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Fundamental Search Space Properties

The behaviour and performance of an SLS algorithm on a given
problem instance crucially depends on properties of the respective
search space.

Simple properties of search space S :

I search space size #S

I search space diameter diam(GN)
(= maximal distance between any two candidate solutions)

Note: The diameter of a given search space depends on the
neighbourhood size.
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Example: Search space size and diameter for the TSP

I Given: Symmetric TSP instance with n vertices.

I Candidate solutions = permutations of vertices

I Search space size = (n − 1)!/2

I Size of 2-exchange neighbourhood
=

(n
2

)
= n · (n − 1)/2

I Size of 3-exchange neighbourhood
=

(n
3

)
= n · (n − 1) · (n − 2)/6

I Diameter of neighbourhood graphs: Exact values unknown.

I Bounds for 2-exchange neighourhood = [n/2, n − 1]

I Bounds for 3-exchange neighourhood = [n/3, n − 1]
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Simple properties of search space S (continued):

I number of (optimal) solutions #S ′, solution density #S ′/#S

I distribution of solutions within the neighbourhood graph

Note:

I Solution densities and distributions can generally be
determined by:

I exhaustive enumeration;

I sampling methods;

I counting algorithms (often variants of complete algorithms).

I In many cases, (optimal) solutions tend to be clustered;
this is reflected in uneven distributions of pairwise distances
between solutions.
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Example: Correlation between solution density and search
cost for GWSAT over set of hard Random-3-SAT instances:
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Search Landscapes

The behaviour of all but the simplest SLS algorithms depends on
an evaluation function that guides the search process.

Definition:

Given an SLS algorithm A and a problem instance π
with associated

I search space S(π),

I neighbourhood relation N(π),

I evaluation function g(π) : S 7→ R

the search landscape of π, L(π), is defined
as L(π) := (S(π),N(π), g(π)).
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A landscape L := (S ,N, g) is . . .

I invertible (or non-degenerate), iff
∀s, s ′ ∈ S : [g(s) = g(s ′) =⇒ s = s ′];

I locally invertible, iff
∀r ∈ S : ∀s, s ′ ∈ N(r) ∪ {r} : [g(s) = g(s ′) =⇒ s = s ′];

Note: Every invertible landscape is also locally invertible
(but not necessarily vice versa).

I non-neutral, iff
∀s ∈ S : ∀s ′ ∈ N(s) : [g(s) = g(s ′) =⇒ s = s ′].

Note: Every locally invertible landscape is also non-neutral
(but not necessarily vice versa).
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Classification of search positions (according to evaluation
function values of direct neighbours):

position type > = <

SLMIN (strict local min) + – –
LMIN (local min) + + –

IPLAT (interior plateau) – + –
SLOPE + – +
LEDGE + + +
LMAX (local max) – + +
SLMAX (strict local max) – – +

“+” = present, “–” absent; table entries refer to neighbours with

larger (“>”) , equal (“=”), and smaller (“<”) evaluation function values
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Example for various types of search positions:

SLMIN

SLOPELEDGE

LMAXSLMAX

LMIN

IPLAT
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Example: Complete distribution of position types
for hard Random-3-SAT instances

instance avg sc SLMIN LMIN IPLAT
uf20-91/easy 13.05 0% 0.11% 0%
uf20-91/medium 83.25 < 0.01% 0.13% 0%
uf20-91/hard 563.94 < 0.01% 0.16% 0%

instance SLOPE LEDGE LMAX SLMAX
uf20-91/easy 0.59% 99.27% 0.04% < 0.01%
uf20-91/medium 0.31% 99.40% 0.06% < 0.01%
uf20-91/hard 0.56% 99.23% 0.05% < 0.01%

(based on exhaustive enumeration of search space;
sc refers to search cost for GWSAT)
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Example: Sampled distribution of position types
for hard Random-3-SAT instances

instance avg sc SLMIN LMIN IPLAT
uf50-218/medium 615.25 0% 47.29% 0%
uf100-430/medium 3 410.45 0% 43.89% 0%
uf150-645/medium 10 231.89 0% 41.95% 0%

instance SLOPE LEDGE LMAX SLMAX
uf50-218/medium < 0.01% 52.71% 0% 0%
uf100-430/medium 0% 56.11% 0% 0%
uf150-645/medium 0% 58.05% 0% 0%

(based on sampling along GWSAT trajectories;
sc refers to search cost for GWSAT)
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Local Minima

Note: Local minima impede local search progress.

Simple measures related to local minima:

I number of local minima #lmin, local minima density
#lmin/#S

I distribution of local minima within the neighbourhood graph

Problem: Determining these measures typically requires
exhaustive enumeration of search space.

Solution: Approximation based on sampling or estimation from
other measures (such as autocorrelation measures, see below).
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Example: Distribution of local minima for the TSP

Goal: Empirical analysis of distribution of local minima for
Euclidean TSP instances.

Experimental approach:

I Sample sets of local optima of three TSPLIB instances using
multiple independent runs of two TSP algorithms (3-opt, ILS).

I Measure pairwise distances between local minima (using bond
distance = number of edges in which two given tours differ).

I Sample set of purportedly globally optimal tours using multiple
independent runs of high-performance TSP algorithm.

I Measure minimal pairwise distances between local minima and
respective closest optimal tour (using bond distance).
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Empirical results:

Instance avg sq [%] avg dlmin avg dopt

Results for 3-opt
rat783 3.45 197.8 185.9
pr1002 3.58 242.0 208.6
pcb1173 4.81 274.6 246.0

Results for ILS algorithm
rat783 0.92 142.2 123.1
pr1002 0.85 177.2 143.2
pcb1173 1.05 177.4 151.8

(based on local minima collected from 1 000/200 runs of 3-opt/ILS)
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Interpretation:

I Average distance between local minima is small compared to
maximal possible bond distance, n.

⇒ Local minima are concentrated in a relatively small region
of the search space.

I Average distance between local minima is slightly larger than
distance to closest global optimum.

⇒ Optimal solutions are located centrally in region of high
local minima density.

I Higher-quality local minima found by ILS tend to be closer to
each other and the closest global optima compared to those
determined by 3-opt.

⇒ Higher-quality local minima tend to be concentrated in
smaller regions of the search space.
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Fitness-Distance Correlation (FDC)

Idea: Analyse correlation between solution quality (fitness) g of
candidate solutions and distance d to (closest) optimal solution.

Measure for FDC: empirical correlation coefficient

rfdc :=
Ĉov(g , d)

σ̂(g) · σ̂(d)
,

where

Ĉov(g , d) :=
1

m − 1

m∑
i=1

(gi − ḡ)(di − d̄),

σ̂(g) :=

√√√√ 1

m − 1

m∑
i=1

(gi − ḡ)2, σ̂(d) :=

√√√√ 1

m − 1

m∑
i=1

(di − d̄)2
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Ĉov(g , d)

σ̂(g) · σ̂(d)
,

where
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Note:

I The FDC coefficient, rfdc depends on the given
neighbourhood relation.

I rfdc is calculated based on a sample of m candidate solutions
(typically: set of local optima found over multiple runs
of an iterative improvement algorithm).

I Fitness-distance plots, i.e., scatter plots of the (gi , di )
pairs underlying an estimate of rfdc , are often useful to
graphically illustrate fitness distance correlations.
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Example: FDC plot for TSPLIB instance rat783, based on
2500 local optima obtained from a 3-opt algorithm
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High FDC (rfdc close to one):

I ‘Big valley’ structure of landscape provides guidance for
local search;

I search initialisation: high-quality candidate solutions provide
good starting points;

I search diversification: (weak) perturbation is better than
restart;

I typical, e.g., for TSP.

Low FDC (rfdc close to zero):

I global structure of landscape does not provide guidance for
local search;

I typical for very hard combinatorial problems, such as certain
types of QAP (Quadratic Assignment Problem) instances.
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Applications of fitness-distance analysis:

I algorithm design: use of strong intensification (including
initialisation) and relatively weak diversification mechanisms;

I comparison of effectiveness of neighbourhood relations;

I analysis of problem and problem instance difficulty.

Limitations and short-comings:

I a posteriori method, requires set of (optimal) solutions,
but: results often generalise to larger instance classes;

I optimal solutions are often not known, using best known
solutions can lead to erroneous results;

I can give misleading results when used as the sole basis for
assessing problem or instance difficulty.
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Ruggedness

Idea: Rugged search landscapes, i.e., landscapes with high
variability in evaluation function value between neighbouring
search positions, are hard to search.

Example: Smooth vs rugged search landscape

Note: Landscape ruggedness is closely related to local minima
density: rugged landscapes tend to have many local minima.
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The ruggedness of a landscape L can be measured by means of
the empirical autocorrelation function r(i):

r(i) :=
1/(m − i) ·

∑m−i
k=1(gk − ḡ) · (gk+i − ḡ)

1/m ·
∑m

k=1(gk − ḡ)2

where g1, . . . gm are evaluation function values sampled along an
uninformed random walk in L.

This is often summarised using the empirical autocorrelation
coefficient (ACC) ξ:

ξ := 1/(1− r(1))

Note: r(i) and ξ depend on the given neighbourhood relation.
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High ACC (close to one):

I “smooth” landscape;

I evaluation function values for neighbouring candidate
solutions are close on average;

I low local minima density;

I problem typically relatively easy for local search.

Low ACC (close to zero):

I very rugged landscape;

I evaluation function values for neighbouring candidate
solutions are almost uncorrelated;

I high local minima density;

I problem typically relatively hard for local search.
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Note:

I Empirical autocorrelation analysis is computationally cheap
compared to, e.g., fitness-distance analysis.

I (Bounds on) ACC can be theoretically derived in many cases,
e.g., the TSP with the 2-exchange neighbourhood.

I There are other measures of ruggedness, such as (empirical)
correlation length.
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Note:

I Measures of ruggedness, such as ACC, are often insufficient
for distinguishing between the hardness of individual
problem instances;

I but they can be useful for

I analysing differences between neighbourhood relations
for a given problem,

I studying the impact of parameter settings of a given
SLS algorithm on its behaviour,

I classifying the diffculty of combinatorial problems.
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Plateaux

Plateaux, i.e., ‘flat’ regions in the search landscape, are
characteristic for the neutral landscapes obtained for combinatorial
problems such as SAT.

Intuition: Plateaux can impede search progress due to lack of
guidance by the evaluation function.
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Definition

I Region: connected set of search positions.

I Border of region R: set of search positions with at least one
direct neighbour outside of R (border positions).

I Plateau region: region in which all positions have
the same level, i.e., evaluation function value, l .

I Plateau: maximally extended plateau region,
i.e., plateau region in which no border position has any
direct neighbours at the plateau level l .
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Definition

I Solution plateau: Plateau that consists entirely of solutions of
the given problem instance.

I Exit of plateau region R: direct neighbour s of a border
position of R with lower level than plateau level l .

I Open / closed plateau: plateau with / without exits.
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Measures of plateau structure:

I plateau diameter = diameter of corresponding subgraph of GN

I plateau width = maximal distance of any plateau position to
the respective closest border position

I plateau branching factor = fraction of neighbours of a plateau
position that are also on the plateau.

I number of exits, exit density

I distribution of exits within a plateau, exit distance distribution
(in particular: avg./max. distance to closest exit)
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(in particular: avg./max. distance to closest exit)
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Some plateau structure results for SAT:

I Plateaux typically don’t have an interior, i.e., almost every
position is on the border.

I The diameter of plateaux, particularly at higher levels, is
comparable to the diameter of search space. (In particular:
plateaux tend to span large parts of the search space, but are
quite well connected internally.)

I For open plateaux, exits tend to be clustered, but the average
exit distance is typically relatively small.
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Idea: Obtain abstract view of neutral landscape by collapsing
positions on the same plateau into ‘macro positions’.

Plateau connection graphs (PCGs):

I Vertices: plateaux of given landscape

I Edges (directed): connect plateaux that are directly connected
by one or more exit.

I Additionally, edge weights can be used to indicate the relative
numbers of exits from one plateau to its PCG neighbours.
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Example: Simple neutral search landscape L . . .

P6.2P6.1

P5

P4.1

P4.2

P3.2

P3.1 P2

P1

P4.3

P4.4

Note: The plateaux form a partition of L, i.e. every position in L
is part of exactly one (possibly degenerate) plateau.
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Example: . . . and the respective plateau connection graph

P6.2P6.1

P5

P4.1

P4.2

P3.2

P3.1 P2

P1

P4.3

P4.4
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Example: PCG of easy Random 3-SAT instance

9.1
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2.3 2.2

1.1 1.4

0.1
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Example: PCG of hard Random 3-SAT instance

8.1

7.1

6.1

5.1

0.27

0.65

0.25 0.69

0.06

0.07

0.40

0.76
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0.78
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1
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1.1
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0.1

3.3 3.4 3.1 3.2 3.6 3.5
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Barriers and Basins

Observation:

The difficulty of escaping from closed plateaux or
strict local minima is related to the height of the barrier,
i.e., the difference in evaluation function, that needs to be
overcome in order to reach better search positions:

Higher barriers are typically more difficult to overcome
(this holds, e.g., for Probabilistic Iterative Improvement
or Simulated Annealing).
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Definition:

I Positions s, s ′ are mutually accessible at level l
iff there is a path connecting s ′ and s in the neighbourhood
graph that visits only positions t with g(t) ≤ l .

I The barrier level between positions s, s ′, bl(s, s ′)
is the lowest level l at which s ′ and s ′ are mutually accessible;

the difference between the level of s and bl(s, s ′) is called
the barrier height between s and s ′.

I The depth of a position s is the minimal barrier height
between s and any position s ′ at a level lower than s,
i.e., for which g(s ′) < g(s).
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Basins, i.e., maximal (connected) regions of search positions
below a given level, form an important basis for characterising
search space structure.

Note:

I Basins of a given landscape form a hierarchy, i.e., two basins
are either disjoint, or one is contained in the other.

I Basin hierarchies can be formally represented as basin trees.
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Example: Basins in a simple search landscape and
corresponding basin tree

B4

B3

B1

B2

l2
l1

B4

B3

B1

B2

Note: The basin tree only represents basins just below the critical
levels at which neighbouring basins are joined (by a saddle).
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Note:

I Like plateau connection graphs, basin trees can provide
much deeper insights into SLS behaviour and problem
hardness than global measures of search space structure,
such as FDC or ACC.

I But: This type of analysis is computationally expensive,
since it requires enumeration (or sampling) of large parts of
the search space.
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