small not covered here}
	Summary
	Literature
	What is dynamic local search?
	Dynamic local search
	Issues in dynamic local search
	Guided local search
	Guided local search --- Procedural view
	GLS --- details
	Guided local search --- details
	Propositional Satisfiability Problem (SAT)
	GLS example: SAT/MAX-SAT hspace {0.5cm}{	iny Mills, Tsang, 2000}
	GLS example: SAT/MAX-SAT
	Literature
	What is GRASP?
	Greedy construction heuristics
	Random vs. greedy construction
	Semi-greedy heuristics
	Generation of the RCL
	GRASP
	GRASP --- local search
	GRASP --- Procedural view
	GRASP Example: SAT
	GRASP Example: SAT
	GRASP extensions
	GRASP --- concluding remarks
	Literature
	What is Iterated Greedy?
	Greedy --- procedural view
	Greedy construction heuristics
	IG --- procedural view
	IG --- algorithm
	IG --- enhancements
	IG example: Set covering
	IG example: Set covering
	IG example: Set covering
	IG --- concluding remarks

