1.1

The machine does not isolate us
from the great problems of life
but plunges us more deeply into them.

—Antoine de Saint-Exupéry, Pilot & Writer

INTRODUCTION

This introductory chapter provides the background and motivation for

studying stochastic local search algorithms for combinatorial problems. We
start with an introduction to combinatorial problems and present SAT, the sat-
isfiability problem in propositional logic, as well as TSP, the travelling salesman
problem, as the central problems used for illustrative purposes throughout the
first part of this book. This is followed by a short introduction to computational
complexity. Next, we discuss and compare various fundamental search paradigms,
including the concepts of systematic and local search, after which we formally de-
fine and discuss the notion of stochastic local search, one of the practically most
important and successful approaches for solving hard combinatorial problems.

Combinatorial Problems

Combinatorial problems arise in many areas of computer science and other disci-
plines in which computational methods are applied, such as artificial intelligence,
operations research, bioinformatics and electronic commerce. Prominent exam-
ples are tasks such as finding shortest or cheapest round trips in graphs, find-
ing models of propositional formulae or determining the 3D-structure of pro-
teins. Other well-known combinatorial problems are encountered in planning,
scheduling, time-tabling, resource allocation, code design, hardware design and
genome sequencing. These problems typically involve finding groupings, order-
ings or assignments of a discrete, finite set of objects that satisfy certain conditions
or constraints. Combinations of these solution components form the potential
solutions of a combinatorial problem. A scheduling problem, for instance, can be

13



4.1

There is no higher or lower knowledge,
but one only, flowing out of experimentation.

—Leonardo da Vinci, Inventor & Artist

EMPIRICAL ANALYSIS OF
SLS ALGORITHMS

In this chapter, we discuss methods for empirically analysing the performance

and behaviour of stochastic local search algorithms. Most of our general consid-
erations and all empirical methods covered in this chapter apply to the broader
class of (generalised) Las Vegas algorithms, which contains SLS algorithms as
a subclass. After motivating the need for a more adequate empirical method-
ology and providing some general background on Las Vegas algorithms, we
introduce the concept of run-time distributions (RTDs), which forms the ba-
sis of the empirical methodology presented in the following. Generally, this
RTD-based analysis technique facilitates the evaluation, comparison and
improvement of SLS algorithms for decision and optimisation problems;
specifically, it can be used for obtaining optimal parameterisations and
parallelisations.

Las Vegas Algorithms

Stochastic Local Search algorithms are typically incomplete when applied to a
given instance of a combinatorial decision or optimisation problem; there is no
guarantee that an (optimal) solution will eventually be found. However, in the
case of a decision problem, if a solution is returned, it is guaranteed to be correct.
The same holds for the decision variants of optimisation problems. Another im-
portant property of SLS algorithms is the fact that, given a problem instance, the
time required for finding a solution (in case a solution is found) is a random vari-
able. These two properties, correctness of the solution computed and run-times

149



2.1

Perfection has been attained
not when nothing remains to be added
but when nothing remains to be taken away.

—Antoine de Saint-Exupéry, Pilot & Writer

SLS METHODS

Stochastic Local Search (SLS) is a widely used approach to solving hard

combinatorial optimisation problems. Underlying most, if not all, specific SLS
algorithms are general SLS methods that can be applied to many different prob-
lems. In this chapter we present some of the most prominent SLS methods and
illustrate their application to hard combinatorial problems, using SAT and TSP
as example domains.

The techniques covered here range from simple iterative improvement al-
gorithms to complex SLS methods, such as Ant Colony Optimisation and Evo-
lutionary Algorithms. For each of these SLS methods, we motivate and describe
the basic technique and discuss important variants. Furthermore, we identify
and discuss important characteristics and features of the individual methods and
highlight relationships between them.

Iterative Improvement (Revisited)

In Chapter 1, Section 1.5, we introduced Iterative Improvement as one of the
simplest, yet reasonably effective SLS methods. We have pointed out that one
of the main limitations of Iterative Improvement is the fact that it can, and of-
ten does, get stuck in local minima of the underlying evaluation function. Here,
we discuss how using larger neighbourhoods can help to alleviate this prob-
lem without rendering the exploration of local neighbourhoods prohibitively
expensive.

61



3.1

The purpose of models is not to fit the data
but to sharpen the questions.

—Samuel Karlin, Mathematician & Bioinformatician

GENERALISED LOCAL SEARCH
MACHINES

In this chapter, we introduce Generalised Local Search Machines (GLSMs),

a formal framework for stochastic local search methods. The underlying idea
is that most efficient SLS algorithms are obtained by combining simple (pure)
search strategies using a control mechanism; in the GLSM model, the control
mechanism is essentially realised by a non-deterministic finite state machine.
GLSMs provide a uniform framework capable of representing most modern SLS
methods in an adequate way; they facilitate representations which clearly sepa-
rate between search and search control.

After defining the basic GLSM model, we establish the relation between our
definition of stochastic local search algorithms and the GLSM model. Next, we
discuss several aspects of the model, such as state types, transitions types and
structural GLSM types; we also show how various well-known SLS methods can
be represented in the GLSM framework. Finally, we address extensions of the
basic GLSM model, such as co-operative, learning and evolutionary GLSMs.

The Basic GLSM Model

Many high-performance SLS algorithms are based on a combination of several
simple search strategies, such as Iterative Best Improvement and Random Walk
or the subsidiary local search and perturbation procedures in Iterated Local
Search. Such algorithms can be seen as operating on two levels: at a lower level,
the underlying simple search strategies are executed, while activation of and
transitions between different strategies is controlled at a higher level. The main

113



5.1

[-..] to the traveler, a mountain outline varies with every step,
and it has an infinite number of profiles,

though absolutely but one form.

Even when cleft or bored through

it is not comprehended in its entireness.

—Henry David Thoreau, Writer & Philosopher

SEARCH SPACE STRUCTURE
AND SLS PERFORMANCE

The performance of SLS algorithms crucially depends on structural aspects of

the spaces being searched. Studying the nature of this dependency can signif-
icantly improve our understanding of SLS behaviour and facilitate the further
improvement and successful application of SLS methods.

In this chapter, we introduce various aspects of search space structure and
discuss their impact on SLS performance. These include fundamental proper-
ties of a given search space and neighbourhood graph, such as size, connec-
tivity, diameter and solution density, as well as global and local properties of
the search landscapes encountered by SLS algorithms, such as the number and
distribution of local minima, fitness distance correlation, measures of rugged-
ness, and detailed information on the plateau and basin structure of the given
space.

Some of these search space features can be determined analytically, but most
have to be measured empirically, often involving rather complex search meth-
ods. We exemplify the type of results obtainable from such analyses of search
space features and their impact on SLS performance for our standard example
problems, SAT and TSP.

Fundamental Search Space Properties

The search process carried out by any SLS algorithm when applied to a given
problem instance 7 can be seen as a walk on the neighbourhood graph associated
with 7, G (7). Recall from Chapter 1, Section 1.5 that G (7) := (S(m), N (7)),

203



6.1

In the mountains of truth you never climb in vain:
either you reach new heights today

or you practice your strength

so you can climb higher tomorrow.

—Friedrich Nietzsche, Philosopher

PROPOSITIONAL SATISFIABILITY
AND CONSTRAINT SATISFACTION

The Satisfiability Problem in Propositional Logic (SAT) is a conceptually

simple combinatorial decision problem that plays a prominent role in com-
plexity theory and artificial intelligence. To date, stochastic local search methods
are among the most powerful and successful methods for solving large and hard
instances of SAT. In this chapter, we first give a general introduction to SAT
and motivate its relevance to various areas and applications. Next, we give an
overview of some of the most prominent and best-performing classes of SLS
algorithms for SAT, covering algorithms of the GSAT and WalkSAT architec-
tures as well as dynamic local search algorithms. We discuss important properties
of these algorithms — such as the PAC property — and outline their empirical
performance and behaviour.

Constraint Satisfaction Problems (CSPs) can be seen as a generalisation of
SAT; they form an important class of combinatorial problems in artificial intelli-
gence. In the second part of this chapter, we introduce various types of CSPs and
give an overview of prominent SLS approaches to solving these problems. These
approaches include encoding CSP instances into SAT and solving the encoded
instances using SAT algorithms, various generalisations of SLS algorithms for
SAT and native CSP algorithms.

The Satisfiability Problem

As motivated and formally defined in Chapter 1 (page 17ff.), the Satisfiability
Problem in Propositional Logic (SAT) is to decide for a given propositional

257



7.1

It is the mark of an educated mind

to rest satisfied with the degree of precision
which the nature of the subject admits

and not to seek exactness

where only an approximation is possible.

—Aristotle, Philosopher

MAX-SAT AND MAX-CSP

MAX-SAT and MAX-CSP are the optimisation variants of SAT and CSP.

These problems are theoretically and practically interesting, because they are
among the conceptually simplest combinatorial optimisation problems, yet in-
stances of optimisation problems from many application domains can be repre-
sented as MAX-SAT or MAX-CSP instances in an easy and natural way. SLS
algorithms are among the most powerful and successful methods for solving large
and hard MAX-SAT and MAX-CSP instances.

In this chapter, we first introduce MAX-SAT. Next, we present some of the
best-performing SLS algorithms for various types of MAX-SAT instances and
give an overview of results on their behaviour and relative performance. In the
second part of this chapter, we introduce MAX-CSP and discuss SLS methods
for solving the general problem as well as the closely related overconstrained
pseudo-Boolean and integer optimisation problems.

The MAX-SAT Problem

MAX-SAT can be seen as a generalisation of SAT for propositional formulae
in conjunctive normal form in which, instead of satisfying all clauses of a given
CNF formula F' with n variables and m clauses (and hence F' as a whole), the
objective is to satisfy as many clauses of F' as possible. A solution to an instance
of this problem is a variable assignment (i.e., a mapping of variables in F' to truth
values), that satisfies a maximal number of clauses in F'.

313



8.1

Traveller, there is no path,
paths are made by walking.

—Antonio Machado, Poet

TRAVELLING SALESMAN PROBLEMS

The Travelling Salesman Problem (TSP) is probably the most widely studied

combinatorial optimisation problem and has attracted a large number of re-
searchers over the last five decades. Work on the TSP has been a driving force
for the emergence and advancement of many important research areas, such as
stochastic local search or integer programming, as well as for the development of
complexity theory. Apart from its practical importance, the TSP has also become
a standard testbed for new algorithmic ideas.

In this chapter we first give a general overview of TSP applications and bench-
mark instances, followed by an introduction to the most basic local search algo-
rithms for the TSP. Based on these algorithms, several SLS algorithms have been
developed that have greatly improved the ability of finding high quality solutions
for large instances. We give a detailed overview of iterated local search algo-
rithms, which are currently among the most successful SLS algorithms for large
TSP instances, and present several prominent, high-performance TSP algorithms
that are based on population-based SLS methods. While most of this chapter fo-
cuses on symmetric TSPs, we also discuss aspects that arise in the context of
solving asymmetric TSPs.

TSP Applications and Benchmark Instances

Given an edge-weighted, completely connected, directed graph G := (V, E, w),
where V is the set of n := #V vertices, IV the set of (directed) edges, and
w : F— RT afunction assigning each edge e € F a weight w(e), the Travelling

357



9.1

There is a time for some things,

and a time for all things;

a time for great things,

and a time for small things.

—Miguel de Cervantes Saavedra, Writer

SCHEDULING PROBLEMS

Scheduling is a ubiquitous task in a wide range of real-world settings and forms

one of the most important classes of combinatorial problems. SLS algorithms
are commonly and very successfully used for solving scheduling problems in prac-
tice. We begin this chapter with an introduction to scheduling problems and an
overview of the different types of problems that fall into the scheduling domain.
We then present and discuss stochastic local search algorithms for various impor-
tant and prominent types of scheduling problems: single-machine, flow shop and
group shop problems. As we will show, some approaches, issues and results are
similar for the various types of scheduling problems, while others differ consid-
erably. Given the variety of scheduling problems and SLS approaches for solving
them, this chapter can merely provide an introduction and highlight some impor-
tant issues. The interested reader will find pointers to the literature on scheduling
problems in the ‘Further Readings and Related Work’ section at the end of this
chapter.

Models and General Considerations

Scheduling problems arise in virtually all situations where performing a given set
of actions or operations requires the allocation of resources and time slots subject
to certain feasibility and optimisation criteria. Scheduling problems are often
difficult to solve, because resources are usually scarce and complex dependencies
may exist between the actions. As an example, consider the scheduling of landings
and takeoffs at an airport. Here, the (typically scarce) resources are the runways.

417



Problems worthy of attack
prove their worth by fighting back.

—Piet Hein, Poet & Scientist

OTHER COMBINATORIAL
PROBLEMS

The problems covered in the previous chapters are only some of

many combinatorial problems to which stochastic local search al-
gorithms have been applied successfully. In this chapter, we present and discuss
SLS applications to other combinatorial problems, which have been selected
partly because of their fundamental nature, partly because of their relevance for
certain application areas. In each of the main sections, we will introduce one
combinatorial problem, discuss its applications and commonly used benchmark
instances, and present one or more SLS approaches for solving this problem.
The problems we cover are: Graph Colouring, Quadratic Assignment, Set Cov-
ering, Combinatorial Auctions Winner Determination and DNA Code Design.
While the first three problems have been extensively studied in the literature
for many years, the latter two have only relatively recently gained their current
prominence.

The algorithms presented in this chapter are primarily intended to illus-
trate the application of SLS methods to the respective problems. Especially
for the Graph Colouring Problem, the Quadratic Assignment Problem and the
Set Covering Problem, the algorithms we present were chosen from a large
number of known SLS algorithms for the respective problem; our selection
represents a compromise between our desire to present state-of-the-art algo-
rithms and the need to give reasonably didactic examples. References to other
SLS algorithms and more detailed information on the problems covered here
are provided in the ‘Further Readings and Related Work’ section of this
chapter.

467



We shall not cease from exploration
and the end of all our exploring

will be to arrive where we started

and to know the place for the first time.

—T.S. Eliot, Poet

PILOGUE

Let us return to Augsburg and the problem of visiting all of its 127 Biergérten

in a single day as well as to the logic puzzle, solving which would pay for all the
beer along the way. It is easy to see that the former problem can be formalised
as a TSP instance (see Chapters 1 and 8), while the latter can be modelled as
an instance of SAT or CSP (see Chapters 1 and 6). Consequently, they could
be solved using a variety of SLS algorithms for these problems (see Chapters 2,
6 and 8). Given the relatively small instance sizes, even relatively simple SLS
algorithms would solve these problems easily, at least when run on a modern
computer. (Clearly, many other search methods could be used to solve these
problems similarly efficiently.)

Generally, Moore’s Law, that is, the exponential increase over time in process-
ing power and memory size (or more precisely: memory density) that occurred
since the beginning of modern computing, plays a considerable role in pushing
the limits of practical solvability of hard combinatorial problems. More impor-
tantly, at least in the case of SLS methods, it facilitates the rapid evaluation of
algorithmic behaviour and makes possible new forms of empirical analysis, which
provide the basis for the development of improved algorithms. Both factors com-
bined, hardware and algorithmic improvements, have led to dramatic progress in
our ability to solve large instances of hard combinatorial problems; and in many
cases, SLS methods provide the algorithmic basis for these developments.

Nevertheless, many challenges remain in solving hard combinatorial
problems in practice. There are problems, such as the QAP (see Chapter 10,
Section 10.2), for which even relatively small instances are beyond the reach of
state-of-the-art SLS methods (and any other algorithmic technique). Tight time

527





