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Abstract. Most state-of-the-art algorithms for large-scale optimization
problems expose free parameters, giving rise to combinatorial spaces of
possible configurations. Typically, these spaces are hard for humans to
understand. In this work, we study a model-based approach for identify-
ing a small set of both algorithm parameters and instance features that
suffices for predicting empirical algorithm performance well. Our empiri-
cal analyses on a wide variety of hard combinatorial problem benchmarks
(spanning SAT, MIP, and TSP) show that—for parameter configurations
sampled uniformly at random—very good performance predictions can
typically be obtained based on just two key parameters, and that simi-
larly, few instance features and algorithm parameters suffice to predict
the most salient algorithm performance characteristics in the combined
configuration/feature space. We also use these models to identify settings
of these key parameters that are predicted to achieve the best overall per-
formance, both on average across instances and in an instance-specific
way. This serves as a further way of evaluating model quality and also
provides a tool for further understanding the parameter space. We pro-
vide software for carrying out this analysis on arbitrary problem domains
and hope that it will help algorithm developers gain insights into the key
parameters of their algorithms, the key features of their instances, and
their interactions.

1 Introduction

State-of-the-art algorithms for hard combinatorial optimization problems tend
to expose a set of parameters to users to allow customization for peak perfor-
mance in different application domains. As these parameters can be instantiated
independently, they give rise to combinatorial spaces of possible parameter con-
figurations that are hard for humans to handle, both in terms of finding good
configurations and in terms of understanding the impact of each parameter. As
an example, consider the most widely used mixed integer programming (MIP)
software, IBM ILOG CPLEX, and the manual effort involved in exploring its 76
optimization parameters [1].

By now, substantial progress has been made in addressing the first sense
in which large parameter spaces are hard for users to deal with. Specifically,
it has been convincingly demonstrated that methods for automated algorithm
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configuration [2–7] are able to find configurations that substantially improve the
state of the art for various hard combinatorial problems (e.g., SAT-based formal
verification [8], mixed integer programming [1], timetabling [9], and AI planning
[10]). However, much less work has been done towards the goal of explaining
to algorithm designers which parameters are important and what values for
these important parameters lead to good performance. Notable exceptions in
the literature include experimental design based on linear models [11,12], an
entropy-based measure [2], and visualization methods for interactive parameter
exploration, such as contour plots [13]. However, to the best of our knowledge,
none of these methods has so far been applied to study the configuration spaces
of state-of-the-art highly parametric solvers; their applicability is unclear, due
to the high dimensionality of these spaces and the prominence of discrete para-
meters (which, e.g., linear models cannot handle gracefully).

In the following, we show how a generic, model-independent method can be
used to:

– identify key parameters of highly parametric algorithms for solving SAT, MIP,
and TSP;

– identify key instance features of the underlying problem instances;
– demonstrate interaction effects between the two; and
– identify values of these parameters that are predicted to yield good perfor-

mance, both unconditionally and conditioned on instance features.

Specifically, we gather performance data by randomly sampling both parameter
settings and problem instances for a given algorithm. We then perform forward
selection, iteratively fitting regression models with access to increasing num-
bers of parameters and features, in order to identify parameters and instance
features that suffice to achieve predictive performance comparable to that of
a model fit on the full set of parameters and instance features. Our experi-
ments show that these sets of sufficient parameters and/or instance features
are typically very small—often containing only two elements—even when the
candidate sets of parameters and features are very large. To understand what
values these key parameters should take, we find performance-optimizing set-
tings given our models, both unconditionally and conditioning on our small sets
of instance features. We demonstrate that parameter configurations that set as
few as two key parameters based on the model (and all other parameters at ran-
dom) often substantially outperform entirely random configurations (sometimes
by up to orders of magnitude), serving as further validation for the importance
of these parameters. Our qualitative results still hold for models fit on training
datasets containing as few as 1 000 data points, facilitating the use of our app-
roach in practice. We conclude that our approach can be used out-of-the-box by
algorithm designers wanting to understand key parameters, instance features,
and their interactions. To facilitate this, our software (and data) is available at
http://www.cs.ubc.ca/labs/beta/Projects/EPMs.

http://www.cs.ubc.ca/labs/beta/Projects/EPMs
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2 Methods

Ultimately, our forward selection methods aim to identify a set of the kmax most
important algorithm parameters and mmax most important instance features
(where kmax and mmax are user-defined), as well as the best values for these
parameters (both on average across instances and on a per-instance basis). Our
approach for solving this problem relies on predictive models, learned from given
algorithm performance data for various problem instances and parameter con-
figurations. We identify important parameters and features by analyzing which
inputs suffice to achieve high predictive accuracy in the model, and identify good
parameter values by optimizing performance based on model predictions.

2.1 Empirical Performance Models

Empirical Performance Models (EPMs) are statistical models that describe the
performance of an algorithm as a function of its inputs. In the context of this
paper, these inputs comprise both features of the problem instance to be solved
and the algorithm’s free parameters. We describe a problem instance by a vector
of m features z = [z1, . . . , zm]T, drawn from a given feature space F . These
features must be computable by an automated, domain-specific procedure that
efficiently extracts features for any given problem instance (typically, in low-order
polynomial time w.r.t. the size of the given problem instance). We describe the
configuration space of a parameterized algorithm with k parameters θ1, . . . , θk
and respective domains Θ1, . . . , Θk by a subset of the cross-product of parameter
domains: Θ ⊆ Θ1×· · ·×Θk. The elements of Θ are complete instantiations of the
algorithm’s k parameters, and we refer to them as configurations. Taken together,
the configuration and the feature space define the input space I := Θ × F .

EPMs for predicting the “empirical hardness” of instances have their ori-
gin over a decade ago [14–17] and have been the preferred core reasoning tool
of early state-of-the-art methods for the algorithm selection problem (which
aim to select the best algorithm for a given problem, dependent on its features
[18–20]), in particular of early iterations of the SATzilla algorithm selector for
SAT [21]. Since then, these predictive models have been extended to model the
dependency of performance on (often categorical) algorithm parameters, to make
probabilistic predictions, and to work effectively with large amounts of training
data [11,12,22,23].

In very recent work, we comprehensively studied EPMs based on a variety
of modeling techniques that have been used for performance prediction over the
years, including ridge regression [17], neural networks [24], Gaussian processes
[22], regression trees [25], and random forests [23]. Overall, we found random
forests and approximate Gaussian processes to perform best. Random forests
(and also regression trees) were particularly strong for very heterogeneous bench-
mark sets, since their tree-based mechanism automatically groups similar inputs
together and does not allow widely different inputs to interfere with the predic-
tions for a given group. Another benefit of the tree-based methods is apparent
from the fact that hundreds of training data points could be shown to suffice to
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yield competitive performance predictions in joint input spaces induced by as
many as 76 algorithm parameters and 138 instance features [23]. This strong per-
formance suggests that the functions being modeled must be relatively simple,
for example, by depending at most very weakly on most inputs. In this paper,
we ask whether this is the case, and to the extent that this is so, aim to identify
the key inputs.

2.2 Forward Selection

There are many possible approaches for identifying important input dimensions
of a model. For example, one can measure the model coefficients w in ridge
regression (large coefficients mean that small changes in a feature value have
a large effect on predictions, see, e.g., [26]) or the length scales λ in Gaussian
process regression (small length scales mean that small changes in a feature value
have a large effect on predictions, see, e.g., [27]). In random forests, to measure
the importance of input dimension i, Breiman suggested perturbing the values in
the ith column of the out-of-bag (or validation) data and measuring the resulting
loss in predictive accuracy [28].

All of these methods run into trouble when input dimensions are highly
correlated. While this does not occur with randomly sampled parameter config-
urations, it does occur with instance features, which cannot be freely sampled.
Our goal is to build models that yield good predictions but yet depend on as few
input dimensions as possible; to achieve this goal, it is not sufficient to merely
find important parameters, but we need to find a set of important parameters
that are as uncorrelated as possible.

Forward selection is a generic, model-independent tool that can be used to
solve this problem [17,29].1 Specifically, this method identifies sets of model
inputs that are jointly sufficient to achieve good predictive accuracy; our variant
of it is defined in Algorithm 1. After initializing the complete input set I and
the subset of important inputs S in lines 1–2, the outer for-loop incrementally
adds one input at a time to S. The forall-loop over inputs i not yet contained
in S (and not violating the constraint of adding at most kmax parameters and
mmax features) uses validation data to compute err(i), the root mean squared
error (RMSE) for a model containing i and the inputs already in S. It then adds
the input resulting in lowest RMSE to S. Because inputs are added one at a
time, highly correlated inputs will only be added if they provide large marginal
value to the model.

Note that we simply call procedure learn with a subset of input dimensions,
regardless of whether they are numerical or categorical (for models that require
a so-called “1-in-K encoding” to handle categorical parameters, this means we
introduce/drop all K binary columns representing a K-ary categorical input at
once). Also note that, while here, we use prediction RMSE on the validation set

1 A further advantage of forward selection is that it can be used in combination with
arbitrary modeling techniques. Although here, we focus on using our best-performing
model, random forests, we also provide summary results for other model types.
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Algorithm 1: Algorithm 1: Forward Selection
In line 10, learn refers to an arbitrary regression method that fits a function
f to given training data. Note that input dimensions 1, . . . , k are parameters,
k + 1, . . . , k + m are features.

Input : Training data Dtrain = 〈(x1, y1), . . . , (xn, yn)〉; validation data
Dvalid = 〈(xn+1, yn+1), . . . , (xn+n′ , yn+n′)〉; number of parameters, k;
number of features, m; desired number K ≤ d = k + m of key inputs;
bound on number of key parameters, kmax ≥ 0; bound on number of
key features, mmax ≥ 0, such that kmax + mmax ≥ K

Output: Subset of K feature indices S ⊆ {1, . . . , d}
I ← {1, . . . , d} ;1

S ← ∅ ;2

for j = 1, . . . ,K do3

Iallowed ← I \ S;4

if |S ∩ {1, . . . , k}| ≥ kmax then Iallowed ← Iallowed \ {1, . . . , k};5

if |S ∩ {k + 1, . . . , k + m}| ≥ mmax then6

Iallowed ← Iallowed \ {k + 1, . . . , k + m};
forall i ∈ Iallowed do7

S ← S ∪ {i};8

forall (xj , yj) ∈ Dtrain do xS
j ← xj restricted to input dimensions in S;9

f ← learn(〈(xS
1 , y1), . . . , (x

S
n, yn)〉);10

err(i) ←
√∑

(xj ,yj)∈Dvalid
(f(xj) − yj)2;11

S ← S \ {i};12

î ← random element of arg maxi err(i);13

S ← S ∪ {̂i};14

return S;15

to assess the value of adding input i, forward selection can also be used with any
other objective function.2

Having selected a set S of inputs via forward selection, we quantify their
relative importance following the same process used by Leyton-Brown et al. to
determine the importance of instance features [17], which is originally due to
[31]: we simply drop one input from S at a time and measure the increase in
predictive RMSE. After computing this increase for each feature, we normalize
by dividing by the maximal RMSE increase and multiplying by 100.

We note that forward selection can be computationally costly due to its need
for repeated model learning: for example, to select 5 out of 200 inputs via forward
selection requires the construction and validation of 200 + 199 + 198 + 197 +
196 = 990 models. In our experiments, this process required up to a day of CPU
time.
2 In fact, it also applies to classification algorithms and has, e.g., been used to derive

classifiers for predicting the solubility of SAT instances based on 1–2 features [30].
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2.3 Selecting Values for Important Parameters

Given a model f that takes k parameters and m instance features as input and
predicts a performance value, we identify the best values for the k parameters
by optimizing predictive performance according to the model. Specifically, we
predict the performance of the partial parameter configuration x (instantiating
k parameter values) on a problem instance with m selected instance features z
as f([xT, zT]T). Likewise, we predict its average performance across n instances
with selected instance features z1, . . . , zn as

∑n
j=1

1
n · f([xT, zT

j ]
T).

3 Algorithm Performance Data

In this section, we discuss the algorithm performance data we used in order
to evaluate our approach. We employ data from three different combinatorial
problems: propositional satisfiability (SAT), mixed integer programming (MIP),
and the traveling salesman problem (TSP). All our code and data is available
online: instances and their features (and feature computation code & binaries),
parameter specification files and wrappers for the algorithms, as well as the
actual runtime data upon which our analysis is based.

3.1 Algorithms and Their Configuration Spaces

We employ peformance data from three algorithms: CPLEX for MIP, SPEAR for
SAT, and LK-H for TSP. The parameter configuration spaces of these algorithms
are summarized in Table 1.

IBM ILOG CPLEX [32] is the most-widely used commercial optimization tool
for solving MIPs; it is used by over 1 300 corporations (including a third of
the Global 500) and researchers at more than 1 000 universities. We used the
same configuration space with 76 parameters as in previous work [1], exclud-
ing all CPLEX settings that change the problem formulation (e.g., the optimality
gap below which a solution is considered optimal). Overall, we consider 12 pre-
processing parameters (mostly categorical); 17 MIP strategy parameters (mostly

Table 1. Algorithms and their parameter configuration spaces studied in our
experiments.

Algorithm Parameter type # parameters of this type # values considered Total # configurations

Boolean 6 2

CPLEX Categorical 45 3–7 1.90 × 1047

Integer 18 5–7

Continuous 7 5–8

Categorical 10 2–20

SPEAR Integer 4 5–8 8.34 × 1017

Continuous 12 3–6

Boolean 5 2

LK-H Categorical 8 3–10 6.91 × 1014

Integer 10 3–9
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categorical); 11 categorical parameters deciding how aggressively to use which
types of cuts; 9 real-valued MIP “limit” parameters; 10 simplex parameters (half
of them categorical); 6 barrier optimization parameters (mostly categorical); and
11 further parameters. In total, and based on our discretization of continuous
parameters, these parameters gave rise to 1.90 × 1047 unique configurations.

SPEAR [33] is a state-of-the-art SAT solver for industrial instances. With
appropriate parameter settings, it was shown to be the best available solver
for certain types of SAT-encoded hardware and software verification instances
[8] (the same IBM and SWV instances we use here). It also won the quantifier-
free bit-vector arithmetic category of the 2007 Satisfiability Modulo Theories
Competition. We used exactly the same 26-dimensional parameter configura-
tion space as in previous work [8]. SPEAR’s categorical parameters mainly control
heuristics for variable and value selection, clause sorting, resolution ordering, and
also enable or disable optimizations, such as the pure literal rule. Its numerical
parameters mainly deal with activity, decay, and elimination of variables and
clauses, as well as with the randomized restart interval and percentage of ran-
dom choices. In total, and based on our discretization of continuous parameters,
SPEAR has 8.34 × 1017 different configurations.

LK-H [34] is a state-of-the-art local search solver for TSP based on an efficient
implementation of the Lin-Kernighan heuristic. We used the LK-H code from
Styles et al. [35], who first reported algorithm configuration experiments with
LK-H; in their work, they extended the official LK-H version 2.02 to allow several
parameters to scale with instance size and to make use of a simple dynamic
restart mechanism to prevent stagnation. The modified version has a total of
23 parameters governing all aspects of the search process, with an emphasis on
parameterizing moves. In total, and based on our discretization of continuous
parameters, LK-H has 6.91 × 1014 different configurations.

3.2 Benchmark Instances and Their Features

We used the same benchmark distributions and features as in previous work [23]
and only describe them on a high level here. For MIP, we used two instance
distributions from computational sustainability (RCW and CORLAT), one from win-
ner determination in combinatorial auctions (REG), two unions of these (CR :=
CORLAT ∪ RCW and CRR := CORLAT ∪ REG ∪ RCW), and a large and diverse set of
publicly available MIP instances (BIGMIX). We used 121 features to characterize
MIP instances, including features describing problem size, the variable-constraint
graph, the constraint matrix, the objective function values, an LP programming
relaxation, various probing features extracted from short CPLEX runs and tim-
ing features measuring the computational expense required for various groups of
features.

For SAT, we used three sets of SAT-encoded formal verification benchmarks:
SWV and IBM are sets of software and hardware verification instances, and SWV-IBM

is their union. We used 138 features to characterize SAT instances, including
features describing problem size, three graph representations, syntactic features,
probing features based on systematic solvers (capturing unit propagation and
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clause learning) and local search solvers, an LP relaxation, survey propagation,
and timing features.

For TSP, we used TSPLIB, a diverse set of prominent TSP instances, and
computed 64 features, including features based on problem size, cost matrix,
minimum spanning trees, branch & cut probing, local search probing, ruggedness,
and node distribution, as well as timing features.

3.3 Data Acquisition

We gathered a large amount of runtime data for these solvers by executing them
with various configurations and instances. Specifically, for each combination of
solver and instance distribution (CPLEX run on MIP, SPEAR on SAT, and LK-H

on TSP instances), we measured the runtime of each of M = 1000 randomly-
sampled parameter configurations on each of the P problem instances available
for the distribution, with P ranging from 63 to 2 000. The resulting runtime
observations can be thought of as a M ×P matrix. Since gathering this runtime
matrix meant performing M · P (i.e., between 63 000 and 2 000 000) runs per
dataset, we limited each single algorithm run to a cutoff time of 300 CPU seconds
on one node of the Westgrid cluster Glacier (each of whose nodes is equipped with
two 3.06 GHz Intel Xeon 32-bit processors and 2–4 GB RAM). While collecting
this data required substantial computational resources (between 1.3 CPU years
and 18 CPU years per dataset), we note that this much data was only required
for the thorough empirical analysis of our methods; in practice, our methods are
often surprisingly accurate based on small amounts of training data. For all our
experiments, we partitioned both instances and parameter configurations into
training, validation, and test sets; the training sets (and likewise, the validation
and test sets) were formed as subsamples of training instances and parameter
configurations. We used 10 000 training subsamples throughout our experiments
but demonstrate in Sect. 4.3 that qualitatively similar results can also be achieved
based on subsamples of 1 000 data points.

We note that sampling parameter configurations uniformly at random is not
the only possible way of collecting training data. Uniform sampling has the
advantage of producing unbiased training data, which in turn gives rise to models
that can be expected to perform well on average across the entire configuration
space. However, because algorithm designers typically care more about regions
of the configuration space that yield good performance, in future work, we also
aim to study models based on data generated through a biased sequential sam-
pling approach (as is implemented, e.g., in model-based algorithm configuration
methods, such as SMAC [6]).

4 Experiments

We carried out various computational experiments to identify the quality of
models based on small subsets of features and parameters identified using for-
ward selection, to quantify which inputs are most important, and to determine
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good values for the selected parameters. All our experiments made use of the
algorithm performance data described in Sect. 3, and consequently, our claims
hold on average across the entire configuration space. Whether they also apply
to biased samples from the configuration space (in particular, regions of very
strong algorithm performance) is a question for future work.

4.1 Predictive Performance for Small Subsets of Inputs

First, we demonstrate that forward selection identifies sets of inputs yielding low
predictive root mean squared error (RMSE), for predictions in the feature space,
the parameter space, and their joint space. Figure 1 shows the root mean squared
error of models fit with parameter/feature subsets of increasing size. Note in
particular the horizontal line, giving the RMSE of a model based on all inputs,
and that the RMSE of subset models already converges to this performance
with few inputs. In the feature space, this has been observed before [17,29] and
is intuitive, since the features are typically very correlated, allowing a subset of
them to represent the rest. However, the same cannot be said for the parameter

Fig. 1. Predictive quality of random forest models as a function of the number of
allowed parameters/features selected by forward selection for 3 example datasets. The
inputless prediction (subset size zero) is the mean of all data points. The dashed hori-
zontal line in each plot indicates the final performance of the model using the full set
of parameters/features.
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space: in our experimental design, parameter values have been sampled uniformly
at random and are thus independent (i.e., uncorrelated) by design. Thus, this
finding indicates that some parameters influence performance much more than
others, to the point where knowledge of a few parameter values suffices to predict
performance just as well as knowledge of all parameters.

Figure 2 focuses on what we consider to be the most interesting case, namely
performance prediction in the joint space of instance features and parameter
configurations. The figure qualitatively indicates the performance that can be
achieved based on subsets of inputs of various sizes. We note that in some cases,
in particular in the SPEAR scenarios, predictions of models using all inputs closely
resemble the true performance, and that the predictions of models based on a
few inputs tend to capture the salient characteristics of the full models. Since the
instances we study vary widely in hardness, instance features tend to be more
predictive than algorithm parameters, and are thus favoured by forward selec-
tion. This sometimes leads to models that only rely on instance features, yielding
predictions that are constant across parameter configurations; for example, see
the predictions with up to 10 inputs for dataset CPLEX-CORLAT (the second row
in Fig. 2). While these models yield low RMSE, they are uninformative about
parameter settings; this observation caused us to modify forward selection as
discussed in Sect. 2.2 to limit the number of features/parameters selected.

4.2 Relative Importance of Parameters and Features

As already apparent from Fig. 1, knowing the values of a few parameters is
sufficient to predict marginal performance across instances similarly well as when
knowing all parameter values. Figure 3 shows which parameters were found to
be important in different runs of our procedure. Note that the set of selected
key parameters was remarkably robust across runs.

The most extreme case is SPEAR-SWV, for which SPEAR’s variable selection
heuristic (sp-var-dec-heur) was found to be the most important parameter every
single time by a wide margin, followed by its phase selection heuristic (sp-phase-
dec-heur). The importance of the variable selection heuristic for SAT solvers is
well known, but it is surprising that the importance of this choice dominates
so clearly. Phase selection is also widely known to be important for the per-
formance of modern CDCL SAT solvers like SPEAR. As can be seen from Fig. 1
(top middle), predictive models for SPEAR-SWV based on 2 parameters essentially
performed as well as those based on all parameters, as is also reflected in the
very low importance ratings for all but these two parameters.

In the case of both CPLEX-BIGMIX and LK-H-TSPLIB, up to 5 parameters show up
as important, which is not surprising, considering that predictive performance of
subset models with 5 inputs converged to that of models with all inputs (see Fig. 1,
top left and right). In the case of CPLEX, the key parameters included two control-
ling CPLEX’s cutting strategy (mip limits cutsfactor and mip limits cutpasses, lim-
iting the number of cuts to add, and the number of cutting plane passes,
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Fig. 2. Performance predictions by random forest models based on subsets of features
and parameters. To generate these heatmaps, we ordered configurations by their aver-
age performance across instances, and instances by their average hardness across con-
figurations; the same ordering (based on the true heatmap) was used for all heatmaps.
All data shown is test data.
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Fig. 3. Parameter importance for 3 example datasets. We show boxplots over 10
repeated runs with different random training/validation/test splits.

respectively), two MIP strategy parameters (mip strategy subalgorithm and
mip strategy variableselect, determining the continuous optimizer used to solve
subproblems in a MIP, and variable selection, respectively), and one parameter
determining which kind of reductions to perform during preprocessing (preprocess-
ing reduce). In the case of LK-H, all top five parameters are related to moves,
parameterizing candidate edges (EXCESS and MAX CANDIDATES, limiting the
maximum alpha-value allowed for any candidate edge, and the maximum
number of candidate edges, respectively), and move types (MOVE TYPE, BACK-
TRACKING, SUBSEQUENT MOVE TYPE, specifying whether to use sequen-
tial k-opt moves, whether to use backtracking moves, and which type to use for
moves following the first one in a sequence of moves).

To demonstrate the model independence of our approach, we repeated the
same analysis based on other empirical performance models (linear regression,
neural networks, Gaussian processes, and regression trees). Although overall,
these models yielded weaker predictions, the results were qualitatively similar:
for SPEAR, all models reliably identified the same two parameters as most impor-
tant, and for the other datasets, there was an overlap of at least three of the
top five ranked parameters. Since random forests yielded the best predictive
performance, we focus on them in the remainder of this paper.

As an aside, we note that the fact that a few parameters dominate impor-
tance is in line with similar findings in the machine learning literature on the
importance of hyperparameters, which has informed the analysis of a simple
hyperparameter optimization algorithm [36] and the design of a Bayesian opti-
mization variant for optimizing functions with high extrinsic but low intrinsic
imensionality [37]. In future work, we plan to exploit this insight to design better
automated algorithm configuration procedures.

Next, we demonstrate how we can study the joint importance of instance
features and algorithm parameters. Since foward selection by itself chose mostly
instance features, for this analysis we constrained it to select 3 features and 2
parameters. Table 2 lists the features and parameters identified for our 3 example
datasets, in the order forward selection picked them. Since most instance features
are strongly correlated with each other, it is important to measure and under-
stand our importance metric in the context of the specific subset of inputs it is
computed for. For example, consider the set of important features for dataset
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Table 2. Key inputs, in the order in which they were selected, along with their omission
cost from this set.

Dataset CPLEX-BIGMIX SPEAR-SWV LK-H-TSPLIB

1st selected cplex prob time (10.1) Pre featuretime (35.9) tour const heu avg (0.0)

2nd selected obj coef per constr2 std (7.7) nclausesOrig (100.0) cluster distance std (0.8)

3rd selected vcg constr weight0 avg (30.2) sp-var-dec-heur (32.6) EXCESS (10.0)

4th selected mip limits cutsfactor (8.3) VCG CLAUSE entropy (34.5) bc no1s q25 (100.0)

5th selected mip strategy subalgorithm (100.0) sp-phase-dec-heur (27.6) BACKTRACKING (0.0)

Table 3. Key parameters and their best fixed values as judged by an empirical per-
formance model based on 3 features and 2 parameters.

Dataset 1st selected param 2nd selected param
CPLEX-BIGMIX mip limits cutsfactor = 8 mip strategy subalgorithm = 2
CPLEX-CORLAT mip strategy subalgorithm = 2 preprocessing reduce = 3
CPLEX-REG mip strategy subalgorithm = 2 mip strategy variableselect = 4
CPLEX-RCW preprocessing reduce = 3 mip strategy lbheur = no
CPLEX-CR mip strategy subalgorithm = 0 preprocessing reduce = 1
CPLEX-CRR preprocessing coeffreduce = 2 mip strategy subalgorithm = 2

SPEAR-IBM sp-var-dec-heur = 2 sp-resolution = 0
SPEAR-SWV sp-var-dec-heur = 2 sp-phase-dec-heur = 0
SPEAR-SWV-IBM sp-var-dec-heur = 2 sp-use-pure-literal-rule = 0

LK-H-TSPLIB EXCESS = −1 BACKTRACKING = NO

CPLEX-BIGMIX (Table 2, left). While the single most important feature in this
case was cplex prob time (a timing feature measuring how long CPLEX probing
takes), in the context of the other four features, its importance was relatively
small; on the other hand, the input selected 5th, mip strategy subalgorithm
(CPLEX’s MIP strategy parameter from above) was the most important input in
the context of the other 4. We also note that all algorithm parameters that were
selected as important in this context of instance features (mip limits cutsfactor
and mip strategy subalgorithm for CPLEX; sp-var-dec-heur and sp-phase-dec-heur
for SPEAR; and EXCESS and BACKTRACKING for LK-H) were already selected
and labeled important when considering only parameters. This finding increases
our confidence in the robustness of this analysis.

4.3 Selecting Values for Key Parameters

Next, we used our subset models to identify which values the key parameters
identified by forward selection should be set to. For each dataset, we used the
same subset models of 3 features and 2 parameters as above; Table 3 lists the best
predicted values for these 2 parameters. The main purpose of this experiment
was to demonstrate that this analysis can be done automatically, and we thus
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Fig. 4. Performance of random configurations vs configurations setting almost all para-
meters at random, but setting 2 key parameters based on an empirical performance
model with 3 features and 2 parameters.

only summarize the results at a high level; we see them as a starting point that
can inform domain experts about empirical properties of their algorithm in a
particular application context and trigger further in-depth studies. At a high
level, we note that CPLEX’s parameter mip strategy subalgorithm (determining
the continuous optimizer used to solve subproblems in a MIP) was important
for most instance sets, the most prominent values being 2 (use CPLEX’s dual
simplex optimizer) and 0 (use CPLEX’s auto-choice, which also defaults to the dual
simplex optimizer). Another important choice was to set preprocessing reduce
to 3 (use both primal and dual reductions) or 1 (use only primal reductions),
depending on the instance set. For SPEAR, the parameter determining the variable
selection heuristic (sp-var-dec-heur) was the most important one in all 3 cases,
with an optimal value of 2 (select variables based on their activity level, breaking
ties by selecting the more frequent variable). For good average performance of
LK-H on TSPLIB, the most important choices were to set EXCESS to −1 (use an
instance-dependent setting of the reciprocal problem dimension), and to not use
backtracking moves.

We also measured the performance of parameter configurations that actually
set these parameters to the values predicted to be best by the model, both on aver-
age across instances and in an instance-specific way. This serves as a further way
of evaluating model quality and also facilitates deeper understanding of the para-
meter space. Specifically, we consider parameter configurations that instantiate
the selected parameters according to the model and assign all other parameter
to randomly sampled values; we compare the performance of these configurations
to that of configurations that instantiate all values at random. Figure 4 visual-
izes the result of this comparison for two datasets, showing that the model indeed
selected values that lead to high performance: by just controlling two parameters,
improvements of orders of magnitude could be achieved for some instances. Of
course, this only compares to random configurations; in contrast to our work on
algorithm configuration, here, our goal was to gain a better understanding of an
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Fig. 5. Log10 speedups over random configurations by setting almost all parameters at
random, except 2 key parameters, values for which (fixed best, and best per instance)
are selected by an empirical performance model with 3 features and 2 parameters.
The boxplots show the distribution of log10 speedups across all problem instances;
note that, e.g., a log10 speedup of 0, −1, and 1 mean identical performance, a 10-fold
slowdown, and a 10-fold speedup, respectively. The dashed green lines indicate where
two configurations performed the same, points above the line indicate speedups. Top:
based on models trained on 10 000 data points; bottom: based on models trained on
1 000 data points.

algorithms’ parameter space rather than to improve over its manually engineered
default parameter settings.3 However, we nevertheless believe that the speedups
achieved by setting only the identified parameters to good values demonstrate the
importance of these parameters. While Fig. 4 only covers 2 datasets, Fig. 5 (top)
summarizes results for a wide range of datasets. Figure 5 (bottom) demonstrates
that predictive performance does not degrade much when using sparser training
data (here: 1 000 instead of 10 000 training data points); this is important for facil-
itating the use of our approach in practice.

5 Conclusions

In this work, we have demonstrated how forward selection can be used to analyze
algorithm performance data gathered using randomly sampled parameter config-
urations on a large set of problem instances. This analysis identified small sets of
key algorithm parameters and instance features, based on which the performance
of these algorithms could be predicted with surprisingly high accuracy. Using
this fully automated analysis technique, we found that for high-performance
solvers for some of the most widely studied NP-hard combinatorial problems,
namely SAT, MIP and TSP, only very few key parameters (often just two of
dozens) largely determine algorithm performance. Automatically constructed
performance models, in our case based on random forests, were of sufficient
3 In fact, in many cases, the best setting of the key parameters were their default values.
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quality to reliably identify good values for these key parameters, both on aver-
age across instances and dependent on key instance features. We believe that our
rather simple importance analysis approach can be of great value to algorithm
designers seeking to identify key algorithm parameters, instance features, and
their interaction.

We also note that the finding that the performance of these highly parametric
algorithms mostly depends on a few key parameters has broad implications on
the design of algorithms for NP-hard problems, such as the ones considered here,
and of future algorithm configuration procedures.

In future work, we aim to reduce the computational cost of identifying key
parameters; to automatically identify the relative performance obtained with
their possible values; and to study which parameters are important in high-
performing regions of an algorithm’s configuration space.
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