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Las Vegas Algorithms

SLS algorithms are typically incomplete: there is no guarantee
that an (optimal) solution for a given problem instance will
eventually be found.

But: For decision problems, any solution returned is guaranteed to
be correct.

Also: The run-time required for finding a solution (in case one
is found) is subject to random variation.

� These properties define the class of (generalised) Las Vegas
algorithms, of which SLS algorithms are a subset.
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Definition: (Generalised) Las Vegas Algorithm (LVA)

An algorithm A for a problem class Π is a (generalised) Las Vegas
algorithm (LVA) iff it has the following properties:

(1) If for a given problem instance π ∈ Π, algorithm A terminates
returning a solution s, s is guaranteed to be a correct solution
of π.

(2) For any given instance π ∈ Π, the run-time of A applied to π
is a random variable RTA,π.

Note: This is a slight generalisation of the definition of a Las Vegas

algorithm known from theoretical computing science (our definition

includes algorithms that are not guaranteed to return a solution).
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Note:

� Any SLS algorithm for a decision problem is also a Las Vegas
algorithm. (Condition 1 is trivially satisfied because solutions
are checked to be correct before they are returned.)

� Las Vegas algorithms can be deterministic, since deterministic
run-time is modelled by a degenerate probability distribution
(aka Dirac delta distribution).
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Note: For SLS algorithms for optimisation problems, the solution
quality achieved within bounded run-time as well as the run-time
required for reaching a given solution quality are random variables.

Definition: Optimisation Las Vegas Algorithm (OLVA)

An algorithm A for an optimisation problem Π′ is a (generalised)
optimisation Las Vegas algorithm (OLVA) iff it has the following
properties:

(1) A is a (generalised) Las Vegas algorithm.

(2) For any given instance π′ ∈ Π′, the solution quality achieved
by A applied to π′ after any given run-time t is a random
variable SQA,π′(t).

Stochastic Local Search: Foundations and Applications 6



Note:

� Las Vegas algorithms are prominent in many areas of
computing science and operations research.

� There are successful types of LVAs other than SLS algorithms,
e.g., randomised systematic search algorithms.

� LVAs can be seen as special cases of Monte Carlo Algorithms,
i.e., randomised algorithms that can sometimes return an
incorrect solution to the given problem instance (false positive
result).
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Note:

� Practically relevant Las Vegas algorithms are typically difficult
to analyse theoretically.

� Cases in which theoretical results are available are often of
limited practical relevance, because they

� rely on idealised assumptions that do not apply to practical
situations (e.g., convergence results for Simulated Annealing);

� apply to worst-case or highly idealised average-case behaviour
only;

� capture only asymptotic behaviour and do not reflect actual
behaviour with sufficient accuracy.
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Therefore:

Analyse the behaviour of Las Vegas algorithms using empirical
methodology, ideally based on the scientific method:

� make observations

� formulate hypothesis/hypotheses (model)

� While not satisfied with model (and deadline not exceeded):

1. design computational experiment to test model

2. conduct computational experiment

3. analyse experimental results

4. revise model based on results
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Asymptotic run-time behaviour of LVAs

� completeness:
for each soluble problem instance π there is a time bound
tmax(π) for the time required to find a solution.

� probabilistic approximate completeness (PAC property):
for each soluble problem instance a solution is found
with probability → 1 as run-time → ∞.

Note: Do not confuse with probably approximately correct

(PAC) learning.

� essential incompleteness:
for some soluble problem instances, the probability for
finding a solution is strictly smaller than 1 for run-time → ∞.
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Examples:

� Many randomised tree search algorithms are complete, e.g.,
Satz-Rand [Gomes et al., 1998].

� Uninformed Random Walk and Randomised Iterative
Improvement are probabilistically approximately complete
(PAC).

� Iterative Improvement is essentially incomplete.
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Note:

� Completeness of SLS algorithms can be achieved by using a
restart mechanism that systematically initialises the search
at all candidate solutions.

� Typically very ineffective, due to large size of search space.

� Essential incompleteness of SLS algorithms is typically caused
by inability to escape from attractive local minima regions of
search space.

Remedy: Use diversification mechanisms such as random
restart, random walk, probabilistic tabu tenure, . . .

In many cases, these can render algorithms provably PAC;
but effectiveness in practice can vary widely.
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Asymptotic behaviour of OLVAs

� Simple generalisation based on associated decision problems
for given solution quality bound q := r · q∗,
where q∗ = optimal solution quality for given problem
instance:

� completeness � r -completeness

� probabilistic approximate completeness
� probabilistic approximate r-completeness (r -PAC property)

� essential incompleteness � essential r -incompleteness

� Terminology for optimal solution qualities:

complete = 1-complete, PAC = 1-PAC,
essentially incomplete = essentially 1-incomplete.
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Application scenarios and evaluation criteria (1)

Evaluation criteria for LVAs depend on the application context:

� Type 1: No time limits given, algorithm can be run until
a solution is found (off-line computations, non-realtime
environments, e.g., configuration of production facility).

� evaluation criterion: expected run-time

� Type 2: Hard time limit tmax for finding solution;
solutions found later are useless (real-time environments with
strict deadlines, e.g., dynamic task scheduling or on-line robot
control).

� evaluation criterion: solution probability at time tmax
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Application scenarios and evaluation criteria (2)

In many real applications, utility of solutions depends in more
complex ways on time required for finding them:

� Type 3: Characterised by utility function U : R
+ �→ [0, 1],

where U(t) = utility of solution found at time t.

Example: Direct benefit of solution is invariant over time,
but cost of compute time diminishes final payoff according to
U(t) := max{u0 − c · t, 0} (constant discounting).

Evaluation criterion for type 3 scenario:
utility-weighted solution probability U(t) · Ps(RT ≤ t)
� requires detailed knowledge of Ps(RT ≤ t) for arbitrary t.

Note: Type 3 is a generalisation of types 1 and 2.

Stochastic Local Search: Foundations and Applications 15

For optimisation Las Vegas algorithms, solution quality also has to
be considered.

Some scenarios:

� Run-time is unconstrained, given solution quality threshold
must be reached (generalisation of type 1 scenario)

� Hard time-limit is given, during which best possible solution
quality should be found (generalisation of type 2 scenario).
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In many cases, tradeoffs between run-time and solution quality
are more complex.

� Generalisation of type 3 scenario: Utility of solution
depends on quality and time needed for finding it;
characterised by utility function U : R

+ × R
+ �→ [0, 1],

where U(t, q) = utility of solution of quality q found at time t.

Evaluation criterion: utility-weighted solution probability
U(t, q) · Ps(RT ≤ t, SQ ≤ q)
� requires detailed knowledge of Ps(RT ≤ t, SQ ≤ q).

Stochastic Local Search: Foundations and Applications 17

Run-Time Distributions

Las Vegas algorithms are often designed and evaluated without
a priori knowledge of the application scenario; therefore:

� assume most general scenario: type 3 with unknown
utility function;

� evaluate based on solution probabilities Ps(RT ≤ t)
or Ps(RT ≤ t, SQ ≤ q) for arbitrary run-times t and
solution qualities q.

� study distributions of random variables characterising run-time
and solution quality of algorithm on given problem instance.
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Typical run-time distribution for SLS algorithm applied to
hard instance of combinatorial decision problem:
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Definition: Run-Time Distribution (1)

Given Las Vegas algorithm A for decision problem Π:

� The success probability Ps(RTA,π ≤ t) is the probability that
A finds a solution for a soluble instance π ∈ Π in time ≤ t.

� The run-time distribution (RTD) of A on π is the probability
distribution of the random variable RTA,π.

� The run-time distribution function rtd : R
+ �→ [0, 1],

defined as rtd(t) = Ps(RTA,π ≤ t), completely characterises
the RTD of A on π.
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Definition: Run-Time Distribution (2)

Given OLVA A′ for optimisation problem Π′:

� The success probability Ps(RTA′,π′ ≤ t, SQA′,π′ ≤ q)
is the probability that A′ finds a solution for a soluble
instance π′ ∈ Π′ of quality ≤ q in time ≤ t.

� The run-time distribution (RTD) of A′ on π′ is the
probability distribution of the bivariate random variable
(RTA′,π′ , SQA′,π′).

� The run-time distribution function rtd : R
+ × R

+ �→ [0, 1],
defined as rtd(t, q) = Ps(RTA,π ≤ t, SQA′,π′ ≤ q),
completely characterises the RTD of A′ on π′.
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Typical run-time distribution for SLS algorithm applied to
hard instance of combinatorial optimisation problem:
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Qualified RTDs for various solution qualities:
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Qualified run-time distributions (QRTDs)

� A qualified run-time distribution (QRTD) of an OLVA A′

applied to a given problem instance π′ for solution quality q’
is a marginal distribution of the bivariate RTD rtd(t, q)
defined by:

qrtdq′(t) := rtd(t, q′) = Ps(RTA′,π′ ≤ t, SQA′,π′ ≤ q′).

� QRTDs correspond to cross-sections of the two-dimensional
bivariate RTD graph.

� QRTDs characterise the ability of a given SLS algorithm for
a combinatorial optimisation problem to solve the associated
decision problems.

Note: Solution qualities q are often expressed as relative solution
qualities q/q∗ − 1, where q∗ = optimal solution quality for given
problem instance.

Stochastic Local Search: Foundations and Applications 24



Typical solution quality distributions for SLS algorithm applied
to hard instance of combinatorial optimisation problem:
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Solution quality distributions for various run-times:
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Solution quality distributions (SQDs)

� A solution quality distribution (SQD) of an OLVA A′ applied
to a given problem instance π′ for run-time t’ is a marginal
distribution of the bivariate RTD rtd(t, q) defined by:

sqdt′(q) := rtd(t ′, q) = Ps(RTA′,π′ ≤ t ′, SQA′,π′ ≤ q).

� SQDs correspond to cross-sections of the two-dimensional
bivariate RTD graph.

� SQDs characterise the solution qualities achieved by a
given SLS algorithm for a combinatorial optimisation problem
within a given run-time bound (useful for type 2 application
scenarios).
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Note:

� For sufficiently long run-times, increase in mean solution
quality is often accompanied by decrease in solution quality
variability.

� For PAC algorithms, the SQDs for very large time-limits t ′

approach degenerate distributions that concentrate all
probability on the optimal solution quality.

� For any essentially incomplete algorithm A′ (such as Iterative
Improvement) applied to a problem instance π′, the SQDs for
sufficiently large time-limits t ′ approach a non-degenerate
distribution called the asymptotic SQD of A′ on π′.
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Solution quality statistics over time (SQTs)

� The development of solution quality over the run-time of
a given OLVA is reflected in time-dependent SQD statistics
(solution quality over time (SQT) curves).

� SQT curves based on SQD quantiles (such as median solution
quality) correspond to contour lines of the two-dimensional
bivariate RTD graph.

� SQT curves are widely used to illustrate the trade-off between
run-time and solution quality for a given OLVA.

� But: Important aspects of an algorithm’s run-time behaviour
may be easily missed when basing an analysis solely on
a single SQT curve.
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Typical SQT curves for SLS optimisation algorithms applied to
instance of hard combinatorial optimisation problem:
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Typical SQT curves for SLS optimisation algorithms applied to
instance of hard combinatorial optimisation problem:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 1 10 100

re
la

tiv
e 

so
lu

tio
n 

qu
al

ity
 [%

]

run-time [CPU sec] 

0.75 quantile
0.9 quantile

median

Stochastic Local Search: Foundations and Applications 31

Empirically measuring RTDs

� Except for very simple algorithms, where they can be derived
analytically, RTDs are measured empirically.

� Empirical RTDs are approximations of an algorithm’s true
RTD.

� Empirical RTDs are determined from a number of
independent, successful runs of the algorithm on a given
problem instance (samples of theoretical RTD).

� Higher numbers of runs (larger sample sizes) give more
accurate approximations of a true RTD.
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Typical sample of run-times for an SLS algorithm applied to
an instance of a hard decision problem:

run #

0
0

2

4

6

8

10

12

14

100 200 300 400 500 600 700 800 900 1 000

ru
n-

tim
e 

[C
P

U
 s

ec
]

Stochastic Local Search: Foundations and Applications 33

Corresponding empirical RTD:
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Protocol for obtaining the empirical RTD for an LVA A applied
to a given instance π of a decision problem:

� Perform k independent runs of A on π with cutoff time t ′.
(For most purposes, k should be at least 50–100, and t ′

should be high enough to obtain at least a large fraction of
successful runs.)

� Record number k ′ of successful runs, and for each run,
record its run-time in a list L.

� Sort L according to increasing run-time; let rt(j) denote
the run-time from entry j of the sorted list (j = 1, . . . , k ′).

� Plot the graph (rt(j), j/k), i.e., the cumulative empirical RTD
of A on π.
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Note:

� The fraction of successful runs, sr := k ′/k, is called the
success ratio; for large run-times t ′, it approximates the
asymptotic success probability p∗

s := limt→∞Ps(RTa,π ≤ t).

� In cases where the success ratio sr for a given cutoff time t ′

is smaller than 1, quantiles up to sr can still be estimated from
the respective truncated RTD.

The mean run-time for a variant of the algorithm that restarts
after time t ′ can be estimated as:

̂E (RTs) + (1/sr − 1) · ̂E (RTf )

where ̂E (RTs) and ̂E (RTf ) are the average times of successful
and failed runs, respectively.

Note: 1/sr − 1 is the expected number of failed runs required before

a successful run is observed.
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Protocol for obtaining the empirical RTD for an OLVA A′

applied to a given instance π′ of an optimisation problem:

� Perform k independent runs of A′ on π′ with cutoff time t ′.

� During each run, whenever the incumbent solution is
improved, record the quality of the improved incumbent
solution and the time at which the improvement was achieved
in a solution quality trace.

� Let sq(t ′, j) denote the best solution quality encountered in
run j up to time t ′. The cumulative empirical RTD of A′ on π′

is defined by ̂Ps(RT ≤ t ′, SQ ≤ q′) := #{j | sq(t ′, j) ≤ q′}/k.

Note: Qualified RTDs, SQDs and SQT curves can be easily
derived from the same solution quality traces.
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Measuring run-times (1):

� CPU time measurements are based on a specific
implementation and run-time environment (machine,
operating system) of the given algorithm.

� To ensure reproducibility and comparability of empirical
results, CPU times should be measured in a way that is as
independent as possible from machine load.

When reporting CPU times, the run-time environment should
be specified (at least CPU type, model, speed and cache size;
amount of RAM; OS type and version); ideally, the
implementation of the algorithm should be made available.
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Measuring run-times (2):

To achieve better abstraction from the implementation and
run-time environment, it is often preferable to measure run-time
using

� operation counts that reflect the number of operations that
contribute significantly towards an algorithms performance,
and

� cost models that specify the CPU time for each such operation
for a given implementation and run-time environment.
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Example:

For a given SLS algorithm for SAT applied to a specific SAT
instance we observe

� a median run-time of 38 911 search steps (operation count);

� the CPU time required for each search step is 0.027ms, while
initialisation takes 0.8ms (cost model)

when running the algorithm on an Intel Xeon 2.4GHz CPU
with 512KB cache and 1GB RAM running Red Hat Linux,
Version 2.4smp (run-time environment).
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Run-length distributions:

� RTDs based on run-times measured in terms of elementary
operations of the given algorithm are also called run-length
distributions (RLDs).

� Caution: RLDs should be based on elementary operations
that either require constant CPU time (for the given problem
instance), or on aggregate counts in which operations that
require different amounts of CPU time (e.g., two types of
search steps) are weighted appropriately.

� Elementary operations commonly used as the basis for RLD
and other run-time measurements of SLS algorithms include
search steps, objective function evaluations and updates of
data structures used for implementing the step function.
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RTD-based Analysis of LVA Behaviour

Run-time distributions (and related concepts) provide an excellent
basis for

� analysis and characterisation of LVA behaviour;

� comparative performance analyses of two or more LVAs;

� investigations of the effects of parameters, problem instance
features, etc. on the behaviour of an LVA.

RTD-based empirical analysis in combination with proper
statistical techniques (hypothesis tests) is a state-of-the-art
approach in empirical algorithmics.
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RTD plots are useful for the qualitative analysis of LVA behaviour:

� Semi-log plots give a better view of the distribution over
its entire range.

� Uniform performance differences characterised by a constant
factor correspond to shifts along horizontal axis.

� Log-log plots of an RTD or its associated failure rate decay
function, 1 − rtd(t), are often useful for examining behaviour
for very short or very long runs.
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Various graphical representations of a typical RTD:
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Quantitative RTD analysis is typically based on basic descriptive
statistics, such as:

� mean;

� median (q0.5) and other quantiles (e.g., q0.25, q0.75, q0.9);

� standard deviation or (better) variation coefficient
vc := stddev/mean;

� quantile ratios, such as q0.75/q0.5 or q0.9/q0.1.

Note: SLS algorithms typically show very high variability in
run-time; therefore, reporting a measure of variability along with
the mean or median run-time is important.
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Example:

The empirical RLD of a given SLS algorithm for SAT on
a specific SAT instance is characterised by the following
basic descriptive statistics:

mean 57 606.23 median 38 911
min 107 q0.25; q0.1 16 762; 5 332
max 443 496 q0.75; q0.9 80 709; 137 863
stddev 58 953.60 q0.75/q0.25 4.81
vc 1.02 q0.9/q0.1 25.86
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Note:

� Quantiles (such as the median) are more stable w.r.t.
extreme values than the mean.

� Unlike the standard deviation (or variance), the variation
coefficient and quantile ratios are invariant under
multiplication by constants.
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Note:

� Descriptive statistics can be easily calculated from
empirical RTDs.

� Obtaining sufficiently stable descriptive statistics requires
the same number of runs of the given algorithm as measuring
reasonably accurate empirical RTDs.

� QRTDs and SQDs can be handled analogously to RTDs;
along with SQT curves they can be easily determined from
the same solution quality traces that provide the basis for
empirical bivariate RTDs of a given optimisation LVA.

Stochastic Local Search: Foundations and Applications 48



Basic quantitative analysis for ensembles of instances (1)

� In principle, the same approach as for individual instances
is applicable: Measure empirical RTD for each instance,
analyse using RTD plots or descriptive statistics.

� In many cases, the RTDs for set of instances have similar
shapes or share important features (e.g., being uni- or
bi-modal, or having a prominent right tail).

� Select typical instance for presentation or further analysis,
briefly summarise data for remaining instances.
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RTDs for WalkSAT/SKC, a prominent SLS algorithm for SAT,
on three hard 3-SAT instances:
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Basic quantitative analysis for ensembles of instances (2)

� For bigger sets of instances (e.g., samples from random
instance distributions), it is important to characterise the
performance of the given algorithm on individual instances
as well as across the entire ensemble.

� Report and analyse run-time distributions on representative
instance(s) as well as search cost distribution (SCD), i.e.,
distribution of basic RTD statistics (e.g., median or mean)
across given instance ensemble.

� For sets of instances that have been generated by
systematically varying a parameter (e.g., problem size), study
RTD characteristics in dependence of the parameter value.

Useful fact: Exponential and polynomial functions appear as
straight lines in semi-log plots and log-log plots, respectively.

Stochastic Local Search: Foundations and Applications 51

Distribution of median search cost for WalkSAT/SKC over
set of 1000 randomly generated, hard 3-SAT instances:
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Some criteria for constructing/selecting benchmark sets:

� instance hardness (focus on hard instances)

� instance size (provide range, scaling studies)

� instance type (provide variety):

� individual application instances

� hand-crafted instances (realistic, artificial)

� ensembles of instances from random distributions
(� random instance generators)

� encodings of various other types of problems
(e.g., SAT-encodings of graph colouring problems)
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To ensure comparability and reproducibility of results:

� use established benchmark sets from public benchmark
libraries (such as TSPLIB, SATLIB, etc.) and/or related
literature;

� make newly created test-sets available to other researchers.

Note:

Careful selection and good understanding of benchmark sets
are often crucial for the relevance of an empirical study!
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Comparing algorithms based on RTDs (1)

� Many empirical studies aim to establish the superiority of
one Las Vegas algorithm over another.

� For an instance of a decision problem, LVA A is superior to
LVA B if for any run-time, A consistently gives a higher
solution probability than B (probabilistic domination).

� For an instance of an optimisation problem, OLVA A′

probabilistically dominates OLVA B ′ on a given problem
instance iff for all solution quality bounds, A′ probabilistically
dominates B ′ on the respective associated decision problem.
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Comparing algorithms based on RTDs (2)

� A probabilistic domination relation holds between two Las
Vegas algorithms on a given problem instance iff their
respective (qualified) RTDs do not cross each other.

� Even for single problem instances, a probabilistic domination
relation does not always hold (i.e., there is a cross-over
between the respective RTDs).

In this situation, which of two given algorithms is superior
depends on the time both algorithms are allowed to run.

� To assess the statistical significance of observed performance
differences, an appropriate statistical hypothesis test must
be applied.
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Background: Statistical hypothesis tests (1)

� Statistical hypothesis tests are used to assess the validity of
statements about properties of or relations between sets of
statistical data.

� The statement to be tested (or its negation) is called the null
hypothesis (H0) of the test.

Example: For the Mann-Whitney U-test, the null hypothesis is
‘the two distributions underlying two given samples have the
same median’.

� The significance level (α) determines the maximum allowable
probability of incorrectly rejecting the null hypothesis.

Typical values of α are 0.05 or 0.01.
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Background: Statistical hypothesis tests (2)

� The power of the test provides a lower bound for the
probability of correctly accepting the null hypothesis. The
desired power of a test determines the required sample size.

Typical power values are at least 0.8; in many cases, sample
size calculations for given power values are difficult.

� The application of a test to a given data set results in a
p-value, which represents the probability that the null
hypothesis is incorrectly rejected.

The null hypothesis is rejected iff this p-value is smaller than
the previously chosen significance level.

� Most common statistical hypothesis tests and other statistical
analyses can be performed rather conveniently in the free
R software environment (see http://www.r-project.org/).
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Comparing algorithms based on RTDs (3)

� The Mann Whitney U-test (aka Wilcoxon rank sum test)
is used to test whether the medians of two samples
(e.g., empirical RTDs) are significantly different.

� Unlike the widely used t-test, the U-test is distribution-free
(or non-parametric), i.e., it does not depend on the
assumption that the underlying probability distributions are
Gaussian. (This assumption is typically violated for
the RTDs of SLS algorithms.)

� The more specific hypothesis whether the theoretical RTDs
(or SQDs) of two algorithms are identical can be tested
using the Kolmogorov-Smirnov test.
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Performance differences detectable by the Mann-Whitney
U-test for various sample sizes (sign. level 0.05, power 0.95):

sample size m1/m2

3 010 1.1
1 000 1.18

122 1.5
100 1.6
32 2
10 3

m1/m2 is the ratio between the medians of the two empirical
distributions.
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Example of crossing RTDs for two SLS algorithms for the TSP
applied to a standard benchmark instance (1000 runs/RTD):
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Comparative analysis for instance ensembles (1)

Goal: Compare performance of Las Vegas algorithms A and B
on a given ensemble of instances.

� Use instance-based analysis to partition given ensemble into
three subsets:

� instances on which A probabilistically dominates B;

� instances on which B probabilistically dominates A;

� instances on which there is no probabilistic domination
between A and B (crossing RTDs).

The size of these subsets gives a rather detailed picture of
the algorithms’ relative performance on the given ensemble.
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Comparative analysis for instance ensembles (2)

� Use statistical tests to assess significance of performance
differences across given instance ensemble.

� The binomial sign test measures whether the median of the
paired performance differences (e.g., in median run-time)
of A and B per instance is significantly different from zero,
which means that there is no significant systematic
performance difference between A and B across the ensemble.

� Note: This test does not capture qualitative performance
differences such as different shapes of the underlying RTDs
and can easily miss interesting variation in relative
performance across the ensemble.
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Comparative analysis for instance ensembles (3)

� Particularly for large instance ensembles, it is often useful to
study the correlation between the performance of A and B
across the ensemble.

Typical performance measures used in this context are RTD or
SQD statistics, such as empirical median or mean.

� For qualitative correlation analyses, scatter plots in which
each instance π is represented by one point whose x and y
co-ordinates correspond to the performance of A and B on π.
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Correlation between median run-time for two SLS algorithms
for the TSP over a set of 100 randomly generated instances:
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10 runs per instance.
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Comparative analysis for instance ensembles (4)

� Quantitatively, the correlation can be summarised using the
empirical correlation coefficient. Additionally, regression
analysis can be used to model regular performance
relationships.

� To test the statistical significance of an observed monotonic
relationship, use non-parametric tests such as Spearman’s
rank order test.
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Correlation between median run-time for two SLS algorithms
for the TSP over a set of 100 randomly generated instances:
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10 runs per instance; correlation coefficient 0.39, significant according to

Spearman’s rank order test at α = 0.05; p-value = 9 · 10−11.
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Peak Performance vs Robustness (1)

� Most high-performance SLS algorithms have parameters
that significantly affect their performance.

Examples: Walk probability wp in RII, tabu tenure in TS,
mutation rate in EAs.

� When evaluating parameterised SLS algorithms, peak
performance, i.e., the performance of a parameterised SLS
algorithm for optimised parameter values, is often used as a
performance criterion.

Note: Peak performance is a measure of potential
performance.

� Pitfall: Unfair parameter tuning, i.e., the use of unevenly
optimised parameter settings in comparative studies.
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Peak Performance vs Robustness (2)

� To avoid unfair parameter tuning, spend approximately
the same effort for tuning the parameters of all algorithms
participating in a direct performance comparison.

Alternative: Use automated parameter tuning techniques
from experimental design.

� Note:

� Optimal parameter settings often vary substantially between
problem instances or instance classes.

� Effects of multiple parameters are typically not independent.

� Performance robustness, i.e., the variation in performance due
to deviations from optimal parameter settings, is an important
performance criterion.
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Peak Performance vs Robustness (3)

� Performance robustness can be studied empirically
by measuring the impact of parameter settings on RTDs
(or their descriptive statistics) of a given LVA on a set
of problem instances.

� More general notions of robustness include performance
variation over

� multiple runs for fixed input (captured in RTD),

� different problem instances or domains.

� Advanced empirical studies should attempt to relate
the latter type of variations to features of the respective
instances or domains (e.g., scaling studies relate LVA
performance to instance size).
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Characterising and Improving LVA Behaviour

Advanced aspects of empirical analysis include:

� the analysis of asymptotic and stagnation behaviour,

� the use of functional approximations to mathematically
characterise entire RTDs.

Such advanced analyses can facilitate improvements in
the performance and run-time behaviour of a given LVA,
e.g., by providing the basis for

� designing or configuring restart strategies and other
diversification mechanisms,

� realising speedups through multiple independent runs
parallelisation.
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Asymptotic behaviour and stagnation

The three previously discussed norms of LVA behaviour,
completeness, PAC property and essential incompleteness,
correspond to properties of an algorithm’s theoretical RTDs.

Note:

� Completeness can be empirically falsified for a given
time-bound, but it cannot empirically verified.

� Neither the PAC property, nor essential incompleteness
can be empirically verified or falsified.

� But: Empirical RTDs can provide evidence (rather than
proof) for essential incompleteness or PAC behaviour.
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Example of asymptotic behaviour in empirical RTDs:
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Note: MMAS is provably PAC, MMAS∗ is essentially incomplete.
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LVA efficiency and stagnation

� In practice, the rate of decrease in the failure probability,
λA,π(t), is more relevant than true asymptotic behaviour.

� Note: Exponential RTDs are characterised by a constant rate
of decrease in failure probability.

� A drop in λA,π(t) indicates stagnation of algorithm A’s
progress towards finding a solution of instance π.

� Stagnation can be detected by comparing the RTD against
an exponential distribution.
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Evidence of stagnation in an empirical RTD:
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‘ed[18]’ is the CDF of an exponential distribution with median 18; the arrows

mark the point at which stagnation behaviour becomes apparent.
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Note:

� The formal definition of LVA efficiency and stagnation
is based on the idea that an LVA A suffers from stagnation
iff its success probability can be increased by restarting A
after an appropriately chosen cutoff time.

(For details, see Definition 4.9 on page 187 of SLS:FA.)

� Efficiency and stagnation are relative measures; they cannot
indicate all situations in which a given LVA’s behaviour can be
further improved.
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Functional characterisation of LVA behaviour (1)

� Empirical RTDs are step functions that approximate
the underlying theoretical RTDs.

� For reasonably large sample sizes (numbers of runs),
empirical RTDs can often be approximated well using
much simpler continuous mathematical functions.

� Such functional approximations are useful for summarising
and mathematically modelling empirically observed behaviour,
which often provides deeper insights into LVA behaviour.

� Approximations with parameterised families of continuous
distribution functions known from statistics, such as
exponential or normal distributions, are particularly useful.
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Approximation of an empirical RTD with an exponential
distribution ed[m](x) := 1 − 2−x/m:
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Functional characterisation of LVA behaviour (2)

� Model fitting techniques, such as the Marquardt-Levenberg
or Expectation Maximisation algorithms, can be used to find
good approximations of empirical RTDs with parameterised
cumulative distribution functions.

� The quality of approximations can be assessed using
statistical goodness-of-fit tests, such as the χ2-test or
the Kolmogorov-Smirnov test.

� Note: Particularly for small or easy problem instances,
the quality of optimal functional approximations can
sometimes be limited by the inherently discrete nature
of empirical RTD data.

� This approach can be easily generalised to ensembles of
problem instances.
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Approximation of an empirical RTD with an exponential
distribution ed[m](x) := 1 − 2−x/m:
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The optimal fit exponential distribution obtained from the

Marquardt-Levenberg algorithm passes the χ2 goodness-of-fit test at α = 0.05.
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Performance improvements based on static restarts (1)

� Detailed RTD analyses can often suggest ways of improving
the performance of a given SLS algorithm.

� Static restarting, i.e., periodic re-initialisation after all integer
multiples of a given cutoff-time t ′, is one of the simplest
methods for overcoming stagnation behaviour.

� A static restart strategy is effective, i.e., leads to increased
solution probability for some run-time t ′′, if the RTD of
the given algorithm and problem instance is less steep than
an exponential distribution crossing the RTD at some time
t < t ′′.
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Example of an empirical RTD of an SLS algorithm on a
problem instance for which static restarting is effective:
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‘ed[18]’ is the CDF of an exponential distribution with median 18; the arrows

mark the optimal cutoff-time for static restarting.
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Performance improvements based on static restarts (2)

� To determine the optimal cutoff-time topt for static restarts,
consider the left-most exponential distribution that touches
the given empirical RTD and choose topt to be the smallest
t value at which the two respective distribution curves meet.

(For a formal derivation of topt , see page 193 of SLS:FA.)

� Note: This method for determining optimal cutoff-times
only works a posteriori, given an empirical RTD.

� Optimal cutoff-times for static restarting typically vary
considerably between problem instances; for optimisation
algorithms, they also depend on the desired solution quality.
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Overcoming stagnation using dynamic restarts

� Dynamic restart strategies are based on the idea of
re-initialising the search process only when needed,
i.e., when stagnation occurs.

� Simple dynamic restart strategy: Re-initialise search when
the time interval since the last improvement of the incumbent
candidate solution exceeds a given threshold θ.
(Incumbent candidate solutions are not carried over restarts.)

θ is typically measured in search steps and may be chosen
depending on properties of the given problem instance,
in particular, instance size.
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Example: Effect of simple dynamic restart strategy
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Other diversification strategies

� Restart strategies often suffer from the fact that search
initialisation can be relatively time-consuming (setup time,
time required for reaching promising regions of given search
space).

� This problem can be avoided by using other diversification
mechanisms for overcoming search stagnation, such as

� random walk extensions that render a given SLS algorithm
provably PAC;

� adaptive modification of parameters controlling the amount
of search diversification, such as temperature in SA or
tabu tenure in TS.

� Effective techniques for overcoming search stagnation are
crucial components of high-performance SLS methods.
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Multiple independent runs parallelisation

� Any LVA A can be easily parallelised by performing multiple
runs on the same problem instance π in parallel on p
processors.

� The effectiveness of this approach depends on the RTD
of A on π:

Optimal parallelisation speedup of p is achieved for
an exponential RTD.

� The RTDs of many high-performance SLS algorithms are
well approximated by exponential distributions; however,
deviations for short run-times (due to the effects of search
initialisation) limit the maximal number of processors
for which optimal speedup can be achieved in practice.
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Speedup achieved by multiple independent runs parallelisation
of a high-performance SLS algorithm for SAT:
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