
STOCHASTIC LOCAL SEARCH
FOUNDATIONS AND APPLICATIONS

Generalised Local Search Machines

Holger H. Hoos & Thomas Stützle

Outline

1. The Basic GLSM Model

2. State, Transition and Machine Types

3. Modelling SLS Methods Using GLSMs

4. Extensions of the Basic GLSM Model

Stochastic Local Search: Foundations and Applications 2

The Basic GLSM Model

Many high-performance SLS methods are based on combinations
of simple (pure) search strategies (e.g., ILS, MA).

These hybrid SLS methods operate on two levels:

I lower level: execution of underlying simple search strategies

I higher level: activation of and transition between lower-level
search strategies.

Key idea underlying Generalised Local Search Machines:
Explicitly represent higher-level search control mechanism
in the form of a finite state machine.

Stochastic Local Search: Foundations and Applications 3

The Basic GLSM Model

Many high-performance SLS methods are based on combinations
of simple (pure) search strategies (e.g., ILS, MA).

These hybrid SLS methods operate on two levels:

I lower level: execution of underlying simple search strategies

I higher level: activation of and transition between lower-level
search strategies.

Key idea underlying Generalised Local Search Machines:
Explicitly represent higher-level search control mechanism
in the form of a finite state machine.

Stochastic Local Search: Foundations and Applications 3

The Basic GLSM Model

Many high-performance SLS methods are based on combinations
of simple (pure) search strategies (e.g., ILS, MA).

These hybrid SLS methods operate on two levels:

I lower level: execution of underlying simple search strategies

I higher level: activation of and transition between lower-level
search strategies.

Key idea underlying Generalised Local Search Machines:
Explicitly represent higher-level search control mechanism
in the form of a finite state machine.

Stochastic Local Search: Foundations and Applications 3

The Basic GLSM Model

Many high-performance SLS methods are based on combinations
of simple (pure) search strategies (e.g., ILS, MA).

These hybrid SLS methods operate on two levels:

I lower level: execution of underlying simple search strategies

I higher level: activation of and transition between lower-level
search strategies.

Key idea underlying Generalised Local Search Machines:
Explicitly represent higher-level search control mechanism
in the form of a finite state machine.

Stochastic Local Search: Foundations and Applications 3

Example: Simple 3-state GLSM (1)

Z2Z0 Z1
PROB(1)

PROB(1–p1) PROB(1–p2)

PROB(p1)

PROB(p2)

I States z0, z1, z2 represent simple search strategies,
such as Random Picking (for initialisation), Iterative
Best Improvement and Uninformed Random Walk.

I PROB(p) refers to a probabilistic state transition with
probability p after each search step.

Stochastic Local Search: Foundations and Applications 4

Example: Simple 3-state GLSM (1)

Z2Z0 Z1
PROB(1)

PROB(1–p1) PROB(1–p2)

PROB(p1)

PROB(p2)

I States z0, z1, z2 represent simple search strategies,
such as Random Picking (for initialisation), Iterative
Best Improvement and Uninformed Random Walk.

I PROB(p) refers to a probabilistic state transition with
probability p after each search step.

Stochastic Local Search: Foundations and Applications 4

Generalised Local Search Machines (GLSMs)

I States ∼= simple search strategies.

I State transitions ∼= search control.

I GLSM M starts in initial state.

I In each iteration:

I M executes one search step associated with
its current state z ;

I M selects a new state (which may be the same as z)
in a nondeterministic manner.

I M terminates when a given termination criterion
is satisfied.

Stochastic Local Search: Foundations and Applications 5

Generalised Local Search Machines (GLSMs)

I States ∼= simple search strategies.

I State transitions ∼= search control.

I GLSM M starts in initial state.

I In each iteration:

I M executes one search step associated with
its current state z ;

I M selects a new state (which may be the same as z)
in a nondeterministic manner.

I M terminates when a given termination criterion
is satisfied.

Stochastic Local Search: Foundations and Applications 5

Generalised Local Search Machines (GLSMs)

I States ∼= simple search strategies.

I State transitions ∼= search control.

I GLSM M starts in initial state.

I In each iteration:

I M executes one search step associated with
its current state z ;

I M selects a new state (which may be the same as z)
in a nondeterministic manner.

I M terminates when a given termination criterion
is satisfied.

Stochastic Local Search: Foundations and Applications 5

Formal definition of a GLSM

A Generalised Local Search Machine is defined as a tuple
M := (Z , z0,M,m0,∆, σZ , σ∆, τZ , τ∆) where:

I Z is a set of states;

I z0 ∈ Z is the initial state;

I M is a set of memory states (as in SLS definition);

I m0 is the initial memory state (as in SLS definition);

I ∆ ⊆ Z × Z is the transition relation;

I σZ and σ∆ are sets of state types and transition types;

I τZ : Z 7→ σZ and τ∆ : ∆ 7→ σ∆ associate every state z
and transition (z , z ′) with a state type σZ (z) and
transition type τ∆((z , z ′)), respectively.

Stochastic Local Search: Foundations and Applications 6

Formal definition of a GLSM

A Generalised Local Search Machine is defined as a tuple
M := (Z , z0,M,m0,∆, σZ , σ∆, τZ , τ∆) where:

I Z is a set of states;

I z0 ∈ Z is the initial state;

I M is a set of memory states (as in SLS definition);

I m0 is the initial memory state (as in SLS definition);

I ∆ ⊆ Z × Z is the transition relation;

I σZ and σ∆ are sets of state types and transition types;

I τZ : Z 7→ σZ and τ∆ : ∆ 7→ σ∆ associate every state z
and transition (z , z ′) with a state type σZ (z) and
transition type τ∆((z , z ′)), respectively.

Stochastic Local Search: Foundations and Applications 6

Formal definition of a GLSM

A Generalised Local Search Machine is defined as a tuple
M := (Z , z0,M,m0,∆, σZ , σ∆, τZ , τ∆) where:

I Z is a set of states;

I z0 ∈ Z is the initial state;

I M is a set of memory states (as in SLS definition);

I m0 is the initial memory state (as in SLS definition);

I ∆ ⊆ Z × Z is the transition relation;

I σZ and σ∆ are sets of state types and transition types;

I τZ : Z 7→ σZ and τ∆ : ∆ 7→ σ∆ associate every state z
and transition (z , z ′) with a state type σZ (z) and
transition type τ∆((z , z ′)), respectively.

Stochastic Local Search: Foundations and Applications 6

Formal definition of a GLSM

A Generalised Local Search Machine is defined as a tuple
M := (Z , z0,M,m0,∆, σZ , σ∆, τZ , τ∆) where:

I Z is a set of states;

I z0 ∈ Z is the initial state;

I M is a set of memory states (as in SLS definition);

I m0 is the initial memory state (as in SLS definition);

I ∆ ⊆ Z × Z is the transition relation;

I σZ and σ∆ are sets of state types and transition types;

I τZ : Z 7→ σZ and τ∆ : ∆ 7→ σ∆ associate every state z
and transition (z , z ′) with a state type σZ (z) and
transition type τ∆((z , z ′)), respectively.

Stochastic Local Search: Foundations and Applications 6

Example: Simple 3-state GLSM (formal definition)

Z2Z0 Z1
PROB(1)

PROB(1–p1) PROB(1–p2)

PROB(p1)

PROB(p2)

I Z := {z0, z1, z2}; z0 = initial machine state

I no memory (M := {m0}; m0 = initial and only memory state)

I ∆ := {(z0, z1), (z1, z2), (z1, z1), (z2, z1), (z2, z2)}
I σZ := {z0, z1, z2}
I σ∆ := {PROB(p) | p ∈ {1, p1, p2, 1− p1, 1− p2}}
I τZ (zi) := zi , i ∈ {0, 1, 2}
I τ∆((z0, z1)) := PROB(1), τ∆((z1, z2)) := PROB(p1), . . .

Stochastic Local Search: Foundations and Applications 7

Example: Simple 3-state GLSM (formal definition)

Z2Z0 Z1
PROB(1)

PROB(1–p1) PROB(1–p2)

PROB(p1)

PROB(p2)

I Z := {z0, z1, z2}; z0 = initial machine state

I no memory (M := {m0}; m0 = initial and only memory state)

I ∆ := {(z0, z1), (z1, z2), (z1, z1), (z2, z1), (z2, z2)}
I σZ := {z0, z1, z2}
I σ∆ := {PROB(p) | p ∈ {1, p1, p2, 1− p1, 1− p2}}
I τZ (zi) := zi , i ∈ {0, 1, 2}
I τ∆((z0, z1)) := PROB(1), τ∆((z1, z2)) := PROB(p1), . . .

Stochastic Local Search: Foundations and Applications 7

Example: Simple 3-state GLSM (formal definition)

Z2Z0 Z1
PROB(1)

PROB(1–p1) PROB(1–p2)

PROB(p1)

PROB(p2)

I Z := {z0, z1, z2}; z0 = initial machine state

I no memory (M := {m0}; m0 = initial and only memory state)

I ∆ := {(z0, z1), (z1, z2), (z1, z1), (z2, z1), (z2, z2)}
I σZ := {z0, z1, z2}
I σ∆ := {PROB(p) | p ∈ {1, p1, p2, 1− p1, 1− p2}}
I τZ (zi) := zi , i ∈ {0, 1, 2}
I τ∆((z0, z1)) := PROB(1), τ∆((z1, z2)) := PROB(p1), . . .

Stochastic Local Search: Foundations and Applications 7

Example: Simple 3-state GLSM (formal definition)

Z2Z0 Z1
PROB(1)

PROB(1–p1) PROB(1–p2)

PROB(p1)

PROB(p2)

I Z := {z0, z1, z2}; z0 = initial machine state

I no memory (M := {m0}; m0 = initial and only memory state)

I ∆ := {(z0, z1), (z1, z2), (z1, z1), (z2, z1), (z2, z2)}
I σZ := {z0, z1, z2}
I σ∆ := {PROB(p) | p ∈ {1, p1, p2, 1− p1, 1− p2}}
I τZ (zi) := zi , i ∈ {0, 1, 2}
I τ∆((z0, z1)) := PROB(1), τ∆((z1, z2)) := PROB(p1), . . .

Stochastic Local Search: Foundations and Applications 7

Example: Simple 3-state GLSM (formal definition)

Z2Z0 Z1
PROB(1)

PROB(1–p1) PROB(1–p2)

PROB(p1)

PROB(p2)

I Z := {z0, z1, z2}; z0 = initial machine state

I no memory (M := {m0}; m0 = initial and only memory state)

I ∆ := {(z0, z1), (z1, z2), (z1, z1), (z2, z1), (z2, z2)}
I σZ := {z0, z1, z2}
I σ∆ := {PROB(p) | p ∈ {1, p1, p2, 1− p1, 1− p2}}
I τZ (zi) := zi , i ∈ {0, 1, 2}
I τ∆((z0, z1)) := PROB(1), τ∆((z1, z2)) := PROB(p1), . . .

Stochastic Local Search: Foundations and Applications 7

Example: Simple 3-state GLSM (semantics)

I Start in initial state z0, memory state m0 (never changes).

I Perform one search step according to search strategy
associated with state type z0 (e.g., random picking).

I With probability 1, switch to state z1.

I Perform one search step according to state z1;
switch to state z2 with probability p1,
otherwise, remain in state z1.

I In state z2, perform one search step according to z2;
switch back to state z1 with probability p2,
otherwise, remain in state z2.

 After one z0 step (initialisation), repeatedly and
nondeterministically switch between phases of z1 and z2 steps
until termination criterion is satisfied.

Stochastic Local Search: Foundations and Applications 8

Example: Simple 3-state GLSM (semantics)

I Start in initial state z0, memory state m0 (never changes).

I Perform one search step according to search strategy
associated with state type z0 (e.g., random picking).

I With probability 1, switch to state z1.

I Perform one search step according to state z1;
switch to state z2 with probability p1,
otherwise, remain in state z1.

I In state z2, perform one search step according to z2;
switch back to state z1 with probability p2,
otherwise, remain in state z2.

 After one z0 step (initialisation), repeatedly and
nondeterministically switch between phases of z1 and z2 steps
until termination criterion is satisfied.

Stochastic Local Search: Foundations and Applications 8

Example: Simple 3-state GLSM (semantics)

I Start in initial state z0, memory state m0 (never changes).

I Perform one search step according to search strategy
associated with state type z0 (e.g., random picking).

I With probability 1, switch to state z1.

I Perform one search step according to state z1;
switch to state z2 with probability p1,
otherwise, remain in state z1.

I In state z2, perform one search step according to z2;
switch back to state z1 with probability p2,
otherwise, remain in state z2.

 After one z0 step (initialisation), repeatedly and
nondeterministically switch between phases of z1 and z2 steps
until termination criterion is satisfied.

Stochastic Local Search: Foundations and Applications 8

Example: Simple 3-state GLSM (semantics)

I Start in initial state z0, memory state m0 (never changes).

I Perform one search step according to search strategy
associated with state type z0 (e.g., random picking).

I With probability 1, switch to state z1.

I Perform one search step according to state z1;
switch to state z2 with probability p1,
otherwise, remain in state z1.

I In state z2, perform one search step according to z2;
switch back to state z1 with probability p2,
otherwise, remain in state z2.

 After one z0 step (initialisation), repeatedly and
nondeterministically switch between phases of z1 and z2 steps
until termination criterion is satisfied.

Stochastic Local Search: Foundations and Applications 8

Example: Simple 3-state GLSM (semantics)

I Start in initial state z0, memory state m0 (never changes).

I Perform one search step according to search strategy
associated with state type z0 (e.g., random picking).

I With probability 1, switch to state z1.

I Perform one search step according to state z1;
switch to state z2 with probability p1,
otherwise, remain in state z1.

I In state z2, perform one search step according to z2;
switch back to state z1 with probability p2,
otherwise, remain in state z2.

 After one z0 step (initialisation), repeatedly and
nondeterministically switch between phases of z1 and z2 steps
until termination criterion is satisfied.

Stochastic Local Search: Foundations and Applications 8

Example: Simple 3-state GLSM (semantics)

I Start in initial state z0, memory state m0 (never changes).

I Perform one search step according to search strategy
associated with state type z0 (e.g., random picking).

I With probability 1, switch to state z1.

I Perform one search step according to state z1;
switch to state z2 with probability p1,
otherwise, remain in state z1.

I In state z2, perform one search step according to z2;
switch back to state z1 with probability p2,
otherwise, remain in state z2.

 After one z0 step (initialisation), repeatedly and
nondeterministically switch between phases of z1 and z2 steps
until termination criterion is satisfied.

Stochastic Local Search: Foundations and Applications 8

Note:

I States types formally represent (subsidiary) search strategies,
whose definition is not part of the GLSM definition.

I Transition types formally represent mechanisms used for
switching between GLSM states.

I Multiple states / transitions can have the same type.

I σZ , σ∆ should include only state and transition types that
are actually used in given GLSM (‘no junk’).

I Not all states in Z may actually be reachable when running
a given GLSM.

I Termination condition is not explicitly captured in GLSM
model, but considered part of the execution environment.

Stochastic Local Search: Foundations and Applications 9

Note:

I States types formally represent (subsidiary) search strategies,
whose definition is not part of the GLSM definition.

I Transition types formally represent mechanisms used for
switching between GLSM states.

I Multiple states / transitions can have the same type.

I σZ , σ∆ should include only state and transition types that
are actually used in given GLSM (‘no junk’).

I Not all states in Z may actually be reachable when running
a given GLSM.

I Termination condition is not explicitly captured in GLSM
model, but considered part of the execution environment.

Stochastic Local Search: Foundations and Applications 9

Note:

I States types formally represent (subsidiary) search strategies,
whose definition is not part of the GLSM definition.

I Transition types formally represent mechanisms used for
switching between GLSM states.

I Multiple states / transitions can have the same type.

I σZ , σ∆ should include only state and transition types that
are actually used in given GLSM (‘no junk’).

I Not all states in Z may actually be reachable when running
a given GLSM.

I Termination condition is not explicitly captured in GLSM
model, but considered part of the execution environment.

Stochastic Local Search: Foundations and Applications 9

Note:

I States types formally represent (subsidiary) search strategies,
whose definition is not part of the GLSM definition.

I Transition types formally represent mechanisms used for
switching between GLSM states.

I Multiple states / transitions can have the same type.

I σZ , σ∆ should include only state and transition types that
are actually used in given GLSM (‘no junk’).

I Not all states in Z may actually be reachable when running
a given GLSM.

I Termination condition is not explicitly captured in GLSM
model, but considered part of the execution environment.

Stochastic Local Search: Foundations and Applications 9

Note:

I States types formally represent (subsidiary) search strategies,
whose definition is not part of the GLSM definition.

I Transition types formally represent mechanisms used for
switching between GLSM states.

I Multiple states / transitions can have the same type.

I σZ , σ∆ should include only state and transition types that
are actually used in given GLSM (‘no junk’).

I Not all states in Z may actually be reachable when running
a given GLSM.

I Termination condition is not explicitly captured in GLSM
model, but considered part of the execution environment.

Stochastic Local Search: Foundations and Applications 9

Note:

I States types formally represent (subsidiary) search strategies,
whose definition is not part of the GLSM definition.

I Transition types formally represent mechanisms used for
switching between GLSM states.

I Multiple states / transitions can have the same type.

I σZ , σ∆ should include only state and transition types that
are actually used in given GLSM (‘no junk’).

I Not all states in Z may actually be reachable when running
a given GLSM.

I Termination condition is not explicitly captured in GLSM
model, but considered part of the execution environment.

Stochastic Local Search: Foundations and Applications 9

GLSM Semantics

Behaviour of a GLSM is specified by machine definition +
run-time environment comprising specifications of

I state types,

I transition types;

I problem instance to be solved,

I search space,

I solution set,

I neighbourhood relations for subsidiary SLS algorithms;

I termination predicate for overall search process.

Stochastic Local Search: Foundations and Applications 10

GLSM Semantics

Behaviour of a GLSM is specified by machine definition +
run-time environment comprising specifications of

I state types,

I transition types;

I problem instance to be solved,

I search space,

I solution set,

I neighbourhood relations for subsidiary SLS algorithms;

I termination predicate for overall search process.

Stochastic Local Search: Foundations and Applications 10

GLSM Semantics

Behaviour of a GLSM is specified by machine definition +
run-time environment comprising specifications of

I state types,

I transition types;

I problem instance to be solved,

I search space,

I solution set,

I neighbourhood relations for subsidiary SLS algorithms;

I termination predicate for overall search process.

Stochastic Local Search: Foundations and Applications 10

Run GLSM M:

set current machine state to z0; set current memory state to m0;

While termination criterion is not satisfied:

|| perform search step according to type of current machine state;
|| this results in a new search position
|||| select new machine state according to types of transitions
|| from current machine state, possibly depending on
|| search position and current memory state; this may
b change the current memory state

Stochastic Local Search: Foundations and Applications 11

Run GLSM M:

set current machine state to z0; set current memory state to m0;

While termination criterion is not satisfied:

|| perform search step according to type of current machine state;
|| this results in a new search position
|||| select new machine state according to types of transitions
|| from current machine state, possibly depending on
|| search position and current memory state; this may
b change the current memory state

Stochastic Local Search: Foundations and Applications 11

Run GLSM M:

set current machine state to z0; set current memory state to m0;

While termination criterion is not satisfied:

|| perform search step according to type of current machine state;
|| this results in a new search position
|||| select new machine state according to types of transitions
|| from current machine state, possibly depending on
|| search position and current memory state; this may
b change the current memory state

Stochastic Local Search: Foundations and Applications 11

Run GLSM M:

set current machine state to z0; set current memory state to m0;

While termination criterion is not satisfied:

|| perform search step according to type of current machine state;
|| this results in a new search position
|||| select new machine state according to types of transitions
|| from current machine state, possibly depending on
|| search position and current memory state; this may
b change the current memory state

Stochastic Local Search: Foundations and Applications 11

Note:

I The current search position is only changed by the subsidiary
search strategies associated with states, not as side-effect of
machine state transitions.

I The machine state and memory state are only changed by
state-transitions, not as side-effect of search steps.
(Memory state is viewed as part of higher-level search control.)

I The operation of M is uniquely characterised by the evolution
of machine state, memory state and search position over time.

Stochastic Local Search: Foundations and Applications 12

Note:

I The current search position is only changed by the subsidiary
search strategies associated with states, not as side-effect of
machine state transitions.

I The machine state and memory state are only changed by
state-transitions, not as side-effect of search steps.
(Memory state is viewed as part of higher-level search control.)

I The operation of M is uniquely characterised by the evolution
of machine state, memory state and search position over time.

Stochastic Local Search: Foundations and Applications 12

Note:

I The current search position is only changed by the subsidiary
search strategies associated with states, not as side-effect of
machine state transitions.

I The machine state and memory state are only changed by
state-transitions, not as side-effect of search steps.
(Memory state is viewed as part of higher-level search control.)

I The operation of M is uniquely characterised by the evolution
of machine state, memory state and search position over time.

Stochastic Local Search: Foundations and Applications 12

GLSMs are factored representations of SLS strategies:

I Given GLSM represents the way in which initialisation and
step function of a hybrid SLS method are composed from
respective functions of subsidiary component SLS methods.

I When modelling hybrid SLS methods using GLSMs,
subsidiary SLS methods should be as simple and pure
as possible, leaving search control to be represented
explicitly at the GLSM level.

I Initialisation is modelled using GLSM states
(advantage: simplicity and uniformity of model).

I Termination of subsidiary search strategies are often
reflected in conditional transitions leaving respective
GLSM states.

Stochastic Local Search: Foundations and Applications 13

GLSMs are factored representations of SLS strategies:

I Given GLSM represents the way in which initialisation and
step function of a hybrid SLS method are composed from
respective functions of subsidiary component SLS methods.

I When modelling hybrid SLS methods using GLSMs,
subsidiary SLS methods should be as simple and pure
as possible, leaving search control to be represented
explicitly at the GLSM level.

I Initialisation is modelled using GLSM states
(advantage: simplicity and uniformity of model).

I Termination of subsidiary search strategies are often
reflected in conditional transitions leaving respective
GLSM states.

Stochastic Local Search: Foundations and Applications 13

GLSMs are factored representations of SLS strategies:

I Given GLSM represents the way in which initialisation and
step function of a hybrid SLS method are composed from
respective functions of subsidiary component SLS methods.

I When modelling hybrid SLS methods using GLSMs,
subsidiary SLS methods should be as simple and pure
as possible, leaving search control to be represented
explicitly at the GLSM level.

I Initialisation is modelled using GLSM states
(advantage: simplicity and uniformity of model).

I Termination of subsidiary search strategies are often
reflected in conditional transitions leaving respective
GLSM states.

Stochastic Local Search: Foundations and Applications 13

GLSMs are factored representations of SLS strategies:

I Given GLSM represents the way in which initialisation and
step function of a hybrid SLS method are composed from
respective functions of subsidiary component SLS methods.

I When modelling hybrid SLS methods using GLSMs,
subsidiary SLS methods should be as simple and pure
as possible, leaving search control to be represented
explicitly at the GLSM level.

I Initialisation is modelled using GLSM states
(advantage: simplicity and uniformity of model).

I Termination of subsidiary search strategies are often
reflected in conditional transitions leaving respective
GLSM states.

Stochastic Local Search: Foundations and Applications 13

State, Transition and Machine Types

In order to completely specify the search method represented
by a given GLSM, we need to define:

I the GLSM model (states, transitions, . . .);

I the search method associated with each state type, i.e.,
step functions for the respective subsidiary SLS methods;

I the semantics of each transition type, i.e., under which
conditions respective transitions are executed,
and how they effect the memory state.

Stochastic Local Search: Foundations and Applications 14

State, Transition and Machine Types

In order to completely specify the search method represented
by a given GLSM, we need to define:

I the GLSM model (states, transitions, . . .);

I the search method associated with each state type, i.e.,
step functions for the respective subsidiary SLS methods;

I the semantics of each transition type, i.e., under which
conditions respective transitions are executed,
and how they effect the memory state.

Stochastic Local Search: Foundations and Applications 14

State, Transition and Machine Types

In order to completely specify the search method represented
by a given GLSM, we need to define:

I the GLSM model (states, transitions, . . .);

I the search method associated with each state type, i.e.,
step functions for the respective subsidiary SLS methods;

I the semantics of each transition type, i.e., under which
conditions respective transitions are executed,
and how they effect the memory state.

Stochastic Local Search: Foundations and Applications 14

State types

I State type semantics are often most conveniently specified
procedurally (see algorithm outlines for ‘simple SLS methods’
from Chapter 2).

I initialising state type = state type τ for which search position
after one τ step is independent of search position before step.

initialising state = state of initialising type.

I parametric state type = state type τ whose semantics
depends on memory state.

parametric state = state of parametric type.

Stochastic Local Search: Foundations and Applications 15

State types

I State type semantics are often most conveniently specified
procedurally (see algorithm outlines for ‘simple SLS methods’
from Chapter 2).

I initialising state type = state type τ for which search position
after one τ step is independent of search position before step.

initialising state = state of initialising type.

I parametric state type = state type τ whose semantics
depends on memory state.

parametric state = state of parametric type.

Stochastic Local Search: Foundations and Applications 15

State types

I State type semantics are often most conveniently specified
procedurally (see algorithm outlines for ‘simple SLS methods’
from Chapter 2).

I initialising state type = state type τ for which search position
after one τ step is independent of search position before step.

initialising state = state of initialising type.

I parametric state type = state type τ whose semantics
depends on memory state.

parametric state = state of parametric type.

Stochastic Local Search: Foundations and Applications 15

Transitions types (1)

I Unconditional deterministic transitions – type DET:

I executed always and independently of memory state
or search position;

I every GLSM state can have at most one outgoing DET
transition;

I frequently used for leaving initialising states.

I Conditional probabilistic transitions – type PROB(p):

I executed with probability p, independently of memory state
or search position;

I probabilities of PROB transitions leaving any given state must
sum to one.

Stochastic Local Search: Foundations and Applications 16

Transitions types (1)

I Unconditional deterministic transitions – type DET:

I executed always and independently of memory state
or search position;

I every GLSM state can have at most one outgoing DET
transition;

I frequently used for leaving initialising states.

I Conditional probabilistic transitions – type PROB(p):

I executed with probability p, independently of memory state
or search position;

I probabilities of PROB transitions leaving any given state must
sum to one.

Stochastic Local Search: Foundations and Applications 16

Transitions types (1)

I Unconditional deterministic transitions – type DET:

I executed always and independently of memory state
or search position;

I every GLSM state can have at most one outgoing DET
transition;

I frequently used for leaving initialising states.

I Conditional probabilistic transitions – type PROB(p):

I executed with probability p, independently of memory state
or search position;

I probabilities of PROB transitions leaving any given state must
sum to one.

Stochastic Local Search: Foundations and Applications 16

Transitions types (1)

I Unconditional deterministic transitions – type DET:

I executed always and independently of memory state
or search position;

I every GLSM state can have at most one outgoing DET
transition;

I frequently used for leaving initialising states.

I Conditional probabilistic transitions – type PROB(p):

I executed with probability p, independently of memory state
or search position;

I probabilities of PROB transitions leaving any given state must
sum to one.

Stochastic Local Search: Foundations and Applications 16

Transitions types (1)

I Unconditional deterministic transitions – type DET:

I executed always and independently of memory state
or search position;

I every GLSM state can have at most one outgoing DET
transition;

I frequently used for leaving initialising states.

I Conditional probabilistic transitions – type PROB(p):

I executed with probability p, independently of memory state
or search position;

I probabilities of PROB transitions leaving any given state must
sum to one.

Stochastic Local Search: Foundations and Applications 16

Note:

I DET transitions are a special case of PROB transitions.

I For a GLSM M any state that can be reached from initial
state z0 by following a chain of PROB(p) transitions with
p > 0 will eventually be reached with arbitrarily high
probability in any sufficiently long run of M.

I In any state z with a PROB(p) self-transition (z , z) with
p > 0, the number of GLSM steps before leaving z is
distributed geometrically with mean and variance 1/p.

Stochastic Local Search: Foundations and Applications 17

Note:

I DET transitions are a special case of PROB transitions.

I For a GLSM M any state that can be reached from initial
state z0 by following a chain of PROB(p) transitions with
p > 0 will eventually be reached with arbitrarily high
probability in any sufficiently long run of M.

I In any state z with a PROB(p) self-transition (z , z) with
p > 0, the number of GLSM steps before leaving z is
distributed geometrically with mean and variance 1/p.

Stochastic Local Search: Foundations and Applications 17

Note:

I DET transitions are a special case of PROB transitions.

I For a GLSM M any state that can be reached from initial
state z0 by following a chain of PROB(p) transitions with
p > 0 will eventually be reached with arbitrarily high
probability in any sufficiently long run of M.

I In any state z with a PROB(p) self-transition (z , z) with
p > 0, the number of GLSM steps before leaving z is
distributed geometrically with mean and variance 1/p.

Stochastic Local Search: Foundations and Applications 17

Transitions types (2)

I Conditional probabilistic transitions – type CPROB(C , p):

I executed with probability proportional to p iff condition
predicate C is satisfied;

I all CPROB transitions from the current GLSM state whose
condition predicates are not satisfied are blocked, i.e., cannot
be executed.

Note:

I Special cases of CPROB(C , p) transitions:

I PROB(p) transitions;
I conditional deterministic transitions, type CDET(C).

I Condition predicates should be efficiently computable
(ideally: ≤ linear time w.r.t. size of given problem instance).

Stochastic Local Search: Foundations and Applications 18

Transitions types (2)

I Conditional probabilistic transitions – type CPROB(C , p):

I executed with probability proportional to p iff condition
predicate C is satisfied;

I all CPROB transitions from the current GLSM state whose
condition predicates are not satisfied are blocked, i.e., cannot
be executed.

Note:

I Special cases of CPROB(C , p) transitions:

I PROB(p) transitions;
I conditional deterministic transitions, type CDET(C).

I Condition predicates should be efficiently computable
(ideally: ≤ linear time w.r.t. size of given problem instance).

Stochastic Local Search: Foundations and Applications 18

Transitions types (2)

I Conditional probabilistic transitions – type CPROB(C , p):

I executed with probability proportional to p iff condition
predicate C is satisfied;

I all CPROB transitions from the current GLSM state whose
condition predicates are not satisfied are blocked, i.e., cannot
be executed.

Note:

I Special cases of CPROB(C , p) transitions:

I PROB(p) transitions;
I conditional deterministic transitions, type CDET(C).

I Condition predicates should be efficiently computable
(ideally: ≤ linear time w.r.t. size of given problem instance).

Stochastic Local Search: Foundations and Applications 18

Transitions types (2)

I Conditional probabilistic transitions – type CPROB(C , p):

I executed with probability proportional to p iff condition
predicate C is satisfied;

I all CPROB transitions from the current GLSM state whose
condition predicates are not satisfied are blocked, i.e., cannot
be executed.

Note:

I Special cases of CPROB(C , p) transitions:

I PROB(p) transitions;
I conditional deterministic transitions, type CDET(C).

I Condition predicates should be efficiently computable
(ideally: ≤ linear time w.r.t. size of given problem instance).

Stochastic Local Search: Foundations and Applications 18

Commonly used simple condition predicates:

> always true

count(k) total number of GLSM steps ≥ k
countm(k) total number of GLSM steps modulo k = 0

scount(k) number of GLSM steps in current state ≥ k
scountm(k) number of GLSM steps in current state modulo k = 0

lmin current candidate solution is a local minimum w.r.t.
the given neighbourhood relation

evalf(y) current evaluation function value ≤ y

noimpr(k) incumbent candidate solution has not been improved
within the last k steps

All based on local information; can also be used in negated form.

Stochastic Local Search: Foundations and Applications 19

Commonly used simple condition predicates:

> always true

count(k) total number of GLSM steps ≥ k
countm(k) total number of GLSM steps modulo k = 0

scount(k) number of GLSM steps in current state ≥ k
scountm(k) number of GLSM steps in current state modulo k = 0

lmin current candidate solution is a local minimum w.r.t.
the given neighbourhood relation

evalf(y) current evaluation function value ≤ y

noimpr(k) incumbent candidate solution has not been improved
within the last k steps

All based on local information; can also be used in negated form.

Stochastic Local Search: Foundations and Applications 19

Commonly used simple condition predicates:

> always true

count(k) total number of GLSM steps ≥ k
countm(k) total number of GLSM steps modulo k = 0

scount(k) number of GLSM steps in current state ≥ k
scountm(k) number of GLSM steps in current state modulo k = 0

lmin current candidate solution is a local minimum w.r.t.
the given neighbourhood relation

evalf(y) current evaluation function value ≤ y

noimpr(k) incumbent candidate solution has not been improved
within the last k steps

All based on local information; can also be used in negated form.

Stochastic Local Search: Foundations and Applications 19

Commonly used simple condition predicates:

> always true

count(k) total number of GLSM steps ≥ k
countm(k) total number of GLSM steps modulo k = 0

scount(k) number of GLSM steps in current state ≥ k
scountm(k) number of GLSM steps in current state modulo k = 0

lmin current candidate solution is a local minimum w.r.t.
the given neighbourhood relation

evalf(y) current evaluation function value ≤ y

noimpr(k) incumbent candidate solution has not been improved
within the last k steps

All based on local information; can also be used in negated form.

Stochastic Local Search: Foundations and Applications 19

Commonly used simple condition predicates:

> always true

count(k) total number of GLSM steps ≥ k
countm(k) total number of GLSM steps modulo k = 0

scount(k) number of GLSM steps in current state ≥ k
scountm(k) number of GLSM steps in current state modulo k = 0

lmin current candidate solution is a local minimum w.r.t.
the given neighbourhood relation

evalf(y) current evaluation function value ≤ y

noimpr(k) incumbent candidate solution has not been improved
within the last k steps

All based on local information; can also be used in negated form.

Stochastic Local Search: Foundations and Applications 19

Commonly used simple condition predicates:

> always true

count(k) total number of GLSM steps ≥ k
countm(k) total number of GLSM steps modulo k = 0

scount(k) number of GLSM steps in current state ≥ k
scountm(k) number of GLSM steps in current state modulo k = 0

lmin current candidate solution is a local minimum w.r.t.
the given neighbourhood relation

evalf(y) current evaluation function value ≤ y

noimpr(k) incumbent candidate solution has not been improved
within the last k steps

All based on local information; can also be used in negated form.

Stochastic Local Search: Foundations and Applications 19

Transition actions:

I Associated with individual transitions; provide mechanism
for modifying current memory states.

I Performed whenever GLSM executes respective transition.

I Modify memory state only, cannot modify GLSM state or
search position.

I Have read-only access to search position and can hence
be used, e.g., to memorise current candidate solution.

I Can be added to any of the previously defined transition types.

Stochastic Local Search: Foundations and Applications 20

Transition actions:

I Associated with individual transitions; provide mechanism
for modifying current memory states.

I Performed whenever GLSM executes respective transition.

I Modify memory state only, cannot modify GLSM state or
search position.

I Have read-only access to search position and can hence
be used, e.g., to memorise current candidate solution.

I Can be added to any of the previously defined transition types.

Stochastic Local Search: Foundations and Applications 20

Transition actions:

I Associated with individual transitions; provide mechanism
for modifying current memory states.

I Performed whenever GLSM executes respective transition.

I Modify memory state only, cannot modify GLSM state or
search position.

I Have read-only access to search position and can hence
be used, e.g., to memorise current candidate solution.

I Can be added to any of the previously defined transition types.

Stochastic Local Search: Foundations and Applications 20

Transition actions:

I Associated with individual transitions; provide mechanism
for modifying current memory states.

I Performed whenever GLSM executes respective transition.

I Modify memory state only, cannot modify GLSM state or
search position.

I Have read-only access to search position and can hence
be used, e.g., to memorise current candidate solution.

I Can be added to any of the previously defined transition types.

Stochastic Local Search: Foundations and Applications 20

Transition actions:

I Associated with individual transitions; provide mechanism
for modifying current memory states.

I Performed whenever GLSM executes respective transition.

I Modify memory state only, cannot modify GLSM state or
search position.

I Have read-only access to search position and can hence
be used, e.g., to memorise current candidate solution.

I Can be added to any of the previously defined transition types.

Stochastic Local Search: Foundations and Applications 20

Machine types:

Capture structure of search control mechanism, obtained by
abstracting from state and transition types of GLSMs.

I 1-state machines:

I simplest machine type, single initialising state only;

I realises iterated sampling processes, such as
Uninformed Random Picking.

I 1-state+init machines:

I one initialising + one working state;

I good model for many simple SLS methods.

Stochastic Local Search: Foundations and Applications 21

Machine types:

Capture structure of search control mechanism, obtained by
abstracting from state and transition types of GLSMs.

I 1-state machines:

I simplest machine type, single initialising state only;

I realises iterated sampling processes, such as
Uninformed Random Picking.

I 1-state+init machines:

I one initialising + one working state;

I good model for many simple SLS methods.

Stochastic Local Search: Foundations and Applications 21

Machine types:

Capture structure of search control mechanism, obtained by
abstracting from state and transition types of GLSMs.

I 1-state machines:

I simplest machine type, single initialising state only;

I realises iterated sampling processes, such as
Uninformed Random Picking.

I 1-state+init machines:

I one initialising + one working state;

I good model for many simple SLS methods.

Stochastic Local Search: Foundations and Applications 21

Machine types:

Capture structure of search control mechanism, obtained by
abstracting from state and transition types of GLSMs.

I 1-state machines:

I simplest machine type, single initialising state only;

I realises iterated sampling processes, such as
Uninformed Random Picking.

I 1-state+init machines:

I one initialising + one working state;

I good model for many simple SLS methods.

Stochastic Local Search: Foundations and Applications 21

Machine types:

Capture structure of search control mechanism, obtained by
abstracting from state and transition types of GLSMs.

I 1-state machines:

I simplest machine type, single initialising state only;

I realises iterated sampling processes, such as
Uninformed Random Picking.

I 1-state+init machines:

I one initialising + one working state;

I good model for many simple SLS methods.

Stochastic Local Search: Foundations and Applications 21

I sequential 1-state machines:

Z0 Z1

I visit initialising state z0 only on once.

I alternating 1-state+init machines:

I may visit initialising state z0 multiple times;

I good model for simple SLS methods with restart mechanism.

Stochastic Local Search: Foundations and Applications 22

I sequential 1-state machines:

Z0 Z1

I visit initialising state z0 only on once.

I alternating 1-state+init machines:

Z1Z0

I may visit initialising state z0 multiple times;

I good model for simple SLS methods with restart mechanism.

Stochastic Local Search: Foundations and Applications 22

I 2-state+init sequential machines:

I one initialising state (visited only once), two working states;

Z0 Z1 Z2

I any search trajectory can be partitioned into three phases:
one initialisation step, a sequence of z1 steps and
a sequence of z2 steps.

Stochastic Local Search: Foundations and Applications 23

I 2-state+init sequential machines:

I one initialising state (visited only once), two working states;

Z0 Z1 Z2

I any search trajectory can be partitioned into three phases:
one initialisation step, a sequence of z1 steps and
a sequence of z2 steps.

Stochastic Local Search: Foundations and Applications 23

I 2-state+init alternating machines:

I one initialising state, two working states;

I arbitrary transitions between any states are possible.

Z1

Z2

Z0

Stochastic Local Search: Foundations and Applications 24

Generalisations:

I k-state+init sequential machines:

I one initialising state (visited only once), k working states;

I every search trajectory consists of 1+k phases.

I k-state+init alternating machines:

I one initialising state, k working states;

I arbitrary transitions between states;

I may have multiple initialising states (e.g., to realise
alternative restart mechanisms).

Stochastic Local Search: Foundations and Applications 25

Generalisations:

I k-state+init sequential machines:

I one initialising state (visited only once), k working states;

I every search trajectory consists of 1+k phases.

I k-state+init alternating machines:

I one initialising state, k working states;

I arbitrary transitions between states;

I may have multiple initialising states (e.g., to realise
alternative restart mechanisms).

Stochastic Local Search: Foundations and Applications 25

Modelling SLS Methods Using GLSMs

Uninformed Picking and Uninformed Random Walk

RP

DET

RP RW
DET

DET

procedure step-RP(π, s)
input: problem instance π ∈ Π,

candidate solution s ∈ S(π)
output: candidate solution s ∈ S(π)

s ′ := selectRandom(S);
return s ′

end step-RP

procedure step-RW(π, s)
input: problem instance π ∈ Π,

candidate solution s ∈ S(π)
output: candidate solution s ∈ S(π)

s ′ := selectRandom(N(s));
return s ′

end step-RW

Stochastic Local Search: Foundations and Applications 26

Uninformed Random Walk with Random Restart

RWRP

DET

CDET(R)

CDET(not R)

R = restart predicate, e.g., countm(k)

Stochastic Local Search: Foundations and Applications 27

Iterative Best Improvement with Random Restart

BIRP
DET

CDET(R)

CDET(not R)

procedure step-BI(π, s)
input: problem instance π ∈ Π, candidate solution s ∈ S(π)
output: candidate solution s ∈ S(π)

g∗ := min{g(s ′) | s ′ ∈ N(s)};
s ′ := selectRandom({s ′ ∈ N(s) | g(s ′) = g∗});
return s ′

end step-BI

Stochastic Local Search: Foundations and Applications 28

Randomised Iterative Best Improvement with Random Restart

BI

RW

PROB(1–p)CDET(R)

PROB(p)

CDET(R)

CPROB(not R,1–p)

C
P

R
O

B
(n

ot
 R

,p
)

CPROB(not R,p)
C

P
R

O
B

(n
ot

 R
,1

–p
)

RP

Stochastic Local Search: Foundations and Applications 29

Simulated Annealing

RP SA(T)
DET : T:=T0

DET : T:=update(T)

I Note the use of transition actions and memory for
temperature T .

I The parametric state SA(T) implements probabilistic
improvement steps for given temperature T .

I The initial temperature T0 and function update implement
the annealing schedule.

Stochastic Local Search: Foundations and Applications 30

Simulated Annealing

RP SA(T)
DET : T:=T0

DET : T:=update(T)

I Note the use of transition actions and memory for
temperature T .

I The parametric state SA(T) implements probabilistic
improvement steps for given temperature T .

I The initial temperature T0 and function update implement
the annealing schedule.

Stochastic Local Search: Foundations and Applications 30

Simulated Annealing

RP SA(T)
DET : T:=T0

DET : T:=update(T)

I Note the use of transition actions and memory for
temperature T .

I The parametric state SA(T) implements probabilistic
improvement steps for given temperature T .

I The initial temperature T0 and function update implement
the annealing schedule.

Stochastic Local Search: Foundations and Applications 30

Simulated Annealing

RP SA(T)
DET : T:=T0

DET : T:=update(T)

I Note the use of transition actions and memory for
temperature T .

I The parametric state SA(T) implements probabilistic
improvement steps for given temperature T .

I The initial temperature T0 and function update implement
the annealing schedule.

Stochastic Local Search: Foundations and Applications 30

Iterated Local Search (1)

LS

AC(t)

RP PSLS
CDET(CL): t:=pos

DET: t:=pos

CDET(not CL) CDET(not CP) CDET(CP)

DET

CDET(not CL)

CDET(CL)

I The acceptance criterion is modelled as a state type,
since it affects the search position.

I Note the use of transition actions for memorising the current
candidate solution (pos) at the end of each local search phase.

I Condition predicates CP and CL determine the end of
perturbation and local search phases, respectively;
in many ILS algorithms, CL := lmin.

Stochastic Local Search: Foundations and Applications 31

Iterated Local Search (1)

LS

AC(t)

RP PSLS
CDET(CL): t:=pos

DET: t:=pos

CDET(not CL) CDET(not CP) CDET(CP)

DET

CDET(not CL)

CDET(CL)

I The acceptance criterion is modelled as a state type,
since it affects the search position.

I Note the use of transition actions for memorising the current
candidate solution (pos) at the end of each local search phase.

I Condition predicates CP and CL determine the end of
perturbation and local search phases, respectively;
in many ILS algorithms, CL := lmin.

Stochastic Local Search: Foundations and Applications 31

Iterated Local Search (1)

LS

AC(t)

RP PSLS
CDET(CL): t:=pos

DET: t:=pos

CDET(not CL) CDET(not CP) CDET(CP)

DET

CDET(not CL)

CDET(CL)

I The acceptance criterion is modelled as a state type,
since it affects the search position.

I Note the use of transition actions for memorising the current
candidate solution (pos) at the end of each local search phase.

I Condition predicates CP and CL determine the end of
perturbation and local search phases, respectively;
in many ILS algorithms, CL := lmin.

Stochastic Local Search: Foundations and Applications 31

Iterated Local Search (2)

LS

AC(t)

RP PSLS
CDET(CL): t:=pos

DET: t:=pos

CDET(not CL) CDET(not CP) CDET(CP)

DET

CDET(not CL)

CDET(CL)

procedure step-AC(π, s, t)
input: problem instance π ∈ Π,

candidate solution s ∈ S(π)
output: candidate solution s ∈ S(π)

if C(π, s, t) then
return s

else
return t

end
end step-AC

Stochastic Local Search: Foundations and Applications 32

Ant Colony Optimisation (1)

I General approach for modelling population-based SLS
methods, such as ACO, as GLSMs:

Define search positions as sets of candidate solutions; search
steps manipulate some or all elements of these sets.

Example: In this view, Iterative Improvement (II) applied to
a population sp in each step performs one II step on each
candidate solution from sp that is not already a local
minimum.

(Alternative approaches exist.)

I Pheromone levels are represented by memory states and are
initialised and updated by means of transition actions.

Stochastic Local Search: Foundations and Applications 33

Ant Colony Optimisation (1)

I General approach for modelling population-based SLS
methods, such as ACO, as GLSMs:

Define search positions as sets of candidate solutions; search
steps manipulate some or all elements of these sets.

Example: In this view, Iterative Improvement (II) applied to
a population sp in each step performs one II step on each
candidate solution from sp that is not already a local
minimum.

(Alternative approaches exist.)

I Pheromone levels are represented by memory states and are
initialised and updated by means of transition actions.

Stochastic Local Search: Foundations and Applications 33

Ant Colony Optimisation (1)

I General approach for modelling population-based SLS
methods, such as ACO, as GLSMs:

Define search positions as sets of candidate solutions; search
steps manipulate some or all elements of these sets.

Example: In this view, Iterative Improvement (II) applied to
a population sp in each step performs one II step on each
candidate solution from sp that is not already a local
minimum.

(Alternative approaches exist.)

I Pheromone levels are represented by memory states and are
initialised and updated by means of transition actions.

Stochastic Local Search: Foundations and Applications 33

Ant Colony Optimisation (2)

CS

Cl

LS

CDET(CC)

DET

CDET(not CL)

CDET(CL):
updateTrails

initTrails

CDET(not CC)

I The condition predicate CC determines the end of the
construction phase.

I The condition predicate CL determines the end of the
local search phase; in many ACO algorithms, CL := lmin.

Stochastic Local Search: Foundations and Applications 34

Ant Colony Optimisation (2)

CS

Cl

LS

CDET(CC)

DET

CDET(not CL)

CDET(CL):
updateTrails

initTrails

CDET(not CC)

I The condition predicate CC determines the end of the
construction phase.

I The condition predicate CL determines the end of the
local search phase; in many ACO algorithms, CL := lmin.

Stochastic Local Search: Foundations and Applications 34

Ant Colony Optimisation (2)

CS

Cl

LS

CDET(CC)

DET

CDET(not CL)

CDET(CL):
updateTrails

initTrails

CDET(not CC)

I The condition predicate CC determines the end of the
construction phase.

I The condition predicate CL determines the end of the
local search phase; in many ACO algorithms, CL := lmin.

Stochastic Local Search: Foundations and Applications 34

Extensions of the Basic GLSM Model

The basic GLSM model can be generalised and extended in
various rather straightforward ways, such as:

I Co-operative GLSM models

I Learning GLSM models

I Evolutionary GLSM models

I Continuous GLSM models

Note: So far, these extensions remain mostly unexplored
— lots of opportunities for interesting research!

Stochastic Local Search: Foundations and Applications 35

Extensions of the Basic GLSM Model

The basic GLSM model can be generalised and extended in
various rather straightforward ways, such as:

I Co-operative GLSM models

I Learning GLSM models

I Evolutionary GLSM models

I Continuous GLSM models

Note: So far, these extensions remain mostly unexplored
— lots of opportunities for interesting research!

Stochastic Local Search: Foundations and Applications 35

Co-operative GLSM models

I Key idea: Apply multiple GLSMs simultaneously to the same
problem instance

I Naturally captures population-based SLS approaches.

I Homogeneous co-operative GLSM models:
Population of identical GLSMs; equivalent to performing
multiple independent runs of the respective SLS method.

I Heterogenous co-operative GLSM models:
Population of different GLSMs; model algorithm portfolios.

Stochastic Local Search: Foundations and Applications 36

Co-operative GLSM models

I Key idea: Apply multiple GLSMs simultaneously to the same
problem instance

I Naturally captures population-based SLS approaches.

I Homogeneous co-operative GLSM models:
Population of identical GLSMs; equivalent to performing
multiple independent runs of the respective SLS method.

I Heterogenous co-operative GLSM models:
Population of different GLSMs; model algorithm portfolios.

Stochastic Local Search: Foundations and Applications 36

Co-operative GLSM models

I Key idea: Apply multiple GLSMs simultaneously to the same
problem instance

I Naturally captures population-based SLS approaches.

I Homogeneous co-operative GLSM models:
Population of identical GLSMs; equivalent to performing
multiple independent runs of the respective SLS method.

I Heterogenous co-operative GLSM models:
Population of different GLSMs; model algorithm portfolios.

Stochastic Local Search: Foundations and Applications 36

Co-operative GLSM models

I Key idea: Apply multiple GLSMs simultaneously to the same
problem instance

I Naturally captures population-based SLS approaches.

I Homogeneous co-operative GLSM models:
Population of identical GLSMs; equivalent to performing
multiple independent runs of the respective SLS method.

I Heterogenous co-operative GLSM models:
Population of different GLSMs; model algorithm portfolios.

Stochastic Local Search: Foundations and Applications 36

Co-operative GLSM models with communication

I GLSMs in population exchange information about their
search trajectories, e.g., via message passing or
blackboard mechanism.

I Communication can be modelled via shared memory state or
special transition actions (e.g., send, receive).

I These models are naturally suited for representing
population-based algorithms that use communication between
individual search agents, such as ACO.

Stochastic Local Search: Foundations and Applications 37

Co-operative GLSM models with communication

I GLSMs in population exchange information about their
search trajectories, e.g., via message passing or
blackboard mechanism.

I Communication can be modelled via shared memory state or
special transition actions (e.g., send, receive).

I These models are naturally suited for representing
population-based algorithms that use communication between
individual search agents, such as ACO.

Stochastic Local Search: Foundations and Applications 37

Co-operative GLSM models with communication

I GLSMs in population exchange information about their
search trajectories, e.g., via message passing or
blackboard mechanism.

I Communication can be modelled via shared memory state or
special transition actions (e.g., send, receive).

I These models are naturally suited for representing
population-based algorithms that use communication between
individual search agents, such as ACO.

Stochastic Local Search: Foundations and Applications 37

Learning via dynamic transition probabilities

I Key idea: In a GLSM with probabilistic transitions, let
transition probabilities evolve over time to adaptively optimise
search control strategy.

I Can build on concepts from learning automata theory.

I Single-instance learning:
Optimise control strategy on one problem instance during
search process.

I Multi-instance learning:
Adapt control strategies to features common to a class of
problem instances.

I Transition probabilities can be adapted via external
mechanism or via specialised transition actions.

Stochastic Local Search: Foundations and Applications 38

Learning via dynamic transition probabilities

I Key idea: In a GLSM with probabilistic transitions, let
transition probabilities evolve over time to adaptively optimise
search control strategy.

I Can build on concepts from learning automata theory.

I Single-instance learning:
Optimise control strategy on one problem instance during
search process.

I Multi-instance learning:
Adapt control strategies to features common to a class of
problem instances.

I Transition probabilities can be adapted via external
mechanism or via specialised transition actions.

Stochastic Local Search: Foundations and Applications 38

Learning via dynamic transition probabilities

I Key idea: In a GLSM with probabilistic transitions, let
transition probabilities evolve over time to adaptively optimise
search control strategy.

I Can build on concepts from learning automata theory.

I Single-instance learning:
Optimise control strategy on one problem instance during
search process.

I Multi-instance learning:
Adapt control strategies to features common to a class of
problem instances.

I Transition probabilities can be adapted via external
mechanism or via specialised transition actions.

Stochastic Local Search: Foundations and Applications 38

Learning via dynamic transition probabilities

I Key idea: In a GLSM with probabilistic transitions, let
transition probabilities evolve over time to adaptively optimise
search control strategy.

I Can build on concepts from learning automata theory.

I Single-instance learning:
Optimise control strategy on one problem instance during
search process.

I Multi-instance learning:
Adapt control strategies to features common to a class of
problem instances.

I Transition probabilities can be adapted via external
mechanism or via specialised transition actions.

Stochastic Local Search: Foundations and Applications 38

Learning via dynamic transition probabilities

I Key idea: In a GLSM with probabilistic transitions, let
transition probabilities evolve over time to adaptively optimise
search control strategy.

I Can build on concepts from learning automata theory.

I Single-instance learning:
Optimise control strategy on one problem instance during
search process.

I Multi-instance learning:
Adapt control strategies to features common to a class of
problem instances.

I Transition probabilities can be adapted via external
mechanism or via specialised transition actions.

Stochastic Local Search: Foundations and Applications 38

Evolutionary GLSM models

I Key idea: Achieve learning/adaptation in co-operative
GLSM models by varying number or type of individual GLSMs
over time.

I Distinction between single- and multi-instance learning as
before; similar mechanisms for controlling adaptation process.

I Can easily model, for example, self-optimising portfolios of
SLS algorithms.

I Further extensions:

I support mutation / recombination operations on GLSMs;

I additionally support learning in individual GLSMs
 evolving ensembles of dynamic GLSMs;

I include communication between GLSMs in population.

Stochastic Local Search: Foundations and Applications 39

Evolutionary GLSM models

I Key idea: Achieve learning/adaptation in co-operative
GLSM models by varying number or type of individual GLSMs
over time.

I Distinction between single- and multi-instance learning as
before; similar mechanisms for controlling adaptation process.

I Can easily model, for example, self-optimising portfolios of
SLS algorithms.

I Further extensions:

I support mutation / recombination operations on GLSMs;

I additionally support learning in individual GLSMs
 evolving ensembles of dynamic GLSMs;

I include communication between GLSMs in population.

Stochastic Local Search: Foundations and Applications 39

Evolutionary GLSM models

I Key idea: Achieve learning/adaptation in co-operative
GLSM models by varying number or type of individual GLSMs
over time.

I Distinction between single- and multi-instance learning as
before; similar mechanisms for controlling adaptation process.

I Can easily model, for example, self-optimising portfolios of
SLS algorithms.

I Further extensions:

I support mutation / recombination operations on GLSMs;

I additionally support learning in individual GLSMs
 evolving ensembles of dynamic GLSMs;

I include communication between GLSMs in population.

Stochastic Local Search: Foundations and Applications 39

Evolutionary GLSM models

I Key idea: Achieve learning/adaptation in co-operative
GLSM models by varying number or type of individual GLSMs
over time.

I Distinction between single- and multi-instance learning as
before; similar mechanisms for controlling adaptation process.

I Can easily model, for example, self-optimising portfolios of
SLS algorithms.

I Further extensions:

I support mutation / recombination operations on GLSMs;

I additionally support learning in individual GLSMs
 evolving ensembles of dynamic GLSMs;

I include communication between GLSMs in population.

Stochastic Local Search: Foundations and Applications 39

Evolutionary GLSM models

I Key idea: Achieve learning/adaptation in co-operative
GLSM models by varying number or type of individual GLSMs
over time.

I Distinction between single- and multi-instance learning as
before; similar mechanisms for controlling adaptation process.

I Can easily model, for example, self-optimising portfolios of
SLS algorithms.

I Further extensions:

I support mutation / recombination operations on GLSMs;

I additionally support learning in individual GLSMs
 evolving ensembles of dynamic GLSMs;

I include communication between GLSMs in population.

Stochastic Local Search: Foundations and Applications 39

Evolutionary GLSM models

I Key idea: Achieve learning/adaptation in co-operative
GLSM models by varying number or type of individual GLSMs
over time.

I Distinction between single- and multi-instance learning as
before; similar mechanisms for controlling adaptation process.

I Can easily model, for example, self-optimising portfolios of
SLS algorithms.

I Further extensions:

I support mutation / recombination operations on GLSMs;

I additionally support learning in individual GLSMs
 evolving ensembles of dynamic GLSMs;

I include communication between GLSMs in population.

Stochastic Local Search: Foundations and Applications 39

Continuous GLSM models

I Note: Many previously discussed hybrid SLS methods can be
extended to continuous optimisation problems and give rise to
high-performance algorithms for solving these.

I The main feature of the GLSM model, namely its clear
distinction between lower-level, simple search strategies and
higher-level search control, equally applies to continuous
SLS algorithms.

I Key idea: Model complex continuous SLS methods by using
continuous optimisation procedures as subsidiary local search
strategies.

Note: The GLSM model is well-suited for modelling algorithms
for hybrid combinatorial problems that involve discrete as well as
continuous solution components.

Stochastic Local Search: Foundations and Applications 40

Continuous GLSM models

I Note: Many previously discussed hybrid SLS methods can be
extended to continuous optimisation problems and give rise to
high-performance algorithms for solving these.

I The main feature of the GLSM model, namely its clear
distinction between lower-level, simple search strategies and
higher-level search control, equally applies to continuous
SLS algorithms.

I Key idea: Model complex continuous SLS methods by using
continuous optimisation procedures as subsidiary local search
strategies.

Note: The GLSM model is well-suited for modelling algorithms
for hybrid combinatorial problems that involve discrete as well as
continuous solution components.

Stochastic Local Search: Foundations and Applications 40

Continuous GLSM models

I Note: Many previously discussed hybrid SLS methods can be
extended to continuous optimisation problems and give rise to
high-performance algorithms for solving these.

I The main feature of the GLSM model, namely its clear
distinction between lower-level, simple search strategies and
higher-level search control, equally applies to continuous
SLS algorithms.

I Key idea: Model complex continuous SLS methods by using
continuous optimisation procedures as subsidiary local search
strategies.

Note: The GLSM model is well-suited for modelling algorithms
for hybrid combinatorial problems that involve discrete as well as
continuous solution components.

Stochastic Local Search: Foundations and Applications 40

Continuous GLSM models

I Note: Many previously discussed hybrid SLS methods can be
extended to continuous optimisation problems and give rise to
high-performance algorithms for solving these.

I The main feature of the GLSM model, namely its clear
distinction between lower-level, simple search strategies and
higher-level search control, equally applies to continuous
SLS algorithms.

I Key idea: Model complex continuous SLS methods by using
continuous optimisation procedures as subsidiary local search
strategies.

Note: The GLSM model is well-suited for modelling algorithms
for hybrid combinatorial problems that involve discrete as well as
continuous solution components.

Stochastic Local Search: Foundations and Applications 40

	Outline
	The Basic GLSM Model
	State, Transition and Machine Types
	Modelling SLS Methods Using GLSMs
	Extensions of the Basic GLSM Model

