
CPSC 590 (AUTUMN 2003)

INTRODUCTION TO

EMPIRICAL ALGORITHMICS

Holger H. Hoos

Introduction

Consider the following scenario:

You have just developed a new algorithm A that, given historical

weather data, predicts whether it will rain tomorrow.

You believe A is better than any other method for this problem.

Question:

How do you show the superiority of your new algorithm?

Theoretical vs. Empirical Analysis

Ideal: Analytically prove properties of a given algorithm

(run-time: worst-case / average-case / distribution, error rates).

Reality: Often only possible under substantial simplifications or

not at all.

� Empirical analysis

The Three Pillars of CS:
� Theory: abstract models and their properties

(“eternal thruths”)

� Engineering: principled design of artifacts

(hardware, systems, algorithms, interfaces)

� (Empirical) Science: principled study of phenomenae

(behaviour of hardware, systems, algorithms; interactions)

The “S” in CS – Why CS is a Science

Definition of ”science”:

(according to the Merriam-Webster Unabridged Dictionary)

“3a: knowledge or a system of knowledge covering general truths

or the operation of general laws especially as obtained and tested

through scientific method”

(Interestingly, this dictionary lists “information science” as well as

“informatics”, but not “computer science”.)

Why “Computer Science” is a Misnomer:

CS is not a science of computers(in the standard sense of the

meaning), but a science of computing and information.

CS is concerned with the study of:

� mathematical structures and concepts that model computation

and information (theory, software)

� physical manifestations of these models (hardware)

� interaction between these manifestations and humans (HCI)

The Scientific Method

make observations

formulate hypothesis/hypotheses (model)

While not satisfied (and deadline not exceeded) iterate:

1. design experiment to falsify model

2. conduct experiment

3. analyse experimental results

4. revise model based on results

Empirical Analysis of Algorithms

Goals:

� Show that algorithm A improves state-of-the-art.

� Show that algorithm A is better than algorithm B.

� Show that algorithm A has property P.

Issues:

� algorithm implementation (fairness)

� selection of problem instances (benchmarks)

� performance criteria (what is measured?)

� experimental protocol

� data analysis & interpretation

Overview

Comparative Empirical Performance Analysis of . . .

� Deterministic Decision Algorithms

� Randomised Algorithms without Error:

Las Vegas Algorithms

� Randomised Algorithms with One-Sided Error

� Randomised Algorithms with Two-sided Error:

Monte Carlo Algorithms

� Optimisation Algorithms

Decision Problems

Given: Input data (e.g., graph � and number of colours, �)

Objective: Output “yes” or “no” answer (e.g., to the question “can

the vertices in � be coloured with � colours such that no two

vertices connected by an edge have the same colour?”)

Deterministic Decision Algorithms

Given: Two algorithms ��� for the same decision problem

(e.g., graph colouring) that are:

� error-free, i.e., output is always correct

� deterministic, i.e., for given instance (and parameter settings),

run-time is constant

Want: Determine whether � is better than � w.r.t. run-time.

Benchmark Selection

Some criteria for constructing/selecting benchmark sets:

� instance hardness (focus on hard instances)

� instance size (provide range, for scaling studies)

� instance type (provide variety):

– individual application instances

– hand-crafted instances (realistic, artificial)

– ensembles of instances from random distributions

(� random instance generators)

– encodings of various other types of problems

(e.g., SAT-encodings of graph colouring problems)

CPU Time vs. Elementary Operations

How to measure run-time?

� Measure CPU time (using OS book-keeping & functions)

� Measure elementary operations of algorithm

(e.g., local search steps, calls of expensive functions)

and report cost model (CPU time / elementary operation)

Issues:

� accuracy of measurement

� dependence on run-time environment

� fairness of comparison

Correlation of algorithm performance (each point one instance)

0.01

0.1

1

0.01 0.1 1

kc
nf

s
se

ar
ch

 c
os

t [
C

P
U

 s
ec

]

satz search cost [CPU sec]

Correlation of algorithm performance (each point one instance)

0.0001

0.001

0.01

0.1

1

10

0.0001 0.001 0.01 0.1 1 10

ok
so

lv
er

 s
ea

rc
h

co
st

 [C
P

U
 s

ec
]

satz search cost [CPU sec]

Detecting Performance Differences

Assumption: Test instances drawn from random distribution.

Hypothesis: Median of paired differences is significantly different

from 0 (i.e., algorithm � better than � or vice versa)

Test: binomial sign test or Wilcoxon matched pairs signed-rank test

Detecting Performance Correlation

Assumption: Test instances drawn from random distribution.

Hypothesis: There is a significant monotonic relationship between

the correlation of � and �

Test: Spearmans rank order test or Kendalls tau test

Scaling Analysis

Analyse scaling of performance with instance size:

� measure performance for various instance sizes

� fit parametric model (e.g., � � ���) to data points

� test interpolation / extrapolation

Empirical scaling of algorithm performance

0.01

0.1

1

10

100

1000

10000

100000

1e+06

1e+07

0 50 100 150 200 250 300 350 400 450 500

m
ea

n
se

ar
ch

 c
os

t [
st

ep
s]

variables

kcnfs
f(n) = 0.35 * 2n/23.4

wsat/skc
f(n) = 10.9 * n3.67

Robustness Analysis

Measure robustness of performance w.r.t. . . .

� algorithm parameter settings

� problem type (e.g., 2-SAT, 3-SAT, ...)

� problem parameters / features (e.g., constrainedness)

Analyse . . .

� performance variation

� correlation with parameter values

Randomised Algorithms without Error

Las Vegas Algorithms (LVAs):

� decision algorithms whose output is always correct

� randomised, i.e., for given instance (and parameter settings),

run-time is random variable

Given: Two algorithms Las Vegas Algorithms ���

for the same decision problem (e.g., graph colouring)

Want: Determine whether � is better than � w.r.t. run-time.

Raw run-time data (each spike one run)

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600 700 800 900 1000

ru
n-

tim
e

[C
P

U
 s

ec
]

run #

Run-Time Distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20

P
(s

ol
ve

)

run-time [CPU sec]

RTD Graphs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100000 200000 300000 400000 500000 600000 700000 800000

P
(s

ol
ve

)

run-time [search steps]

0.001

0.01

0.1

1

100 1000 10000 100000 1e+06

P
(s

ol
ve

)

run-time [search steps]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000 100000 1e+06

P
(s

ol
ve

)

run-time [search steps]

0.001

0.01

0.1

1

100 1000 10000 100000 1e+06

1-
P

(s
ol

ve
)

run-time [search steps]

Probabilistic Domination

Definition: Algorithm � probabilistically dominatesalgorithm �

on problem instance �, iff

�� � 	 �
���� � �� � 	 �
���� � �� (1)

�� � 	 �
���� � �� � 	 �
���� � �� (2)

Graphical criterion: RTD of � is “above” that of �

Comparative performance analysis on single problem instance:

� measure RTDs

� check for probabilistic domination (crossing RTDs)

� use statistical tests to assess significance of

performance differences (e.g., Mann-Whitney U-test)

Significance Performance Differences

Given: RTDs for algorithms �, � on the same problem instance

Hypothesis: There is a significant difference in the median of the

RTDs (i.e., median performance of algorithm � is better than that

of � or vice versa)

Test: Mann-Whitney U-Test

Note: Unlike the widely used �-test, the Mann-Whitney U-Test

does not require the assumption that the given samples are

normally distributed with identical variance.

Sample Sizes for Mann-Whitney U-Test
���: ratio between the medians of RTDs for � and �

sign. level 0.05, power 0.95 sign. level 0.01, power 0.99

sample size ��� sample size ���

3010 1.10 5565 1.10

1000 1.18 1000 1.24

122 1.5 225 1.5

100 1.6 100 1.8

32 2.0 58 2

10 3.0 10 3.9

Performance comparison for ACO and ILS algorithm for TSP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100 1000

P
(s

ol
ve

)

run-time [CPU sec]

ILS
MMAS

Significance of Differences between RTDs

Given: RTDs for algorithms �, � on the same problem instance

Hypothesis: There is a significant difference between the RTDs

(i.e., performance of algorithm � is different from that of �)

Test: Kolmogorov-Smirnov Test

Note: This test can also be used to test for significant differences

between an empirical and a theoretical distribution.

Comparative performance analysis for ensembles of instances:

� check for uniformity of RTDs

� partition ensemble according to probabilistic domination

� analyse correlation for (reasonably stable) RTD statistics

� use statistical tests to assess significance of

performance differences across ensemble

(e.g., Wilcoxon matched pairs signed-rank test)

Peformance correlation for ACO and ILS algorithm for TSP

0.1

1

10

100

1000

0.1 1 10 100 1000

m
ed

ia
n

ru
n-

tim
e

IL
S

 [C
P

U
 s

ec
]

median run-time MMAS [CPU sec]

RTD Approximation with Exponential Distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000 100000 1e+06

P
(s

ol
ve

)

run-time [search steps]

empirical RLD
ed[61081.5]

RTD Approximation with Mixture of Exponential Distributions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000 100000 1e+006 1e+007 1e+008

CP1(#815,#74)
0.49*ed[7000]+0.51*ed[10^7]

Randomised Algorithms with One-Sided Error

Types of Errors:

� false negatives (FN): incorrectly return “no” answer

� false positives (FP): incorrectly return “yes” answer

Monte Carlo Algorithm (MCA) with one-sided error:

� decision algorithm without false positives,

i.e., “yes” answers are guaranteed to be correct

� false negatives may occur

� run-time for given problem instance (and parameter settings)

is a random variable

Qualititative Differences between RTDs of two TSP Algorithms

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000

P
(s

ol
ve

)

run-time [CPU sec]

MMAS
MMAS*

Speedvs. Error Rate

Performance criteria:

� run-time (distributions)

� success probability = 1 - error probability = limit of probability

for producing correct “yes” answer for run-time ��

Question: How to evaluate tradeoff between run-time and success

probability?

Asymptotic Run-Time Behaviour
� completeness

— for each problem instance 	 there is a time bound �����	 �

for the time required by � to produce a correct answer

� probabilistic approximate completeness (PAC property)

— for each “yes” problem instance the correct answer

is produced by � with probability � � as run-time ��.

� essential incompleteness

— for some “yes” instances, the probability for producing

a “yes” answer is � � for run-time ��.

Qualititative Differences between RTDs of two TSP Algorithms

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000

P
(s

ol
ve

)

run-time [CPU sec]

MMAS
MMAS*

Multiple Independent Runs

Key Insight: By performing multiple independent runs of

algorithm, we can trade off error probability against run-time.

Practical Realisation:

� Run multiple copies of MCA in parallel on same problem

instance (parallel processors, cluster of workstations, single

CPU machine w/ time-sharing)

� Run multiple independent runs sequentially using cutoff and

restart strategy

Effect of Dynamic Restart on ILS algorithm for TSP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100 1000

p(
so

lv
e)

run-time [CPU sec]

ILS + dynamic restart
ILS

Efficiency of multiple independent tries parallalelisation

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

pa
ra

lle
lis

at
io

n
sp

ee
du

p

number of processors

bwlarge.c (hard)
bwlarge.b (easier)

Randomised Algorithms with Two-Sided Error

Monte Carlo Algorithm (MCA) with two-sided error:

� false positives and false negatives may occur

� run-time for given problem instance (and parameter settings)

is a random variable

Sensitivity vs. Specificity

Sensitivity = TP/(TP+FN)

= fraction of “yes” instances correctly solved

Specificity= TP/(TP+FP)

= fraction of “yes” answers that are correct

Trade-offs between . . .

� sensitivity and specificity

� run-time and sensitivity/specificity

Optimisation Problems

Given: Input data (e.g., graph �) and objective function �

(e.g., number of colours used in a given colouring of �)

Objective: Output optimal objective function value

(e.g., minimal number of colours required for a feasible colouring

of �, i.e., chromatic number of �)

Bivariate RTD for ILS algorithm for TSP

0.1
1

10
100

run-time [CPU sec]0
0.5

1
1.5

2
2.5

rel. soln. quality [%]

0
0.2
0.4
0.6
0.8

1

P(solve)

Qualified RTDs for ILS algorithms for TSP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10 100 1000

P
(s

ol
ve

)

run-time [CPU sec]

0.8%
0.6%
0.4%
0.2%

opt

RTD-based analysis of randomised optimisation algorithms:

� additionally, solution quality has to be considered

� introduce bounds on the desired solution quality

� qualified RTDs

� bounds can be chosen w.r.t. best-known or optimal solutions,

lower bounds of the optimal solution cost etc.

� estimate run-time distributions for several bounds on the

solution quality

SQDs for ILS algorithms for TSP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5

P
(s

ol
ve

)

relative solution quality [%]

10s
3.2s

1s
0.3s
0.1s

SQD-based methodology:

� run algorithm multiple times on given problem instance(s)

� estimate empirical solution quality distributions (SQDs) for

different run-times

� get simple descriptive statistics (mean, stddev, percentiles, ...)

from SQD data

� approximate empirical SQD with known distribution functions

� check statistical significance using goodness-of-fit test

Some questions in SQD analysis:

� How do the SQDs scale with increasing run-time?

� What is the limiting shape of the SQDs with increasing

instance size?

Beyond Comparative Performance Analysis

Goal: Understand factors underlying algorithm’s performance

� typically requires domain and algorithm-specific approaches

Two general approaches:

� Systematically study variants of algorithms and problem

instances

(“study mutants”)

� Build and analyse abstract models of algorithm

(analytically/empirically)

A few general guidelines:

� Design your experiments carefully.

� Look at your data (all of it, from different angles).

� Be prepared for surprises (good and bad).

� Don’t discard results (unless there is a really obvious reason).

� Report negative observations.

� If it looks too good to be true . . . it probably isn’t true.

� Be sceptical – don’t blindly trust anyone (not even yourself).

� Be a scientist – ask “why?”.

� Be an explorer – and boldly go where no one has gone before!

