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Abstract

Musical databasesare growing in number,
size, and complexity, and they are becom-
ing increasinglyrelevant for a broadrange
of academicaswell ascommercialapplica-
tions. The featuresandperformanceof mu-
sical databasesystemscritically dependon
two factors:Thenatureandrepresentationof
the information storedin the database,and
the searchand retrieval mechanismsavail-
ableto theuser. In this paper, we presentan
experimentaldatabaseand retrieval system
for score-level musicalinformationbasedon
GUIDO Music Notation as the underlying
music representation.We motivateandde-
scribethedatabasedesignaswell astheflex-
ible andefficient queryand retrieval mech-
anism,a query-by-exampletechniquebased
on probabilistic matchingover a clustered
dataset.This approachhasnumerousadvan-
tages,andbasedon experiencewith a first,
experimentalimplementation,we believe it
providesa solid foundationfor powerful, ef-
ficient,andusabledatabaseandretrieval sys-
temsfor structuredmusicalinformation.

1 Intr oduction

Multimedia databasesplay an important role, espe-
cially in thecontext of onlinesystemsavailableon the
World Wide Web. As thesedatabasesgrow in number,
size, and complexity, it becomesincreasinglyimpor-
tantto provideflexibleandefficientsearchandretrieval
techniques.Whendealingwith musicaldata,two main
difficulties are encountered:Firstly, the multidimen-
sional,oftencomplex structureof thedatamakesboth
the formulationof queriesandthe matchingof stored�
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datawith a given query difficult. Secondly, there is
oftena considerableamountof uncertaintyor in accu-
racy in thequeryand/orthedata,stemmingfrom limi-
tationsof themethodsusedfor obtainingqueries,such
as“Query-By-Humming”[12], or for acquiringmusi-
cal data,suchasautomatedperformancetranscription,
aswell asfrom simplehumanerrorwhenenteringdata.
While thereis a strongand increasinginterestin da-
tabaseandretrieval systemsfor soundandsound-level
descriptionsof music,many applicationcontexts (par-
ticularly in musicalanalysis,composition,andperfor-
mance)benefitfrom or requirehigher-level, structured
musicrepresentations.Consequently, thereis a grow-
ing body of researchon musical databasesand mu-
sic information retrieval basedon structured,score-
level music representations(see,e.g., [3; 21; 8]). In
this work, we focuson content-basedmusic informa-
tion retrieval from a databaseof score-level musical
databasedon thequery-by-exampleapproach[2]. The
maincontributionsof our work, canbesummarisedas
follows:

1. We useGUIDO Music Notation[16] asthe mu-
sic representationunderlyingthedatabaseaswell
asfor formulatingqueries.Comparedto the use
of MIDI and variousother music representation
formats,this approachhasa numberof concep-
tual and practicaladvantageswhich will be dis-
cussedin detailin thefollowing sections.Wefind
thatGUIDO is particularlysuitablefor formulat-
ing queriesin a query-by-exampleapproach,and
we outline how a small andnaturalextensionof
GUIDO allows the explicit and localisedrepre-
sentationof uncertaintyassociatedwith a given
query.

2. We introducea novel musicretrieval mechanism
basedonprobabilisticmodelsandahierarchically
clusteredmusical database.Using probabilistic
modelsfor musicalinformation retrieval hasthe
advantageof offeringnatural,elegant,andflexible
ways of scoringexact and approximatematches
betweenpiecesin thedatabaseanda givenquery.
While in thiswork,weintroduceandillustratethis
generalconceptusingrathersimpleprobabilistic
models,theapproachcanbeeasilygeneralisedto



morecomplex probabilisticmodels.

3. Wepresentanexperimentaldatabaseandretrieval
systemwhich implementsthe designand tech-
niquesproposedin this paper. This prototypical
system,which is availableontheWWW, supports
various combinationsof melodic and rhythmic
querytypesfor retrieving informationfromadata-
baseof piecesof varyingcomplexity. Thesystem
is implementedin Perl[1] andhighly portable;the
underlying, object-orientedand modular design
facilitatesthe implementationof differentsearch
and retrieval techniquesand the investigationof
their behaviour.

In the following, we presentand discussour overall
approachin moredetail.Westartwith abrief introduc-
tion of GUIDO Music Notationanddiscussits usein
the context of musicaldatabaseandretrieval systems.
In Section3,weoutlineourexperimentalmusicaldata-
basedesignandimplementation.Section4 is thecore
of our work; it motivatesanddescribesour approach
to musicinformationretrieval. Relatedapproachesare
briefly discussedin Section5, andSection6 presents
someconclusionsandoutlinesa numberof directions
for futureresearch.

2 Why GUIDO?

GUIDO Music Notation1 is a generalpurposefor-
mal languagefor representingscorelevel music in a
platform independent,plain-text and human-readable
way [16]. The GUIDO designconcentrateson gen-
eral musicalconcepts(asopposedto only notational,
i.e., graphicalfeatures).Its key featureis representa-
tional adequacy, meaningthatsimplemusicalconcepts
shouldbe representedin a simpleway andonly com-
plex notionsshouldrequirecomplex representations.
Figure 1 containsthree simple examplesof GUIDO
Music Notationandthe matchingconventionalmusic
notation.
The GUIDO designis organisedin threelayers: Ba-
sic,Advanced,andExtendedGUIDO MusicNotation.
Basic GUIDO introducesthebasicGUIDO syntactical
structuresandcoversbasicmusicalnotions;Advanced
GUIDO extendsthis layer to supportexact scorefor-
mattingandmoresophisticatedmusicalconcepts;and
Extended GUIDO introducesfeatureswhich are be-
yondconventionalmusicnotation.GUIDO Music No-
tation is designedas a flexible and easily extensible
openstandard.Thus,it canbeeasilyadaptedandcus-
tomisedto coverspecialisedmusicalconceptsasmight
berequiredin thecontext of researchprojectsin com-
putationalmusicology. GUIDO hasnot beendevel-
opedwith a particularapplicationin mind but to pro-
vide an adequaterepresentationformalism for score-
level music over a broadrangeof applications. The

1GUIDO Music Notationis namedafterGuidod’Arezzo
(ca.992-1050),arenownedmusictheoristof histimeandim-
portantcontributor to today’s conventionalmusicalnotation.

intendedapplicationareasinclude notationsoftware,
compositionalandanalyticalsystemsandtools,musi-
cal databases,performancesystems,andmusicon the
WWW. Currently, agrowing numberof applicationsis
usingGUIDO astheirmusicrepresentationformat.

GUIDO vs.MIDI

Currently, virtually every (content-based)MIR system
works on MIDI files. The two main reasonsfor that
are:� theenormousamountof musicavailableasMIDI

fileson theWWW� the lack of a commonlyusedandacceptedrepre-
sentationformatfor structuredmusic

Although StandardMIDI File (SMF) format is the
mostcommonlyusedmusicinterchangeformat,it does
not adequately supportactivities other thanplayback.
MIDI wasnever intendedto be the notation(andmu-
sic) interchangeformatthatit hasbecometoday.
Thereareseveral reasons,why MIDI is not very well
suited for MIR. A MIDI file containsa low level-
descriptionof musicwhich describesonly the timing
and intensity of notes. Since structural information
suchaschords,slursor tiescannotbestoredin a Stan-
dard MIDI file2, a high- or multilevel descriptionis
not possible.Someof thebasiclimitationsof a MIDI
file arethelack of differentiationbetweenenharmonic
equivalents(e.g..C-sharpandD-flat), andlack of pre-
cision in the durationsbetweenevents(which areex-
pressedin MIDI-ticks).
Our MIR systemhasbeenimplementedusingGUIDO
as its underlyingmusic representationlanguage. To
still beableto usethehugebodyof MIDI files on the
WWW, our group hasdevelopedconvertersbetween
GUIDO andMIDI 3.

GUIDO vs.XML

XML isasimplifiedsubsetof SGML,ageneralmarkup
languagethat hasbeenofficially registeredasa stan-
dard(ISO8879).Becauseof its increasingpopularity,
therehavebeenquiteanumberof attemptsto useit for
storingmusicaldata[14;6] andaswell asfor MusicIn-
formationRetrieval [26]. XML hasobviousandunde-
niablestrengthsasa generalrepresentationlanguage:
it is platformindependent,text-based,human-readable
andextensible.Additionally, by usingXML to repre-
sentmusic, one gainsthe advantageof using a stan-
dardisedmetalanguagefor whichagrowing numberof
toolsarebecomingavailable. To our knowledgenone
of theapproachesto musicrepresentationusingXML
publishedso far hasyet gainedwide acceptance.One

2Usingnon-standardtechniques,it is possibleto storead-
ditional information in MIDI files; however, thesemecha-
nismsarenotpartof thestandard

3GMN2MIDI andMIDI2GMN areavailableat our web
sitehttp://www.salieri.org/guido



[ \key<"A"> a1/4 h c#2 d/8 e/16 f#16 _/8
g#*1/4. {a1/4,c#,e2,a2} ]

[ \key<"C"> \meter<"4/4"> g1/4 e e/2
f/4 d d/2 c/4 d e f g g g/2 g/4 e e/2
f/4 d d/2 c/4 e g g c/1 ]

{ [ \tempo<"Vivace">
\meter<"5/8"> \intens<"p"> \sl(\bm(g1*1/8 a b)
\bm(b& c2) \bm(c# b1 a b& a&)) ],

[ \meter<"5/8"> \sl(g1*3/8 d/4 c#*3/8 d/4) ] }
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Figure1: Simpleexamplesof GUIDO MusicNotation;morecomplex examplescanbefoundin [17,18].

of the reasonsfor this seemsto lie in the complexity
of musicalstructure;just using a “new” format does
not automaticallyleadto a simpleandeasyto usedata
structure.
To allow theuseof XML-tools whereneeded,wehave
developed GUIDO/XML, a XML compliant format
that completelyencapsulatesGUIDO within a XML
structure. Using GUIDO/XML is simple: we pro-
vide tools that convert GUIDO Music Notation files
into GUIDO/XML files andvice versa.Usingthis ap-
proach,wecancontinuetouseGUIDO MusicNotation
andits associatedtools (SALIERI, NoteAbility, Note-
Server, ParserKit,etc.)but arealsofreeto useany cur-
rentor emergingXML tool.
Oneadvantageof XML is its ability to storesocalled
metadata. A pieceof music can be associatedwith
a composer, a title, a publisher, a publishingdateand
even version information. One can easily add new
metadatafieldsencodingadditionalmusicalinforma-
tion (like for exampleperformance-relateddatafor a
piece). UsingGUIDO/XML in conjunctionwith a set
of metadatainformationcanleadto completeXML-
compatibledescriptionsof structuredmusic.

UsingGUIDO Music Notation for Musical
Databasesand MIR

As we have shown, GUIDO Music Notationoffersan
intuitive yet completeapproachfor representingmusi-
cal data.UsingGUIDO in musicaldatabasesis there-
fore a straightforward task: becauseit is a plain-text
format,noadditionaltoolsarenecessaryto create,ma-
nipulateor to storeGMN files. It is alsopossibleto use
standardtext-compressiontools to minimise storage
space(thesizeof compressedGMN files comparesto
thesizeof MIDI files). By usingexisting toolslike the
GUIDO NoteServer[25], onecan createconventional

musicnotationfrom GUIDO descriptionsquickly.
Becauseof its representationallyadequatedesign,
GMN is also very well suitedfor MIR: Queriescan
be written as(enhanced)GUIDO strings. Userswith
a backgroundin GUIDO can specify even complex
queriesin aneasyway. By usingadditionaltools like
a virtual piano-keyboard,evennoviceusersareableto
build queriesquickly. In Section4 it will be shown,
how usingGUIDO asthe underlyingmusicrepresen-
tation languagesimplifies the taskof building query-
enginesandwe alsodemonstrate,how a slight exten-
sion to GUIDO leadsto an intuitive approachto ap-
proximatematching.
Other representationformats(like XML) do not pro-
vide this feature:a new querylanguagehasto becre-
atedin orderto accessthestoredinformation.As there
is no standardfor musicalqueries(like SQL is for re-
lational databasessystems)a whole rangeof different
musicalquerylanguageswill beproposedin thefuture.

3 The Experimental GUIDO Database

As wasshown in the previoussection,GUIDO Music
Notationis well suitedasa generalmusicrepresenta-
tion language.Our prototypicalMIR systemis build
on thebasisof anexperimentalGUIDO Databasethat
will bedescribedin this section.
The GUIDO Databasecontainsmusicalpiecesstored
asGMN files alongwith someadditionalinformation
which is usedfor efficient retrieval (this will be dis-
cussedin moredetail in the next section). Insteadof
building our musicaldatabasebasedon a conventional
databasesystem,we decidedto implementit in Perl
[1], usingthe regularfile systemfor informationstor-
age.This designoffersanumbersof advantages:� ThePerllanguagehasgoodsupportfor manipula-
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Figure2: Overview of theobject-orienteddesignof our
experimentaldatabaseand information retrieval sys-
tem.

ting textual data(suchasGUIDO or HTML data)
andis well suitedfor rapidprototyping.� Using PERL allows for very easyintegration in
onlinesystems.� Disk storageis cheap,and textual data can be
compressedefficientlyusinggeneralfile compres-
sion techniques;furthermore,modernoperating
systemsallow time-efficient file accessthrough
caching.� It is easyandreasonablyefficient to build index
structuresona file system.� Maintenanceandupdatingof the databaseis rel-
atively easy, sincefunctionality of the operating
systemandunderlyingfile systemcanbeused.

Onedrawbackof thisapproachis thefactthatstandard
databasefunctionality, suchasconcurrentwrite access,
the implementationof accesscontrol, andtransaction
control would have to be implementedseparatelyand
are currently not supported. However, it should be
notedthatin thecontext of musicinformationretrieval,
write operations(i.e., modificationsof or additionsto
the database)arerelatively rarecomparedto readac-
cess(suchasretrieval)andusuallyrestrictedtoselected
users.Interestingly, thesameholdsfor many largeand
heavily usedonlinebiomedicalandliteraturedatabase
systems. Our model is basedon an off-line update
mechanism,wherepiecesareaddedto thedatabaseby
taking the databaseoff-line andgenerating/ updating
theindex structurewhile nootheraccessis permitted.
Our implementationfollows anobjectorienteddesign
which is graphicallysummarisedin Figure2. Details
of theimplementationcanbeseenfrom thesourcesof
our Perl modules,which are publicly available from
http://www.salieri.org/guido/mir.

Currently, our databasesystemcontains about 150
files, most of which have beenconvertedto GUIDO
from other formats like abc and MIDI. Becausethe
conversionfrom MIDI to GUIDO is a complex task
that sometimesneedsmanual interaction, extending
this corpusis time-consuming. However, we expect
that basedon recentimprovementsof our conversion
tools,wewill beableto extendourdatabaseto amuch
larger body of files. Our experimentalsystemis not
optimisedfor speed,andwe arequite certainthat we
will needto increaseits efficiency whenoperatingona
muchlargerdatabase.

4 The Experimental MIR Engine

Our music informationretrieval approachis basedon
the “Query by Example” (QBE) paradigm[2]. QBE
hastheadvantagethatqueriescanbeformulatedin an
easyand intuitive way. In many searchand retrieval
situations,usersappearto prefer the QBE approach
over the useof query languages,which supportmore
complex querieslike booleanexpressions,wildcards,
or regularexpressions.

Query Types

Many musicinformationretrieval systemsareprimar-
ily basedon melodic, i.e., pitch-relatedinformation4.
Types of melodic information that can be used for
queriesareabsolutepitches,pitch-classes,intervals,in-
terval classes(e.g., large/smallintervals)andmelodic
trends(e.g.,up/down/equal). Alternatelyor addition-
ally, rhythmic informationcanbe usedasa basisfor
retrieval. Again, varioustypesof rhythmic informa-
tion canbe distinguished:absolutedurations,relative
durations(or durationratios),or trends(e.g., shorter,
longer, equal).
Our prototypicalMIR Enginesupportsqueriesthatar-
bitrarily combineoneout of five typesof melodicin-
formationwith oneoutof threetypesof rhythmicinfor-
mation.Themelodicqueryfeaturesarethefollowing:
absolutepitch (suchasc1, d#2, etc.), intervals (such
asminor third, major sixth, etc.), interval types(such
assecond,fourth, etc.), interval classes(equal,small,
medium,large),melodic trend(upwards,downwards,
static).Thethreecurrentlysupportedrhythmicfeatures
areabsolutedurations(suchas1/4, 1/8.,etc.),relative
durations(suchas1:2, 4:3, etc.),andrhythmic trends
(shorter, longer, equal). All thesefeaturesare deter-
mined for individual notesor pairs of notes,respec-
tively, suchthataqueryeffectively specifiessequences
of thesefeatures.
Sincewe are following a QBE approach,thesevari-
ous query types(and their combinations)correspond
merelyto differentinterpretationsof thesamemusical
query. For instance,the GMN fragment[g1/4 e1/4
e1/4] canbeusedasapurelymelodicquery, usingab-

4see[21] for anoverview of MIR systemsandtheir pitch
representations



solutepitch. In this case,only the melodicsequence
[g1 e1 e1] would be matched,regardlessof rhythm.
Thesamefragment,usedasa purelyrhythmicalquery
would alsomatch[e1/4 e1/4 e1/4], andeven [ /4 /4
/4]. For informationretrieval basedon the QBE ap-

proach,thisparadigmof “query= data+ featureselec-
tion” is very natural;this appliesparticularlyto multi-
dimensional,complex datasuchasmusicalor graphi-
cal objects.
We canalsodistinguishexact retrieval, wherethetask
is to find exact occurrencesof the informationspeci-
fied in thequery, or approximate(or error-tolerant)re-
trieval, wherea certainamountof deviation between
the query information and the datato be retrieved is
permitted.Here,we first considerexact retrieval, and
laterdiscussbriefly anextensionof ourapproachto ap-
proximateretrieval.

Probabilistic Models

Themusicinformationretrieval approachtakenhereis
basedon the generalideaof characterisingandsum-
marisingmusicalstructureusingprobabilisticmodels.
Searchingfor a fragmentwith a specificmusicalstruc-
ture (specifiedin a query)canthenbedoneby proba-
bilistic matchingusingthesemodels.Here,wepropose
a rathersimpleapproach,which is basedon first-order
Markov chainsfor modeling the melodic and rhyth-
mic contoursof a monophonicpiece of music [15;
9]. Currently, we focus on horizontal queriesonly,
i.e.querieswhichonly involvemonophonicmusic,and
treatpieceswith multiple voices(or chords)ascollec-
tionsof monophonicpieces.
Intuitively, a (discretetime) first-orderMarkov chain
is a probabilisticmodel for a processwhich at each
time is in a state,and at eachtime stepprobabilisti-
cally changesinto a successorstate(which canbe the
sameasthe currentstate)with a probability that only
dependsonthepresentstate.Hence,first-orderMarkov
chainsarecharacterisedby the transitionprobabilities���
	

for enteringstate� asthenext state,whenthecur-
rentstateis � .5 Thetransitionprobabilitiescharacteris-
ing afirst-orderMarkov chaincanbewrittenin form of
a squarematrix 
���� � �
	�� whoserows andcolum in-
dicescorrespondto thestatesof thechain.It shouldbe
notedthatfirst-orderMarkov chainswith a finite setof
statescorrespondto non-deterministicfinite statema-
chines(FSMs),andcanalsobe seenasa specialcase
of HiddenMarkov Models(HMMs) whereemissions
for all statesaredeterministic[24].
In the applicationconsideredhere, we conceptually
useonefirst-orderMarkov chainfor eachmelodicand
rhythmicquerytypeandeachgivenmonophonicpiece.
Thestatesof thesechainscorrespondto pitchesfor ab-

5In this work, we only usehomogenousMarkov chains,
i.e. chains, for which the transition probabilities do not
changeover time. In Section6 we briefly discusshow and
why a moregeneralapproachequivalentto usinginhomoge-
neouschainsmightbeadvantageous.

solutepitch queries,to intervals for interval queries,
to relative durations for relative rhythmic queries,
etc. The correspondingtransition probabilities are
determinedfrom frequency countsover neighbouring
pitches,intervals, note durations,etc. which are nor-
malisedto obtainproperprobabilities.
Figure3 shows the transitionprobability matricesfor
theMarkov chainscharacterisingthesequencesof ab-
solutepitchesanddurationsfor the“HänschenKlein” 6

examplefrom the secondrow of Figure 1 as well as
thecorrespondingrepresentationsasnon-deterministic
finite statemachines;the latter representationis often
moreintuitiveandconcise.
Thetransitionprobabilitiesof thesefirst-orderMarkov
chainssummarisestatisticalpropertiesof the pieces
in the musical database. When trying to find exact
matchesbetweena given queryandpiecesin the da-
tabase,wecanmakeuseof thefollowing simpleobser-
vation: If for agivenpiece� , a transitionthatis present
in thequery(e.g.,anupwardfifth followedby adown-
wardthird)hasprobabilityzero,thereis noexactmatch
of the query in � . Unfortunately, the converseis not
true: Therearecaseswherethereis no exactmatchof
thegivenqueryin � , yet for any neighbouringfeatures
in thequery, thecorrespondingtransitionprobabilities
in � aregreaterthanzero.
Generally, the key ideaof informationretrieval based
onprobabilisticmodelsis thefollowing: Givenapiece� anda probabilisticmodel ����� � for this piece,this
modelcanbe usedto generatepieces��� with proper-
tiessimilar to � . Here,thesepropertiesarethe transi-
tion probabilitiesof the first-orderMarkov chainswe
usefor characterisingsequencesof features. To as-
sessthe potentialof a matchgiven a querysequence� � �������! "�!#$#%#$���'& (wherethe �!( areindividual features
suchaspitches)anda candidatepiece � from the da-
tabase,we determinethe probability )*� �,+ ����� ��� that
theprobabilisticmodelof � , denoted���-� � , generates
thefeaturesequencecorrespondingto thegivenquery� . For oursimpleprobabilisticmodel, ���-� � is charac-
terisedby a matrix of transitionprobabilities

� �
	
, and

theprobabilityof generatingthequerysequencegiven
that model is given by the product of the transition
probabilities

���
	
which correspondto all neighbouring

featuresin thequerysequence:

)*� �,+ ����� ��� �/.10 ���
	 + �2� �'(3� �4� �!($56�7�'8:9<;>=<?A@
Intuitively, this probability score will be higher for
pieceswhich contain many exact matchesthan for
pieceswhich contain few exact matches,and as ex-
plainedabove, it will be zerofor pieceswhich do not
containany exactmatchesat all. Sincetheprobabilis-
tic modelwe useis very simplisticandis certainlyfar
from capturingall relevant (statistical)featuresof the
piecesin the database,we cannotexpectthis intuition
to befully met.However, ourpracticalexperiencewith

6“HänschenKlein” is a popuparGermanchildrenssong
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Figure3: TransitionprobabilitymatricesandFinite StateMachinesfor absolutepitch andabsoluterhythm

the experimentalsystemdescribedhereindicatesthat
evenwhenusingthissimplisticprobabilisticmodel,the
correlationbetweenprobabilityscoresandpiecescon-
tainingexactmatchesis sufficient to beusedasa basis
for amusicinformationretrieval mechanism.
Obviously, the transition probability matricescorre-
spondingto relatedfeatures,suchasabsolutepitches
and intervals, are not independent,and in fact two
matrices(one for absolutepitches,one for absolute
durations)are sufficient as a basis for handling any
type of query. However, in practice,thereis a trade-
off betweenthe amount of pre-computedstatistical
data(transitionprobabilities),andthetimerequiredfor
matchinga given queryagainsta probabilisticmodel
thatmight not beexplicitly available.
Note: The techniquespresentedheredo not directly
supportthe efficient searchof matcheswithin a given
piece (which might have been selectedbasedon a
high probability score for a given query). To effi-
ciently searchmatcheswithin a piece, conventional
techniques,suchassuffix trees(see,e.g.,[20]) canbe
used. Alternatively, piecescanbe segmented(manu-
ally, or automatically, usingany suitablesegmentation
algorithm;see,e.g.,[22]), andprobabilisticmodelling
andmatchingcanbeappliedto thesegmentsindividu-
ally.

Hierarchical Clustering

Theprobabilisticmatchingtechniquedescribedbefore
canhelp to reducesearcheffort by eliminating some
of the piecesthat do not match a given query, and
moreimportantly, by identifying promisingcandidate
piecesbasedon their transition probability matrices
only. However, a naive searchfor good candidates
basedon probabilityscoreswould still requireto eval-
uatethe queryagainstthe probabilisticmodelsfor all
piecesin the database.For very large databases,or
whenshortresponsetimesarerequired,this might be
too time-consuming.
Oneway of addressingthis problemis to organisethe
databasein form of a tree,whereeachleafcorresponds
to oneelement(i.e.,piece)of themusicaldatabase.For
a given query, we could now startat the root andfol-
low thepathsleadingto theleaveswhichcontainpieces
whichmatchthequery. Thiswouldallow usto retrieve

matchesin time proportionalto the heightof the tree,
i.e., logarithmicin thenumberof leavesfor abalanced
tree. In orderto do this, we needa mechanismthatat
eachnodeof the treeallows us to identify the subtree
thatis mostlikely to containa match.
As a first approximationto sucha mechanism,we use
combinedprobabilisticmodelswhich summarisethe
propertiesof all sequencesin a given subtree. Note
that our first-orderMarkov chainmodelcanbe easily
generalisedto setsof piecesinsteadof singlepieces:
Given two pieces � � � �  , we combine the two tran-
sition probability matrices
]��� � � � 
]���  � derived from
theirrespectiveinterval sequencesinto onejoint matrix
]�30�� � � �  @ � by computinga weightedsum suchthat
the resultingtransitionprobabilitiesare equivalent to
thosethatwouldhavebeenobtainedby deriving atran-
sitionprobabilitymatrix from theconcatenation� �_^ �  
of thetwo sequences:

� �30�� �7� �  `@ � �
	 � � �-� �a^ �  � �!	
� + � ��+ � �-� � � �
	6b + �  c+ � �-�  � �
	+ � ��+ b + �  c+

This methodgeneralisesto the caseof combiningthe
models of more than two sequencesin a straight-
forwardway. Matchingfor thesecombinedprobabilis-
tic modelsworks exactly asfor singlepieces,andthe
probability scoresthusobtainedcanbe usedto guide
thesearchfor matchesin a treestructuredindex of the
database.Figure4 showshow thetreestructureof tran-
sition matricesis build; thesearchfor a patternbegins
at theroot matrix andthencontinuesat thedescendant
matricesaslongasthesematchthetransitionprobabil-
itiesof thequery.
Obviously, the topologyof the treeaswell as the de-
cision how piecesand setsof piecesare groupedto-
gethercan have a large impact on the efficiency of
theproposedsearchmechanism.Onepotentiallyvery
fruitful approachfor deriving treestructuresis theuse
of hierarchicalclusteringtechniques[10]. However,
it is presentlynot clearwhethersimilar piecesshould
be clusteredtogetheror whether clusteringdissimi-
lar piecestogetherwould be morebeneficial;the for-
mer approachmight make it easierto identify larger
setsof promisingcandidatesfor matchesearly in the
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search,while the latter shouldfacilitateselectingthe
mostprobablematchfrom a setof pieces.
The issuesarising in this context are rathercomplex
and require thoroughempirical analyses;we plan to
further investigateand discusstheseelsewhere. For
our presentprototype,we usea simpleandratherar-
bitrary hierarchicalclusteringresultingin a balanced
treewhereeachnodehasup to 32 children.7 Further-
more,to speedup thesearchwithin this tree,for each
nodewestorethreebit matriceswhoseentriesindicate
whetherthe transitionprobabilitiesin the probabilis-
tic model for the cluster correspondingto that node
exceedsthresholdsof 0, 0.15, and 0.3, respectively.
Thosethresholdmatricesareusedfor rapidlyselecting
themostpromisingsubclusterat eachinternalnodeof
the clustertree that is visited during the search.(For
detailsof this mechanism,see[13].)
Onceagain,it shouldbenotedthatthemechanismsin-
troducedhereserve a doublepurpose:They can po-
tentially prunelargepartsof thesearch,for which ex-
act matchescannotbe encountered(basedon the oc-
currenceof transition probabilitieswith value zero),
and they alsoheuristicallyguide the searchsuchthat
promisingcandidatepiecesare identifiedearly in the
search.

ApproximateMatching and Err or-tolerant
Search

Often, queriesare inaccurateor may containerrors,
and relevant matchescannotexpectedto be perfect
matches.In othercases,a userqueryinga musicalda-
tabasesystemmightbeinterestedin “almostmatches”,
which might indicate interestingmusicalsimilarities.
One way of addressingthis situation is to useexact

7The number32 is chosenin order to allow bit-parallel
operationsto beusedon this data,seealso[21].

matchingin combinationwith “fuzzy” queriesthatsup-
port featuressuchasmelodicor rhythmictrendsor in-
terval classes.But this is not alwaysthe mostappro-
priateapproach,andmany musicapproximateretrieval
mechanismsinsteador additionallysupporttrueerror-
tolerantsearch,which allows (penalised)mismatches
whenmatchingqueriesagainstpiecesfrom the given
musicaldatabase8.
Our retrieval mechanismbasedon probabilisticmod-
els, although primarily developed for exact match-
ing, quite naturallyextendsto a certaintype of error-
tolerantsearch.To thatend,both the searchfor good
candidatesequences,aswell as the searchwithin the
sequencesneedto bemodified. While we cannotdis-
cussthe technicaldetailsof theseextensionshere,we
will outlinethegeneralideasandprovideadetailedde-
scriptionelsewhere.
To localise candidatesequencesin an error-tolerant
way, we could modify the probabilisticmodelsasso-
ciatedwith the individual piecesin the databasewith
prior information by factoring pseudo-observations
into all transition probabilities (this is a standard
method in machine learning, which is applied fre-
quently when probabilistically modelling sequence
data,see,e.g.,[4]). Intuitively, thiswould reflectacer-
tain degreeof uncertaintyaboutthe piecesin the da-
tabase.The hierarchicalclusteringof the probabilis-
tic modelsand the searchprocessbasedon scoring
the query sequenceusing theseprobabilistic models
remainsunchanged,but the whole processnow sup-
portsimperfectmatches,which arestill penalised,but
no longerruledout.
Thesameeffect canachievedby factoringtheprior in-
formationinto thequery;this correspondsto allowing
for errorsor inaccuraciesin thequery. Themechanism
is exactly the same,only now the prior is associated
with the queryandgetsdynamicallyfactoredinto the
probabilisticscoringprocessrather than folded stati-
cally into thetransitionmatricesstoredin thedatabase.
Underthis view, it is possibleto allow theuncertainty
associatedwith particularaspectsof the query to be
explicitly specified.For example,a usermight be ab-
solutelycertainaboutthefirst andthesecondpitch of
a melodic fragmentusedas a query, but lesscertain
aboutthethird pitch,andveryuncertainabouta fourth
one.9 We devisedanextensionof GUIDO Music No-
tationthatallows to expresssuchlocal uncertaintiesin
a simpleandintuitive way by usinga thesymbols“?”
and“ !”. An instanceof theexamplegivenabovecould
thusbespecifiedas[g1! e1! e1? f1??]. We arecur-
rentlyworkingonextendingthisconceptto all melodic
andrhythmicfeaturessupportedby ourMIR Engine.

8See[21] for an overview of MIR systemand their ap-
proximatematchingtypes.

9Note that this information neednot necessarilybe ex-
plicitly enteredby theuser— it couldtheoreticallybeadded
automaticallybasedon a learnedmodel of typical errors
madeby (particular)users,e.g., in the context of a Query-
by-Hummingapproach.



The secondstageof error-tolerant retrieval, locating
approximatematcheswithin candidatepieces,canbe
handledin many different ways, including standard
methodsbasedon edit-distancesaswell astechniques
closelyrelatedto theonewediscussedfor findingcan-
didatepiecesin an error-tolerantway. The latter ap-
proachappearsto beconceptuallymoreelegant;weare
currently developing a unified approximateretrieval
mechanismbasedon this idea,whichwill bediscussed
in detailelsewhere.(Thecurrentimplementationof our
experimentalRetrieval Enginecontainsa moreadhoc
methodfor error-tolerantsearch,which we intend to
replacewith thetheoreticallymoresolidapproachout-
lined above.)

5 RelatedWork

Over the last few years,a substantialamountof work
on musicdatabaseandretrieval systemshasbeenpub-
lished. While we cannotnearlycover all relevant ap-
proaches,we will outline anddiscusssimilaritiesand
differencesbetweenthekey ideasof our approachand
somerecentandearlierwork in thefield.
Lemstr̈om andLaine recognisedearly that musicrep-
resentationswhicharemoreexpressivethanMIDI pro-
vide a betterbasisfor certainretrieval tasks(see[20];
thispaperalsocontainsaniceoverview of earlierwork
in music information retrieval). Recently, a number
of musicaldatabaseand retrieval systemshave been
developedin which music representationsother (and
moreexpressive) thanMIDI areused(see,e.g., [5]);
however, we believe thatour useof GUIDO goesone
stepfurther thanmostof thesein usinga uniform for-
malismfor representingpiecesin thedatabaseandfor
formulatingquerieswhich is powerful enoughto cap-
turebasicallyany aspectof a musicalscore.Although
our presentsystemonly supportsqueriesbasedon pri-
mary melodicandrhythmic features,we feel that the
ability to extendthis in a naturalway to othermusical
concepts,suchaskey, metre,or barlineinformation,is
animportantadvantageof ourapproach.
Recently, a numberof XML-basedmusic representa-
tionshave beenproposed(see,e.g.,[14; 26; 6]. While
theseoffer someadvantagesby allowing the use of
standardXML toolsandcertainlyhavethepotentialto
representarbitraryaspectsof score-level music,weare
notawareof any existingmusicaldatabaseandretrieval
systembasedonanXML-representation.As discussed
in Section2 of this paper, XML-basedrepresentations
sharemany desirablefeatureswith GUIDO. Aside
from tool support,we cannotseeany featureswhich
would make XML intrinsically suitablefor content-
basedmusicinformationretrieval. While XML-based
representationsare typically much too verboseand
syntacticallycomplex to be useddirectly for musical
queries,many aspectsof our work (particularly our
retrieval technique)are independentfrom the use of
GUIDO as the underlyingmusic representation,and
canbeeasilyappliedto abroadrangeof otherformats.

Sonodaet al. have beendeveloping a WWW-based
system for retrieving musical information from an
online musical databasebased on the “Query-by-
Humming” approach[19; 28]. Their systemis based
on MIDI as the underlyingmusic representation,and
their indexing and retrieval method,which usesdy-
namic programmingfor matching,hasrecentlybeen
optimised for efficient retrieval from large musical
databases[29]. Similar to their approach,we follow
the“Query-by-Example”paradigm(usingGUIDO in-
steadof MIDI) andacknowledgethatmatchingagainst
largedatabases,usingdynamicprogrammingor simi-
lar techniques,canbe prohibitively inefficient, partic-
ularly in the context of an on-line system. Our prob-
abilisticmatchingtechniqueis fundamentallydifferent
from their “ShortDynamicProgramming”.Their tech-
niquerequiresvery largeindeces(comparedto thesize
of thedatabase),while ourprobabilisticmodelsarerel-
atively compact. Their retrieval techniqueis a rather
efficientstand-alonemethodfor findingmatchesin the
given database.10 In contrast,we mainly focus on a
techniquefor identifying promisingcandidatepieces
in the database,which canbe combinedwith various
methodsfor identifying matcheswithin a given piece
(e.g.,dynamicprogramming).Anotherdifferencebe-
tweentheir approachandoursis the fact that they fo-
cus on melodic information alone,while we support
queriesthatcancombinevariousmelodicandrhythmic
features. Evidencefor the importanceof supporting
suchcombinedqueriesis givenin [8], who usea fixed
time-grid for rhythmical structure(in contrastto our
more flexible rhythmical query types)anda retrieval
methodbasedon invertedfile indexing.
An interestingapproachto musicinformationretrieval
whichhasrecentlygainedsomepopularityis theuseof
text-retrieval methodson suitablyencodedmusicrep-
resentations[23]. Although our systemusesa text-
basedmusicrepresentation,our approachto musicin-
formation retrieval is radically different,andactually
morerelatedto techniquesfor biomolecularsequence
analysisandgenomicinformation retrieval (see,e.g.,
[11; 4]). It is our belief that musicalinformation is
in many ways inherentlydifferentfrom text, andthat
specificpropertiesof musicaldatashouldbeexploited
for musicinformationretrieval. To thatend,sequence
retrieval methodsdevelopedfor text datacan poten-
tially provide a valuablestarting point (as has been
the casefor biomolecularsequenceanalysis),but ul-
timatelywill haveto becomplementedandaugmented
by techniquesspecificallydevelopedfor musicaldata.
The probabilisticmatchingapproachwe proposepro-
videsabasisfor suchtechniques,andtheoveralldesign
of oursystemfacilitatessuchextensions.Furthermore,
text-basedmethodscanbe usedin the context of our
approachfor locatingmatcheswithin candidatepieces
identifiedby ourprobabilisticmatchingtechnique.

10Sincetheonly evaluationof theirapproachweareaware
of is basedon a databaseof mainly randompieces,we feel
thattheaccuracy of themethodin practiceis hardto assess.



Generally, our probabilistic modelling approachis
basedon characterisationsof the underlyingmusical
datawhichcanbepotentiallyusefulfor purposesother
thaninformationretrieval, suchasanalysisor compo-
sition (see,e.g., [9]).11 In this sense,our approach
is related to work by Thom and Dannenberg [31;
30], who useprobabilisticmodelsandmachinelearn-
ing techniquesfor characterisingmelodies.
Finally, let uspoint out a generalproblemwith almost
any work oncontent-basedmusicinformationretrieval
we are aware of (including our own work presented
here): the lack of a corpusof musicfor testingtheef-
ficiency andaccuracy of musicretrieval systems.Part
of the reasonfor this is the lack of a commonlyused
andwidely supportedmusic interchangeformat. We
believe that GUIDO Music Notationhasthe potential
to remedythis situation,andwe arecurrentlyworking
on translatingvariouscollectionsof musicalmaterial
into GUIDO, in orderto integratetheseinto our exper-
imentalmusicaldatabase.

6 Conclusionsand Future Work

In this paperwe have presentedthe conceptof a da-
tabasesystemfor structured,score-level musical in-
formation and introduceda query-by-examplemech-
anismfor retrieving informationbasedon a varietyof
melodicandrhythmic searchcriteria. The underlying
musicretrieval methodusesprobabilisticmodelsanda
hierarchicalclusteringof thedatabasefor pruningand
heuristicallyguiding thesearch.We alsopresentedan
extensionof GUIDO Music Notation,themusicrepre-
sentationlanguagewe usefor the piecesin the data-
baseaswell asfor queries,whichallowsexpressinglo-
caliseduncertaintyin musicalqueries;andwe briefly
describedanextensionof our retrieval mechanismthat
usessuchextendedqueriesfor approximateprobabilis-
tic matching.
A first prototypeof the databasesystemandretrieval
enginehasbeenimplementedand testedon a set of
about150relatively simplemusicalpiecesin GUIDO
NotationFormat. This experimentalsystemhasbeen
equippedwith a WWW interface and is available
onlineat http://www.salieri.org/guido/mir/.
Our experiencewith this smallprototypesuggeststhat
the approachpresentedherecanprovide a solid foun-
dationfor largerandmorecomplex databaseandinfor-
mationretrieval systemsfor structuredmusicaldata.
Conceptuallyaswell aswith respectto theimplemen-
tation, this work is still in a relatively earlystage,and
many aspectsof it will befurtherexploredandrefined
in the future. On the practicalside,an obviousexten-
sionof our work is to testour systemandmethodson
largermusicaldatabases.To thatend,we have begun
to includeabroadrangeof structuredmusicaldata,in-
cluding the“EssenFolksongCollection” [27] into our

11The simple probabilisticmodelsusedhere,as well as
morecomplex models,canbeusedfor generatingstatistically
similar fragmentsof music.

dataset.Finally, wehopeto getaccessto thedatacom-
ing out of Fujinagaet al.’s “Optical Music Recogni-
tion System”[7], wherea largecollectionof American
sheetmusicis automaticallyconvertedintoGUIDO de-
scriptions.With thisadditionaldata,wehopeto beable
to conductsometestswith thousandsto ten-thousands
of piecesin GUIDO Music Notation in the near fu-
ture.Wealsointendto improvetheintegrationwith the
experimentaldatabase/MIRsystemwith otherGUIDO
toolsandapplications,in particularwith thelatestver-
sion of the GUIDO NoteServer [25] (for visualising
themusicaldata),converters(in particularGUIDO-to-
MIDI for playback),andanalysistoolswhich arecur-
rentlyunderdevelopment.
Anotherdirectionwe would like to explorein thenear
future is to supportquerieswhich allow the use of
GUIDO tagsin addition to melodicandrhythmic in-
formation.Clearly, theinformationrepresentedby tags
in theGUIDO datacomprisingtheelementsof theda-
tabasecanbemusicallyvery meaningful,andin many
contextswe considerit desirableto includesuchinfor-
mationin musicalqueries.This couldbe very useful,
e.g., in order to supportthe specificationof tonality,
metre,or instrumentinformationin a query;similarly,
constraintson themetricpositionwithin barscouldbe
expressedin queriesby includingbarlines,andinclud-
ing expressivemarkingsor dynamicinformationcould
help to make approximatequeriesmorespecific. The
probabilisticmatchingmechanismpresentedherecan
be extendedin variouswaysto accommodatequeries
including tag information,anddetermininga theoret-
ically elegantandpracticallyeffective solutionto this
problemis a challengingproblemfor futureresearch.
Evenwhenjust consideringthemelodicandrhythmic
querytypessupportedin our presentsystem,it might
beinterestingto investigatemorepowerful probabilis-
tic modelsasabasisfor thecharacterisationof themu-
sical datawhich is at the coreof our retrieval mecha-
nism. Obviously, higher-orderMarkov modelscould
beusedto capturemoreof the local structure,andad-
ditional statisticalinformationwhich betterresembles
aspectsof the global structureof larger piecescould
be usedin addition to simple Markov chains. Fur-
thermore,largerpiecescanbemoreappropriatelyhan-
dledby segmentingtheminto smallerfragments(using
standardsegmentationapproaches),for which proba-
bilistic modelsarethenconstructedindividually. This
way, local structurecanbe capturedmoreadequately
andprobabilisticmatchingbasedonthefragmentmod-
elswill bemoreaccurate.
Finally, weareinterestedin extendingourapproachbe-
yondpurelyhorizontalqueriesby allowing polyphonic
featuresto be included in queries. We seetwo fun-
damentalapproachesfor suchanextension:Allowing
chordsand possibly tags referring to harmoniccon-
text to beincludedin monophonicqueries,or support-
ing full polyphonicqueriesthat specifysimultaneous
monophonicvoices. We believe that our generalap-
proachshouldin principlebeapplicableto eithertype



of polyphonicquery, but clearly, substantialfurther in-
vestigationwill be requiredto devise and implement
thecorrespondingretrieval algorithms.Overall,weare
convinced that the work presentedherewill provide
a goodbasisfor theseandother generalisedretrieval
tasks.
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