
Automatic Generation of Efficient Domain-Optimized
Planners from Generic Parametrized Planners

Mauro Vallati
University of Huddersfield

m.vallati@hud.ac.uk

Chris Fawcett
University of British Columbia

fawcettc@cs.ubc.ca

Alfonso E. Gerevini
University of Brescia
gerevini@ing.unibs.it

Holger H. Hoos
University of British Columbia

hoos@cs.ubc.ca

Alessandro Saetti
University of Brescia
saetti@ing.unibs.it

Abstract
When designing state-of-the-art, domain-independent plan-
ning systems, many decisions have to be made with respect to
the domain analysis or compilation performed during prepro-
cessing, the heuristic functions used during search, and other
features of the search algorithm. These design decisions can
have a large impact on the performance of the resulting plan-
ner. By providing many alternatives for these choices and ex-
posing them as parameters, planning systems can in principle
be configured to work well on different domains. However,
planners are typically used in default configurations that have
been chosen because of their good average performance over
a set of benchmark domains, with limited experimentation
over the potentially huge range of possible configurations.
In this work, we propose a general framework for automat-
ically configuring a parameterized planner, and show that
substantial performance gains can be achieved. We apply
the framework to the well-known LPG planner, which in
the context of this work was expanded to 62 parameters
and over 6.5 × 1017 possible configurations. By using this
highly parameterized planning system in combination with
the state-of-the-art automatic algorithm configuration proce-
dure ParamILS, excellent performance on a broad range of
well-known benchmark domains was achieved, as also wit-
nessed by the results of the learning track of the 7th Interna-
tional Planning Competition.

Introduction
Automated planning is one of the most prominent AI chal-
lenges; it has been studied extensively for several decades
and lead to many real-world applications (see, e.g., Ghallab,
Nau, and Traverso 2004). When designing state-of-the-art,
domain-independent planning systems, many decisions have
to be made with respect to the domain analysis or compila-
tion performed during preprocessing, the heuristic functions
used during search, and other features of the search algo-
rithm. These design decisions can have a large impact on
the performance of the resulting planner, and highly flexi-
ble domain-independent planning systems are obtained by
providing many alternatives for these choices and exposing
them as parameters. By using parameter settings specifically
chosen for solving planning problems from each given do-
main, these planning systems can then be configured to work

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

well on different domains. However, typically such domain-
independent planners are used with default configurations
that have been chosen based on their good average perfor-
mance over a set of benchmark domains, based on limited
exploration within a potentially vast space of possible con-
figurations; often, these choices are hardwired into the code
or take the form of undocumented parameters that remain
fixed to their default values. The hope is that these default
configurations will also perform well on domains and prob-
lems beyond those for which they were tested at design time.

In this work, we advocate a different approach, based on
the idea of automatically configuring a generic, highly pa-
rameterized planner using a set of training planning prob-
lems in order to obtain planners that perform especially well
in the domains of these training problems. Automated con-
figuration of heuristic algorithms has been an area of intense
research focus in recent years, producing tools that have im-
proved algorithm performance substantially in many prob-
lem domains. One such tool is the state-of-the-art automatic
algorithm configuration procedure ParamILS (Hutter, Hoos,
and Stützle 2007; Hutter et al. 2009). While our approach
could in principle utilize any sufficiently powerful automatic
configuration procedure, we have chosen the FocusedILS
variant of ParamILS.

A well-known domain-independent highly parametrized
planning system is LPG (Gerevini, Saetti, and Serina 2003;
2008; 2010). Based on a stochastic local search procedure,
LPG is an efficient and versatile planner with many compo-
nents.

In this work, we exposed 54 previously unused param-
eters in LPG and used ParamILS to automatically config-
ure LPG on various propositional planning domains. This
newly-expanded configuration space for LPG is one of the
largest considered so far in applications of ParamILS.

We tested our approach on various types of randomly
generated problem instances chosen from 9 problem do-
mains used in previous international planning competi-
tions (IPC-3..7), and on the official benchmark problem in-
stances of IPC-6/7. Our results demonstrate that by using
automatically determined, domain-optimized configurations
(LPG.sd), substantial performance gains can be achieved
compared to the default configuration (LPG.d). Using the
same automatic configuration approach to optimize the per-
formance of LPG on a merged set of benchmark instances

Proceedings of the Sixth International Symposium on Combinatorial Search

184

from different domains also results in improvements over the
default, but these are less pronounced than those obtained by
automated configuration for single domains.

We also investigated to which extent the domain-
optimized planners obtained by configuring the general-
purpose LPG planner perform well compared to other state-
of-the-art domain-independent planners. Our results indicate
that, for the class of domains considered in the learning track
of the Seventh International Planning Competition (IPC-7),
LPG.sd is significantly faster than the top-performing propo-
sitional planners of the deterministic track of the last five
International Planning Competitions (IPC-3..7).

While in this work we focus on the application of the pro-
posed framework to the LPG planner, we are aware that sim-
ilarly good results can be obtained for highly parameterized
versions of other existing planning systems. This is the case
of FastDownward-Autotune (Fawcett et al. 2011), a system
that is based on the same general approach proposed here,
but the automated configuration process is performed for a
planner with a very different design space than LPG, called
FastDownward (Helmert 2006). We note that the design
of FastDownward-Autotune was explicitly inspired by an
earlier version of our work described here, which was later
presented at the Third Workshop on Planning and Learning
(PAL 2011). More recently, a technique for statically config-
uring a portfolio of tuned planners was proposed (Seipp et
al. 2012). In this work, Seipp et al. used ParamILS for tuning
FastDownward on several different well-known benchmark
domains, combining the resulting configurations in a static
domain-independent portfolio.

In general, these related works and our results suggest that
in the future development of efficient planning systems, it is
worth including many different variants and a wide range of
settings for the various components instead of committing at
design time to particular choices and settings. Additionally,
designers and users of planning systems will benefit from
using automated procedures to find configurations of the re-
sulting highly parameterized planning systems that perform
well on the problems arising in a specific application domain
under consideration.

The proposed approach was integrated into two systems
that participated in the learning track of the latest inter-
national planning competition, IPC-7 (Celorrio, Coles, and
Coles 2011): (i) a planning system called ParLPG, combin-
ing LPG.sd with HAL, a recently developed computational
environment that supports the computer-aided design and
empirical analysis of high-performance algorithms (Nell et
al. 2011); (ii) a variant of ParLPG incorporated into PbP2,
the new version of PbP, a portfolio-based system that auto-
matically determines a series of planners to be run on the
domain under consideration (Gerevini, Saetti, and Vallati
2009). PbP2 was the winner of the learning track of IPC-
7. As we show here, ParLPG contributed substantially to
the successful performance of PbP2.s in IPC-7 and ParLPG
alone is competitive with other state-of-the-art planners with
learning capabilities.

In the remainder of this paper, we first provide some
background and further information on ParamILS and LPG.
Next, we describe in detail our experimental analysis and

results, followed by concluding remarks and a discussion of
some avenues for future work.

Parameter Configuration using ParamILS
At the core of the ParamILS framework lies Iterated Lo-
cal Search (ILS), a well-known and versatile stochastic lo-
cal search method that iteratively performs phases of a sim-
ple local search, such as iterative improvement, interspersed
with so-called perturbation phases that are used to escape
from local optima. The FocusedILS variant of ParamILS
uses this ILS procedure to search for high-performance con-
figurations of a given algorithm by evaluating promising
configurations, using an increasing number of runs in or-
der to avoid wasting CPU time on poorly-performing con-
figurations. ParamILS also avoids wasting CPU time on
low-performance configurations by adaptively limiting the
amount of runtime allocated to each algorithm run using
knowledge of the best-performing configuration found so
far. ParamILS has been shown to be very effective for con-
figuration of algorithms with large numbers of both numer-
ical and categorical parameters (for details, see Hutter et al.
2009).

ParamILS has previously been used to configure the pa-
rameters of Spear, a complete, DPLL-style algorithm for
the propositional satisfiability (SAT) problem. The result-
ing configurations were shown to solve a given set of
SAT-encoded software verification problems over 100 times
faster than previous state-of-the-art solvers for these prob-
lems, winning first prize in one category of the 2007 Sat-
isfiability Modulo Theories (SMT) Competition (Hutter et
al. 2007). ParamILS has also been applied to SATenstein-
LS, a highly parametric solver framework for SAT created
by combining many prominent stochastic local search algo-
rithms from the literature (KhudaBukhsh et al. 2009). Sev-
eral automatically determined configurations of SATenstein-
LS were used as part of a submission that won prizes in 5 of
the 9 main categories of the 2009 SAT Competition.

ParamILS was also used to configure several prominent
solvers for mixed integer programming (MIP) problems, in-
cluding the widely used industrial CPLEX solver. Despite
the fact that the default parameter settings for CPLEX are
well-known for having been chosen very carefully and based
on a large amount of carefully designed experimentation,
substantial performance improvements were obtained for
many prominent types of MIP instances (Hutter, Hoos, and
Leyton-Brown 2010).

These previous applications of ParamILS, while yield-
ing impressive results, were limited to optimizing the per-
formance of algorithms designed to solve a single prob-
lem (SAT and MIP, respectively). Differently from SAT and
MIP, in planning, explicit domain specifications are avail-
able through a planning language, which creates more op-
portunities for planners to take problem structure into ac-
count in parameterized components (e.g., specific search
heuristics). This can lead to more complex planning sys-
tems, with greater opportunities for automatic parameter
configuration, but also greater challenges (bigger, richer de-
sign spaces can be expected to give rise to trickier configu-
ration problems).

185

1. Set A to the action graph containing only astart and aend;
2. While the current action graph A contains a flaw or

a certain number of search steps is not exceeded do
3. Select a flaw σ in A;
4. Determine the search neighborhood N(A, σ);
5. Weight the elements of N(A, σ) using a heuristic functionE;
6. Choose a graph A′ ∈ N(A, σ) according to E and noise n;
7. Set A to A′;
8. Return A.

Figure 1: High-level description of LPG’s search procedure.

The Generic Parameterized Planner LPG
LPG (Gerevini, Saetti, and Serina 2003; 2008; 2010) is a ver-
satile system that can be used for plan generation, plan re-
pair and incremental planning (Fox et al. 2006) in PDDL2.2
domains (Hoffmann and Edelkamp 2005). The planner is
based on a stochastic local search procedure that explores
a space of partial plans represented through linear action
graphs, which are variants of the very well-known planning
graph (Blum and Furst 1997). A linear action graph is a di-
rected acyclic leveled graph that alternates between a propo-
sition level, i.e., a set of domain propositions, and an ac-
tion level, i.e., one ground domain action and a set of special
dummy actions, called “no-ops”, each of which propagates a
proposition of the previous level to the next one. If an action
is in the graph, then its preconditions and positive effects
appear in the corresponding proposition levels of the graph.

A pair of propositions, no-ops or actions can be marked
as mutually exclusive at every graph level where the pair
appears (in LPG only “permanent” mutex relations are con-
sidered; for a detailed description, see Gerevini, Saetti, and
Serina 2003; 2008; 2010). If a proposition appears at a level
of the action graph, then its no-op appears at that level and at
every successive graph level until a level containing an ac-
tion that is marked mutually exclusive with it is reached (if
any).

The initial and last levels of every action graph contain the
special actions astart and aend, where the effects of astart
are the facts of the problem initial state and the preconditions
of aend are the problem goals.

The plan represented by an action graph is a valid plan if,
and only if, the graph contains no flaw, where, intuitively, a
flaw is an action in the graph with a precondition that is not
supported by the propagation of an effect of another action
appearing at a previous graph level.

Starting from the initial action graph containing only the
two actions astart and aend, LPG iteratively modifies the
current graph until there is no flaw in it or a certain bound
on the number of search steps is exceeded. LPG attempts to
resolve flaws by inserting into or removing from the graph
a new or existing action, respectively. Figure 1 gives a high-
level description of the general search process performed by
LPG. Each search step selects a flaw σ in the current ac-
tion graph A, defines the elements (modified action graphs)
of the search neighborhood of A for repairing σ, weights
the neighborhood elements using a heuristic functionE, and
chooses the best one of them according toE with some prob-

Domain P1 P2 P3 P4 P5 P6 P7 Total
Blocksworld 1 1 2 1 5 1 2 13
Depots 2 2 1 1 2 2 2 12
Gold-miner 2 3 0 1 4 2 1 13
Matching-BW 1 2 2 1 3 0 2 11
N-Puzzle 4 5 3 2 14 5 2 35
Rovers 0 1 0 0 0 2 1 4
Satellite 2 7 3 1 11 5 3 32
Sokoban 0 1 1 1 1 1 2 7
Zenotravel 3 5 2 3 11 5 3 32
Merged set 0 1 0 1 5 2 2 11
parameters 6 15 8 6 17 7 3 62

Table 1: Number of parameters of LPG changed by ParamILS
in the configurations computed for our nine benchmark domains
considered independently (2nd–10th lines) and together (“Merged
set” line). The columns P1-P7 correspond to various categories of
parameters (see text), and the last line indicates the total number of
LPG parameters in each category.

ability n, called the noise parameter, and randomly with
probability 1 − n. Because of this noise parameter, which
helps the planner to escape from possible local minima, LPG
is a randomized procedure.

LPG is a highly parameterized planner. In previous work,
the default settings of these parameters had been chosen
manually to allow the system to work well on a broad range
of domains. For the work presented here, we exposed 4 new
parameters that were previously implemented as “magic
constants”, and documented 50 parameters that were hid-
den in the code and not exposed to users. This lead to a
highly parametrized version of LPG that can be configured
very flexibly via 62 exposed configurable parameters which
jointly give rise to over 6.5 × 1017 possible configurations.
The parameters can be grouped into seven distinct cate-
gories, each of which corresponds to a different component
of LPG:
P1 Preprocessing information (e.g., mutually exclusive re-

lations between actions).

P2 Search strategy (e.g., the use and length of a “tabu list”
for the local search, the number of search steps before
restarting a new search, and the activation of an alternative
systematic best-first search procedure).

P3 Flaw selection strategy (i.e., different heuristics for de-
ciding which flaw should be repaired first).

P4 Search neighborhood definition (i.e., different ways of
defining/restricting the basic search neighborhood).

P5 Heuristic function E (i.e., a class of possible heuristics
for weighting the neighborhood elements, with some vari-
ants for each of them).

P6 Reachability information used in the heuristic functions
and in neighborhood definitions (e.g., the minimum num-
ber of actions required to achieve an unsupported precon-
dition from a given state).

186

P7 Search randomization (i.e., different ways of statically
and dynamically setting the noise value).

The last line of Table 1 shows the number of LPG’s parame-
ters that fall into each of these seven components categories.

Experimental Analysis
In this section, we present the results of a large experimen-
tal study examining the effectiveness of the automated ap-
proach outlined in the introduction.

Benchmark domains and instances
In our first set of experiments, we considered prob-
lem instances from nine well-known benchmark do-
mains used in previous international planning competi-
tions, Blocksworld (IPC-2/7), Depots (IPC-3/7), Rovers
(IPC-3/5/7), Satellite (IPC-3/7), Zenotravel (IPC-3),
Gold-miner (IPC-6), Matching-BW (IPC-6), N-Puzzle
(IPC-6) and Sokoban (IPC-6). These domains were selected
because they are not trivially solvable and random instance
generators are available for them, such that large training
and testing sets of instances can be obtained.

For each domain, we used the respective random instance
generator to derive three disjoint sets of instances: a training
set with 2000 relatively small instances (benchmark T), a
testing set with 400 middle-size instances (benchmark MS),
and a testing set with 50 large instances (benchmark LS).
The size of the instances in training set T was defined such
that the instances were solvable by the default configuration
of LPG in 20 to 40 CPU seconds on average. For testing
sets MS and LS, the size of the instances was defined such
that the instances were solvable by the default configuration
of LPG in an average of 50 seconds to 2 minutes and in 3
minutes to 7 minutes, respectively. This does not mean that
all of our problem instances can be solved by LPG, since
we decided only the size of the instances according to the
performance of the default configuration, and then used the
random generators for deriving the actual instances.

For our second set of experiments, we considered the
same problem instances used in IPC-6/7. These were se-
lected in order to compare the configured versions of LPG
against the planners that entered the learning track of IPC-
6/7, considering the official competition results.

Automated configuration using ParamILS
For all configuration experiments we used the FocusedILS
variant of ParamILS version 2.3.5 with default parameter
settings. Using the default configuration of LPG as the start-
ing point for the automated configuration process, we con-
currently performed 10 independent runs of FocusedILS per
domain, each using a different random ordering of the train-
ing set instances.1 Each run of FocusedILS had a total CPU
time cutoff of 48 hours, and a cutoff time of 60 CPU seconds
was used for each run of LPG performed during the configu-
ration process. The objective function used by ParamILS for

1Multiple independent runs of FocusedILS were used, because
this approach can help ameliorate stagnation of the configuration
process occasionally encountered otherwise.

Domain LPG.d LPG.r
Score % solved Score % solved

Blocksworld 99.00 99 0.00 16
Depots 86.00 86 0.00 18
Gold-miner 91.00 91 0.00 19
Matching-BW 14.00 14 0.15 9
N-Puzzle 59.10 89 34.75 86
Rovers 85.81 100 31.21 53
Satellite 96.02 100 18.99 37
Sokoban 73.20 74 2.06 28
Zenotravel 98.70 100 2.47 24
Total 702.8 83.7 89.6 32.2

Table 2: Speed scores and percentage of problems solved by
LPG.d and LPG.r for 100 problems in each of 9 domains of bench-
mark MS.

evaluating the quality of configurations was mean runtime,
with timeouts and crashes assigned a penalized runtime of
ten times the per-run cutoff – the so-called PAR10 score.
Out of the 10 configurations produced by these runs for each
domain, we selected the configuration with the best training
set performance (as measured by FocusedILS) as the final
configuration of LPG for that domain.

Additionally, we used FocusedILS for optimizing the con-
figuration of LPG across all of the selected domains together.
As with our approach for individual domains, we performed
10 independent runs of FocusedILS starting from the de-
fault configuration; again, the single configuration with the
best performance on the merged training set as measured by
FocusedILS was selected as the final result of the configura-
tion process.

The final configurations thus obtained were then evalu-
ated on the two testing sets of instances (benchmarks MS and
LS) for each domain. We used a timeout of 600 CPU seconds
for benchmark MS, and 900 CPU seconds for benchmark LS.

For convenience, we define the following abbreviations
corresponding to configurations of LPG:

• Default (LPG.d): The default configuration of LPG.

• Random (LPG.r): Configurations selected independently
at random from all possible configurations of LPG.

• Specific (LPG.sd): The specific configuration of LPG
found by ParamILS for each domain.

• Merged (LPG.md): The configuration of LPG obtained by
running ParamILS on the merged training set.

Table 1 shows, for each parameter category of LPG, the
number of parameters that are changed from their defaults
by ParamILS in the derived domain-optimized configura-
tions and in the configuration obtained for the merged train-
ing set.

Empirical result 1 Domain-optimized configurations of
LPG differ substantially from the default configuration.

Moreover, we found that usually the changed configurations
are considerably different from each other.

187

Figure 2: CPU time (log. scale) of LPG.sd w.r.t. LPG.d for problems of 2 domains (Blocksworld and Depots) of benchmarks MS (crosses)
and LS (circles). The x-axis refers to CPU seconds of LPG.d; the y-axis to CPU seconds of LPG.sd; U corresponds to runs that timed out
with the given runtime cutoff.

Results for selected known domains
The performance of each configuration was evaluated us-
ing the performance score functions adopted in IPC-6 (Fern,
Khardon, and Tadepalli 2008), which is a widely used eval-
uation criterion in the planning community. The speed score
of a configuration C is defined as the sum of the speed scores
assigned to C over all problems in the chosen test set, di-
vided by the total number of problems in the test set. For
a given problem p, the speed score Score6(C, p) is 0 if p
is unsolved by any solver (configuration), and T ∗

p /Tp(C)
otherwise, where T ∗

p is the lowest measured CPU time to
solve problem p among the compared solvers (configura-
tions), and Tp(C) denotes the CPU time required by C to
solve problem p. Higher values for the speed score indicate
better performance.

In order to ascertain the quality of our given default con-
figuration, we performed a comparison between LPG.d and
LPG.r on 100 instances from each of the 9 domains of
benchmark MS. The results of this experiment are shown in
Table 2. Considering all domains together, LPG.d obtained a
speed score of 702.8, whereas the speed score of LPG.r was
89.6. The best performance for LPG.r was on N-Puzzle,
with a speed score of 34.75 against 59.10 for LPG.d. For the
domains Blocksworld, Depots, and Gold-miner, LPG.r
was dominated on every instance by LPG.d.

The superior performance of LPG.d also suggests that the
default configuration is a much better starting point for de-
riving configurations using ParamILS than a random config-
uration. In order to confirm this intuition, we performed an
additional set of experiments using the random configura-
tion as the starting point. As expected, the resulting config-
urations of LPG perform much worse than LPG.sd.

Empirical result 2 LPG.d is significantly faster and solves
many more problems than LPG.r.

Figure 2 provides results in the form of a scatterplot,
showing the performance of LPG.sd and LPG.d on the prob-
lem instances of two individual domains, Blocksworld and
Depots. These domains were chosen as they are the best
and worst, respectively, on benchmark set MS in terms of the
difference in speed score vs LPG.d. Figure 3 compares the
performance of the two planners over the full benchmarks
MS and LS.

For this analysis, we considered all instances solved by
at least one of these planners. In Figure 2, each cross sym-
bol indicates the CPU time used by LPG.d and LPG.sd to
solve a particular problem instance of benchmark MS. Each
circle symbol is defined similarly for benchmark LS. When
a point appears under (above) the main diagonal, LPG.sd is
faster (slower) than LPG.d; the distance of the point from the
main diagonal indicates the performance gap (the greater the
distance, the greater the gap). The results in Figures 2 and
3 indicate that LPG.sd performs almost always better than
LPG.d, often by 1–2 orders of magnitude.

Table 3 shows the performance of LPG.d, LPG.md, and
LPG.sd for each domain of benchmarks MS and LS in terms
of speed score, percentage of solved problems and aver-
age CPU time (computed over the problems solved by all
the considered configurations). These results indicate that
LPG.sd solves many more problems, is on average much
faster than LPG.d and LPG.md, and that for some bench-
mark sets LPG.sd always performs better than or equal to
the other configurations, as the IPC score of LPG.sd is some-

188

Figure 3: CPU time (log. scale) of LPG.sd with respect to LPG.d for problems of benchmarks MS and LS. U corresponds to runs that timed
out with the given runtime cutoff.

Domain MS problems LS problems
Average speed score (% solved) Average CPU time Average speed score (% solved) Average CPU time

LPG.d LPG.md LPG.sd LPG.d LPG.md LPG.sd LPG.d LPG.md LPG.sd LPG.d LPG.md LPG.sd

Blocksworld 0.05 (98.8) 0.19 (100) 1.00 (100) 105.3 28.17 4.29 0.10 (100) 0.22 (100) 1.00 (100) 320.9 144.8 30.8
Depots 0.31 (90.3) 0.41 (99) 0.86 (98.5) 78.1 42.4 5.7 0.08 (100) 0.35 (100) 0.89 (98) 326.6 181.1 25.7
Gold-miner 0.05 (90.5) 0.58 (100) 0.94 (100) 94.4 7.4 1.6 0.03 (100) 0.65 (100) 0.71 (100) 327.2 21.0 21.2
Matching-BW 0.24 (15.8) 0.18 (55.3) 0.94 (97.8) 93.8 42.3 5.6 0.03 (86) 0.31 (94) 0.95 (100) 224.9 72.3 1.90
N-Puzzle 0.05 (85) 0.07 (86.3) 0.87 (86.8) 321.0 246.6 31.20 0.01 (100) 0.03 (100) 1.00 (100) 343.7 157.6 4.44
Rovers 0.33 (100) 0.41 (100) 1.00 (100) 72.2 52.9 21.2 0.19 (100) 0.97 (100) 0.91 (100) 247.8 48.3 52.7
Satellite 0.26 (100) 0.28 (100) 1.00 (100) 64.0 59.2 1.3 0.19 (100) 0.58 (100) 1.00 (100) 262.6 85.4 48.9
Sokoban 0.67 (75.8) 0.48 (94.8) 0.84 (96.5) 24.6 6.15 1.19 0.09 (62) 0.48 (82) 0.78 (94) 70.8 7.00 4.23
Zenotravel 0.12 (100) 0.24 (99.8) 0.99 (100) 103.7 57.6 11.1 0.01 (100) 0.09 (100) 1.00 (100) 293.9 42.9 2.90
All above 0.70 (83.3) 0.76 (91.5) – 115.4 38.8 – 0.25 (96) 0.99 (100) – 309.7 81.3 –

Table 3: Average speed score, percentage of solved problems, and average CPU time of LPG.d, LPG.md, and LPG.sd for each
of 9 domains, independently considered, and in all domains (last line) of benchmarks MS and LS.

times the maximum score of 1.0. 2

Empirical result 3 LPG.sd performs much better than both
LPG.d and LPG.md.

Based on the previous results for ParamILS in the litera-
ture, we were expecting an improvement over the (already
efficient) default configuration, but we were surprised about
the magnitude of the improvement observed across all do-
mains. Moreover, the results in Figure 3 and Table 3 also
indicate that, for larger test problems, the performance gap
between LPG.sd and LPG.d tends to increase: For exam-
ple, on the middle-size instances of Matching-BW, LPG.sd is

2Additional results using 2000 test problems for each of the
nine considered domains of the same size as those used for the
training indicate a performance behavior very similar to the one
observed for the MS and LS instances considered in Table 3.

on average about one order of magnitude faster than LPG.d,
while on the largest instances it has an average performance
advantage of more than two orders of magnitude.

Empirical result 4 LPG.sd is faster than LPG.d also for in-
stances considerably larger than those used for deriving the
planner configurations.

This observation indicates that the approach used for de-
riving configurations scales well with increasing problem in-
stance size.

As can be seen from the last line of Table 3, LPG.md per-
forms better than LPG.d on the individual domain test sets.
Moreover, it performs better than LPG.d on the sets obtained
by merging the test sets for all individual domains, which in-
dicates that by using a merged training set, we successfully
produced a configuration with good performance on average
across all selected domains.

189

Domain Speed score % solved Average time
LPG.d LPG.sd LPG.d LPG.sd LPG.d LPG.sd

Barman – – – – – –
Blocksworld 9.5 30 70 100 253.2 30.3
Depots 6.5 16.9 43 63 326.4 88.6
Gripper 17.7 30 100 100 90.4 18.3
Parking – – – – – –
Rovers 15.9 27.7 93 93 107.0 17.3
Satellite 19.4 30 100 100 74.8 17.2
Spanner 14.6 30 100 100 245.3 19.8
Tpp – 15 – 50 – 56.1

Table 4: Speed score, percentage of solved problems and av-
erage CPU time of LPG.d and LPG.sd for 30 instances from
the test sets of IPC-7 domains. “–” indicates that the planner
failed to solve every problem instance considered for a given
domain.

Empirical result 5 LPG.md performs better than LPG.d.

Results for the competition benchmarks
In this section, we report experimental results for the bench-
mark problems of the learning track of IPC-6 and IPC-7 (the
only planning competitions featuring a learning track), with
two main aims: (i) to illustrate the performance gap between
LPG.sd and LPG.d on existing benchmark problems, and (ii)
to compare the performance of LPG.sd with state-of-the-art
planners using learning techniques.

Table 4 shows the performance of LPG.sd and LPG.d for
the IPC-7 benchmark problems in terms of percentage of
solved problems, speed score and average CPU time. For
this analysis, we determined speed score as defined for IPC-
7, where for a planner C and a problem p, Score7(C, p) is 0
if p is unsolved, and 1/(1 + log10(Tp(C)/T ∗

p)) otherwise.
For each of the IPC-7 domains, the configuration used

by LPG.sd was obtained by performing 10 independent
FocusedILS runs on 60–70 randomly generated instances
that could be solved by LPG.d within 900 CPU seconds.
During training, a runtime cutoff of 900 CPU seconds was
used for each run of LPG, while the overall time limit of
the learning phase for deriving each domain configuration
was set to 5 CPU days. From the LPG configurations ob-
tained in the 10 independent runs of ParamILS, the one with
the best reported training performance was chosen for subse-
quent evaluation. The CPU time limit for each run of LPG.sd
during testing was 900 CPU seconds – the same as used in
IPC-6 and IPC-7.

The results in Table 4 show that, with the exception of the
IPC-7 problems from the Barman and Parking domains,
LPG.sd achieved excellent performance: for the IPC-7 prob-
lems of Depots, Tpp and Blocksworld domains LPG.sd
solved many more problems than LPG.d; moreover, it gen-
erally obtained speed scores better than those of LPG.d, and,
on average, was found to be considerably faster.

Empirical result 6 For the benchmark domains and prob-
lems used in IPC-7, LPG.sd performs significantly better
than LPG.d.

Best IPC-6 Planners % solved Speed score ∆-score
LPG.sd 78.9 93.23 +59.7
ObtuseWedge 65.0 63.8 +33.6
PbP.s 96.1 69.16 −3.54
RFA1 52.8 11.4 –
Wizard+FF 43.3 29.5 +10.7
Wizard+SGPlan 51.1 38.2 +7.73

Best IPC-7 Planners % solved Speed score ∆-score
Fast Downward-Autotune 77.0 115.6 (126.1) +67.5
Fast Downward-Autotune.quality 33.8 35.3 +16.4
OALDAEYASHP 7.40 5.70 −18.0
LPG.sd (ParLPG) 57.0 105.1 (169.2) +43.7
PbP2.s 88.2 189.8 (223.6) +128.3
PbP2.q 85.2 71.3 +16.6

Table 5: Performance of the planners that took part in the
learning track of IPC-6/7, in terms of the percentage of
solved problems, IPC-6/7 speed score and score gap with
and without using the learned knowledge for the problems
of the learning track of IPC-6/7. The scores in brackets in-
dicate the revised relative performances of the three best
performing planners obtained considering the new version
of ParLPG (corrected and revised after the competition) in-
stead of the version that entered the competition.

Table 5 shows the performance of LPG.sd in compari-
son to the planners that participated in the learning track of
IPC-6 and IPC-7. Compared to the IPC-6 planners, LPG.sd
solved many more problems, obtained better speed scores,
and, on average, turned out to be much faster.3

LPG.sd directly participated in IPC-7 in the form of a
planning system called ParLPG. ParLPG was the 3rd best
performing planner in terms of speed, preceded only by
PbP2.s and FastDownward-Autotune.

The fact that PbP2.s performed better than ParLPG is not
too surprising, because PbP2.s is a portfolio-based planner
incorporating ParLPG as one of its constituent components,
and as such had access to additional planning techniques
that on some domains perform better than ParLPG alone.
However, we observed that, interestingly, in most cases the
high performance of PbP2.s was obtained by using ParLPG:
for five out of the nine IPC-7 domains (Blocksworld,
Gripper, Rovers, Satellite and Spanner), PbP2.s se-
lected ParLPG as the most promising planner to run. For
another of these domains (Depots), ParLPG was selected
as one of the two best planners to run.

After the competition, we discovered that part of LPG.sd
was implemented inefficiently. After revising that part of
the code, we repeated the comparison with the other best-
performing IPC-7 planners and obtained significantly better
results for LPG.sd; in particular, we found PbP2.s still to

3Due to not having code from all competitors, the evaluation
on the IPC-6 benchmark problems was performed using two dif-
ferent machines. For the planners other than LPG.sd, we used the
reported competition runtimes, while LPG.sd was run on a slightly
slower machine using information provided by the competition or-
ganizers. For the IPC-7 benchmarks, all compared planners were
run on the same machine.

190

 0

 20

 40

 60

 80

 100

 1 10 100 900

Quality score

LPG.d (Depots)
LPG.sd (Depots)
LPG.d (Gold-miner)
LPG.sd (Gold-miner)

Figure 4: Quality score of LPG.d and LPG using domain-
optimized configurations for computing high-quality plans
w.r.t. an increasing CPU-time limit (x-axis: ranging from 1
to 900 seconds) for 100 MS problems of domains Depots
and Gold-miner.

be the fastest planner, but ParLPG to move into the runner-
up position. In our experiments, the IPC-7 speed scores of
PbP2.s, ParLPG and FastDownward-Autotune were 223.6,
169.2 and 126.1 (in parentheses in Table 5), respectively. We
of course realize that the other competition planners could
be similarly improved, but we include this result for the pur-
pose of comparison.

Empirical result 7 LPG.sd performs better than all the
planners from the learning track of IPC-6 and is competi-
tive with the planners from the learning track of IPC-7.

The IPC-7 organizers compared the winner of the satis-
ficing deterministic track, LAMA-2011 (Richter and West-
phal 2010), with the planners that entered the learning track,
showing that ParLPG performs much better in terms of both
speed score and number of solved problems. In order to bet-
ter understand the performance of ParLPG w.r.t. to the state-
of-the-art generic planners, we have extended this compar-
ison considering the deterministic track winners of the last
four IPCs. For each IPC-7 benchmark problem of the learn-
ing track, we compared ParLPG CPU time and the best CPU
time over these four planners. Overall, ParLPG obtained a
much better speed score (181 against 100) and solved more
problems (57% against 47.8%).

Empirical result 8 LPG.sd performs significantly better
than the state-of-the-art generic planners on the IPC-7
benchmarks.

Further preliminary results on plan quality
Although the experimental analysis in this paper focuses on
planning speed, we give some preliminary results indicat-
ing that automatic algorithm configuration is also promis-
ing for optimizing plan quality. Additional experiments to
confirm this observation are in progress. Figure 4 shows re-
sults on two benchmark domains (100 problems each from
the MS set) in terms of relative solution quality of LPG.sd
and LPG.d over CPU time spent by the planner, where, in

this context, LPG.sd refers to LPG configured for optimiz-
ing plan quality. Training was conducted based on LPG runs
with a runtime cut-off of 2 CPU minutes, with the objective
to minimize the best plan cost (number of actions) within
that time limit. LPG is an incremental planner, and computes
a sequence of plans with increasing quality within the speci-
fied CPU-time limit (Gerevini, Saetti, and Serina 2008). The
quality score of a configuration is defined analogously to the
runtime score previously described, but using plan cost in-
stead of CPU time.

Overall, these results indicate that, at least for the domains
considered here, our approach finds configurations which
produce considerably better quality plans than LPG.d, un-
less small CPU-time limits are used, in which case they per-
form similarly.

Conclusions and Future Work

We have investigated the application of computer-assisted
algorithm design to automated planning and proposed a
framework for automatically configuring a generic planner
with many parameterized components to obtain specialized
planners that work efficiently on specific domains of in-
terest. In a large-scale empirical analysis, we have demon-
strated that our approach, when applied to the state-of-the-
art, highly parameterized LPG planning system, effectively
generates substantially improved domain-optimized plan-
ners. This is also confirmed by the excellent results obtained
by the two planning systems using the proposed approach in
the most recent planning competition, IPC-7.

Our work and results suggest a potential method for
testing new heuristics and algorithm components, based
on measuring the performance improvements obtained by
adding them to an existing highly-parameterized planner fol-
lowed by automatic configuration for specific domains. The
results may not only reveal to which extent new design el-
ements are useful, but also under which circumstances they
are most effective – something that would be very difficult
to determine manually.

We see several avenues for future work. Concerning
the automatic configuration of LPG, we are conducting
an experimental analysis about the usefulness of the pro-
posed framework for identifying configurations improving
the planner performance in terms of plan quality. Initial re-
sults in this area are promising, and suggest the potential for
significant performance improvements. Moreover, we plan
to analyze the performance of our framework on metric-
temporal planning domains. Finally, we are investigating
approaches for determining which parameter settings are
important to solver performance, along with investigating
this parameter importance across domains. We believe that
our approach can yield good results for other planners that
have been rendered highly configurable by exposing many
parameters, partially borne out by independent results for
FastDownward which strongly suggest that there is great
value to creating highly-parameterized planners and apply-
ing our approach.

191

References
Blum, A. L., and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artificial Intelligence 90:281 – 300.
Celorrio, S. J.; Coles, A.; and Coles, A. 2011. Learn-
ing track of the 7th international planning competition.
http://www.plg.inf.uc3m.es/ipc2011-learning.
Fawcett, C.; Helmert, M.; Hoos, H.; Karpas, E.; Röger, G.;
and Seipp, J. 2011. Fd-autotune: Domain-specific configura-
tion using fast-downward. In Working notes of the Twenty-
first International Conference on Automated Planning and
Scheduling (ICAPS-11), Workshop on Planning and Learn-
ing.
Fern, A.; Khardon, R.; and Tadepalli, P. 2008. Learn-
ing track of the 6th international planning competition.
http://eecs.oregonstate.edu/ipc-learn.
Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006. Plan
stability: Replanning versus plan repair. In Proceedings of
the Sixteenth International Conference on Automated Plan-
ning and Scheduling (ICAPS 2006), 212 – 221.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs.
Journal of Artificial Intelligence Research 20:239 – 290.
Gerevini, A. E.; Saetti, A.; and Serina, I. 2008. An
approach to efficient planning with numerical fluents and
multi-criteria plan quality. Artificial Intelligence 172:899 –
944.
Gerevini, A.; Saetti, A.; and Serina, I. 2010. An empiri-
cal analysis of some heuristic features for planning through
local search and action graphs. Fundamenta Informaticae
105:1 – 31.
Gerevini, A.; Saetti, A.; and Vallati, M. 2009. An auto-
matically configurable portfolio-based planner with macro-
actions: PbP. In Proceedings of the Nineteenth International
Conference on Automated Planning and Scheduling (ICAPS
2009), 350 – 353.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory & Practice. Morgan Kaufmann Publish-
ers Inc.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191 – 246.
Hoffmann, J., and Edelkamp, S. 2005. The deterministic
part of IPC-4: An overview. Journal of Artificial Intelligence
Research 24:519 – 579.
Hutter, F.; Babić, D.; Hoos, H. H.; and Hu, A. J. 2007.
Boosting verification by automatic tuning of decision pro-
cedures. In Proceedings of Formal Methods in Computer
Aided Design (FMCAD’07), 27 – 34.
Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; and Stützle,
T. 2009. ParamILS: An automatic algorithm configura-
tion framework. Journal of Artificial Intelligence Research
36:267 – 306.
Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2010.
Automated configuration of mixed integer programming
solvers. In Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Prob-
lems (CPAIOR-10), 186 – 202.

Hutter, F.; Hoos, H. H.; and Stützle, T. 2007. Automatic
algorithm configuration based on local search. In Proceed-
ings of the Twenty-Second Conference on Artifical Intelli-
gence (AAAI ’07), 1152–1157.
KhudaBukhsh, A. R.; Xu, L.; Hoos, H. H.; and Leyton-
Brown, K. 2009. SATenstein: Automatically building lo-
cal search sat solvers from components. In Proceedings of
the Twenty-first International Joint Conference on Artificial
Intelligence (IJCAI-09), 517–524.
Nell, C.; Fawcett, C.; Hoos, H. H.; and Leyton-Brown, K.
2011. HAL: A framework for the automated analysis and
design of high-performance algorithms. In Learning and
Intelligent Optimization (LION-5), 600 – 615.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127 – 177.
Seipp, J.; Braun, M.; Garimort, J.; and Helmert, M. 2012.
Learning portfolios of automatically tuned planners. In Pro-
ceedings of the Twenty-second International Conference on
Automated Planning and Scheduling (ICAPS-12).

192

