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Learning Goals
� Understand motivation and concepts of randomised systematic

search (RSS) and stochastic tree search (STS).� Understand randomisation and restart mechanisms for RSS.� Know about characteristic RSS behaviour, in particular

“heavy-tailed” run-time and search cost distributions.



Motivation & Background

Observation:

Typical deterministic systematic search algorithms perform

abysmally bad on certain problem instances.

Intuitive Explanation:

Incorrect heuristic choices early in the search process canforce

search process to fully explore large parts of the search tree.



Erradic (left)vs.Stable (right) Estimation of Mean Run-Time
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Randomisation & Restart:� Randomisation of heuristic choicesallows correct choices to

be made against (incorrect) heuristic guidance.� Restart mechanismhelps to overcome stagnation (similar to

restart in SLS)



Stochastic Tree Search (STS)

Key ideas:� Modify systematic search algorithm

using randomisation and restart.� Restart replaces backtracking.

Note:� Resulting algorithms are probabilistically approximately

complete (PAC), butnot complete. (Why?)� Idea is closely related to Iterated Construction Search (ICS)



Example: Isamp [Crawford & Baker, 1994]� STS algorithm for SAT, derived from (high-performance)

David Putnam (DP) variant� restarts search whenever assignment cannot be further

expanded (contradiction)� random choice of variable and value to assign at each step� uses unit propagation (like DP)� shown to perform well (compared to high-performance SLS /

systematic search algorithms) on certain types of SAT

encoded-scheduling problems (with many solutions)



Variants of STS / STS Algorithms:� Greedy Adaptive Randomised Search Procedures (GRASP)� Heuristic-Biased Stochastic Sampling (HSBS) [Bresina, 1996]� Adaptive Probing [Ruml, 2001]� . . .



Randomised Systematic Search (RSS)

Key ideas:� Modify systematic search algorithm using randomisation and

restart.� Use backtracking and iteratively increasing restart cutoff to

maintain completeness.

(First proposed and investigated by Carla Gomeset al.)



Example: Randomised Davis-Putnam (DP) Algorithm for SAT� randomiseselection of variable to be instantiated next

and/or order of instantiations (with truth values)� restartsearch (from root of search tree) after fixed number� of

choices/backtracks

Preserve completeness by ...� keeping track of previous choices along search path

ensures complete exploration of tree for sufficienty high�� iteratively increasing search cutoff�
allows full tree search after fixed, instance-dependent number

of iterations



Randomisation of Heuristic Choices

Note: Most systematic search alg extend partial candidate solutions

based on heuristic function; ties are broken deterministically.

Key idea: Randomise tie-breaking

Problem: Good heuristics rarely produce ties.

Solution: Randomise overheuristically equivalent choices;

two choices are heuristically equivalent iff their scores are

within H% of the highest score (over all choices);

parameterH controls degree of randomisation.



Characteristic Behaviour of RSS

Empirical Observations:� Distribution of search cost for deterministic systematic search

over certain sets of randomly generated problem instances has

very high variance, erradic mean.

(Due to rare outlier instances with extremely high search cost.)� Same type of “heavy-tailed” distribution is encountered when

measuring RTDs for RSS on individual instances.



(Hypothesised) Reason:

Outliers in search cost and run-time distributions are caused by

incorrect heuristic choices early in the search

(often depending on syntactic aspects of problem instances, such as

order of variable appearance in a CNF formula)



Consequence:

Using restart mechanism reduces variance in run-time of RSS, and

decreases mean (by eliminating extremely long runs)

for individual instances as well as random instance distributions; increased efficiency and robustness

(This result can be analytically proven for any situation inwhich

the RTD of a given algorithm shows search stagnation,i.e., falls

below an exponential distribution fitted from the left.)



Polynomial Decay in the Right Tail

Definition: A probability distribution with CDF F(x) shows

polynomial decay in the right tail ifflimx!1(1� F (x))=Cx�� = 1; x > 0

for some constantsC > 0; 2 > � > 0.

Equivalently: 1� F (x) � Cx��; x > 0
for some constantsC > 0; 2 > � > 0.

These distributions are often called “heavy-tailed”.



Graphical Characterisation:

In log-log plot of1� F (x), right tail asymptotically approaches

a straight line forx!1.

(The slope of that line provides estimate for�.)

Note:

For RTD with cdfF (x), 1� F (x) = PrfRT > xg
(failure probability for cutoffx).



Distribution types that don’t show polynomial decay

in right tail:� Normal (Gaussian) distribution� Exponential distribution� Weibull distribution� . . .

(In fact, all of these show expontial decay in the right tail.)



Distribution types that do show polynomial decay in right tail:� Pareto distribution, CDF:F (x) = 1� 1=x�� Cauchy distribution, PDF:f(x) = 1=� � =(2 + (x� Æ)2)� Lèvy distribution, PDF:f(x) =p=(2�) � (x� Æ)�3=2 � e�=(2(x�Æ))

Such “heavy-tailed” distributions have been used for empirically

modelling a range of phenomenae, including certain properties of

random walks and traffic in communication networks.



Some Properties of Distributions with “Heavy” Right Tails� 2 > � > 1: finite mean, infinite variance� 1 � � > 0: infinite mean, infinte variance

(e.g., Cauchy, L̀evy distributions)

Parameter� is also calledindex of stability.

Note: Actual RTDs allways have finite mean and variance. (Why?)



RTDs of Satz-Rand on two SAT-encoded

Logistics Planning instances
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RTDs of Satz-Rand on two SAT-encoded

Logistics Planning instances (right tails)
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RTD for Satz-Rand on merged Random-3-SAT instance

effect of sample size
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Polynomial Decay in the Left Tail

(Analogous to polynomial decay in the right tail)

Definition: A probability distribution with CDF F(x) shows

polynomial decay in the left tail ifflimx!0F (x)=Cx� = 1; x > 0

for some constantsC > 0; � > 0.

Graphical Characterisation: In log-log plot, left tail

asymptotically approaches a straight line forx! 0.



Weibull Distributions

Generalisation of exponential distribution.

Cumulative distribution function (CDF):wd[m;�℄(x) =W (x;m; �) = 1� 2�(x=m)�

Parameters:� m: median� �: controls the variation coefficient (stdddev/mean).

Fact (provable):

All Weibull distributions have polynomial decay in the lefttail.



Left tails of Weibull distributionsW (x;m; �)
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GED Mixtures Characterise RSS Behaviour

Generalised Exponential Distributions (GEDs)

Generalisation of exponential distribution, originally developped

for characterising typical RTDs of SLS algorithms.

Cumulative distribution function (CDF):ged[m;; Æ℄(x) = wd[m; 1 + (=x)Æ℄(x) = 1� 2�(x=m)1+(=x)Æ



Facts (provable):� The right tail of any GED asymptotically approaches that

of an exponential distribution.� The left tail of any GED with > 0 doesnot show

polynomial decay.



Mixtures of Generalised Exponential Distributions

Cumulative distribution function (CDF):�Xi=1 i � ged[mi; i; Æi℄(x)
(Developped and used for characterisation of irregular RTDs for

SLS algorithms.)



Facts (provable):� The right tail of any finite GED mixture asymptotically

approaches that of an exponential distribution.� The left tail of any GED with > 0 doesnot show polynomial

decay.� GED mixtures with aninfinite number of components can have

polynomial decay in their right tails.



RTD for Satz-Rand on merged Random-3-SAT instance

appproximation with GED mixture (right tail)
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RTD for Satz-Rand on merged Random-3-SAT instance

appproximation with GED mixture (entire distribution)
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Empirical Results:� GED mixtures with a small number of components yield very

good approximations of the RTDs observed for Randomised

Systematic Search algorithms.� Different from previously used “heavy-tailed” distributions

(such as Pareto or Lèvy), these approximations capture the

entire distribution.� GED mixtures appear to provide a unified model for

characterising the run-time behaviour (RTDs) of RSS and SLS

algorithms.� Results on the effectiveness of restart still apply.



Pros and Cons of RSS Algorithms

Pros:� increased robustness, in particular when using

suitably tuned noise and restart strategies� simple, generic extension of systematic search� resulting algorithms typically still complete� potential for easy parallelisation



Cons:� highly stochastic behaviour� difficult to analyse theoretically / empirically� parameter tuning often difficult,

but critical for obtaining good performance



Summary
� Stochastic tree search and randomised systematic search

are two relatively new and little studied classes of

stochastic search algorithms.� There is limited evidence that randomisation and restart

techniques can improve the robustness of systematic search

behaviour.� An increasing number of state-of-the-art systematic search

algorithms (especially for SAT) use randomisation & restart.� Many issues surrounding stochastic tree search, randomised

systematic search, and “heavy-tailed” behaviour are not fully

understood and need further research.



Important Concepts:� stochastic tree search (STS)� randomised systematic search (RSS)� heuristic equivalence� polynomial decay (“heavy-tailed”) distributions� completeness preserving restart strategies for RSS� mixtures of (generalised) exponential distributions
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