
University of British Columbia
Department of Computer Science

Technical Report TR-2009-16

A Bootstrap Approach to Analysing the Scaling
of Empirical Run-time Data with Problem Size

Holger H. Hoos
University of British Columbia

Computer Science Department

hoos@cs.ubc.ca

15 June 2009

Abstract

In this report, we introduce a novel approach for analysing the scaling of empirical run-time data of an
algorithm when applied to sets of inputs of growing size. Our method is based on the use of standard
numerical techniques for fitting models, which are then challenged by extrapolation to larger problem
sizes and statistically validated using bootstrap confidence intervals. It permits not only the automatic
construction of predictive models of the given algorithm’s run-time, but also the comparative evaluation of
multiple hypothesis on the scaling in the form of different parametric functions. We illustrate our method
using run-time data for Concorde, a state-of-the-art complete algorithm for the travelling salesperson
problem (TSP), applied to a class of well-known Euclidean TSP instances. 1

1 Motivation

The scaling of run-time with input size is of central interest in the design, analysis and application of many
algorithms. Traditionally, scaling results have been established using theoretical methods, and such results
along with the methods used for establishing them play an important role in theoretical computer science.
Clearly, theoretical scaling results are often very useful, for example, in the context of assessing algorithms
based on provable bounds on their run-time. However, to render mathematical treatment possible, such
theoretical analyses typically make use of various simplifications:

1. The scaling behaviour is often characterised in terms of a family of functions, usually specified using
notation such as O(·) or Θ(·), that describes the asymptotic scaling of run-time with input size.

2. The analysis typically only considers extreme cases (in particular, the worst case) or average-case-
behaviour on a given distribution of problem instances, parameterised by instances size.

3. Sometimes, additional simplifying assumptions are made regarding details of the algorithm or the
input data, such as statistical independence of heuristic choices from problem instance features, or of
instance features from each other.

1Here, this data (which has been generated in a joint project with Thomas Stützle) is used for illustrative purposed only; it is
discussed and analysed in more detail in TR-2009-17 (Hoos and Stützle, 2009).

1

4. In some cases, an algorithm of interest cannot be analysed theoretically, and a modified (typically
simpler) variant of the algorithm is studied instead.

5. Low-level aspects of the execution environment in which an algorithm is executed, in particular
related to CPU cache and branch prediction, are typically considered in an idealised way or not at all.

In practice, these simplifications can, and often do, limit the extent to which theoretical results capture
important aspects of the observed scaling of run-time, particularly in the case of high-performance algo-
rithms that use sophisticated heuristics to solve practically relevant problems as efficiently as possible.
For NP-hard problems, empirical methods are usually the only way for characterising run-time such that
practically relevant performance differences between various high-performance algorithms are captured
(see, e.g., Johnson and McGeoch, 2002; Hoos and Stützle, 2000). Similarly, for many practically relevant
polynomial-time solvable problems, analytical worst- and average-case results are often complemented by
extensive empirical studies to inform the choice or configuration of a procedure to be used in a given prac-
tical situation, as witnessed in the literature on sorting procedures (see, e.g., Bentley and McIlroy, 1993; Li
et al., 2004; Biggar et al., 2008).

Overall, for most computational problems of practical interest, there is a sizable gap between the perfor-
mance guarantees that can be achieved using theoretical analysis and the performance observed in practice
from carefully designed, practically useful algorithms. Consequently, the scaling behaviour of those latter
algorithms needs to be studied and modelled based on empirical observations.

Mathematical models for the scaling of an algorithm’s run-time in dependence of input size can serve
various purposes. Firstly, they can be used to compactly summarise observed scaling behaviour while
abstracting from details deemed unimportant. Secondly, they can be used to make predictions regarding the
algorithm’s run-time for input sizes for which run-time measurements have not been performed. Both types
of uses, to the extent that they refer to algorithms and distributions of problem instances of interest in some
application context, have important applications. Characterisation plays an important role in the comparison
of algorithmic performance, and therefore also in the reporting of performance results which may be used
for comparative purposes at some later stage (which applies to almost all scientific publications). Prediction
is often used for assessing the suitability of an algorithm for solving problem instances in a given application
context; this is particularly valuable, and sometimes indispensable, in cases where it is unclear whether the
instances sizes occuring in practice can be solved within the available computational resources.

Scaling models, whether derived from the theoretical analysis of an algorithm or based on empirical run-
time data, come in two distinct flavours: models that bound observed run-times and models of typical case
run-time. Both types of models can be useful for assessing the suitability of an algorithm for a particular
application as well as for the comparative evaluation of algorithms. Bounding models have the advantage
of explicitly expressing the direction in which observed run-times can be expected to deviate from those
obtained from the model. However, in order to obtain a reliable bound, it is often necessary to sacrifice
some accuracy compared to models of typical case run-time (where ‘typical’ may refer to the average or
median over an ensemble of instances and/or over multiple runs of a randomised algorithm). While in the
following, we focus on models of typical case run-time, we note that the techniques we discuss apply to a
large extent also to bounding models; in particular, this is the case for the bootstrap analysis presented in
Section 6.

In the following, we will focus on the empirical scaling of the run-time of an algorithm for solving a given
problem, such as the travelling salesperson problem (TSP), with the size of the instances of the problem
to be solved, measured not necessarily in the total size of the input characterising a problem instance, but
typically in terms of a salient feature, such as the number of locations to be visited in the case of the TSP.
However, the methods we will discuss are more general, and can be easily applied to other performance
measures (such as memory consumption) and instance characteristics (such as the variation coefficient of
the distance matrix for a given TSP instance).

2

2 Collecting Run-time Data

Any analysis of the empirical scaling of the run-time of a given algorithm begins with the collection of
run-time data. In this context, two fundamental issues arise: Which problem instances to use for the study
and how to perform run-time measurements on these instances. We discuss these issues by considering the
following six questions:

1. How do we select the (types of) benchmark instances used for our study?

2. Which instance sizes should be considered?

3. How many problem instances should be considered per instance size?

4. How do we measure the run-time required by the given algorithm for solving a given problem in-
stance?

5. How do we deal with variations in run-time observed over several instances of the same size?

6. How do we deal with variations in the run-time observed over multiple runs of a randomised algorithm
on the same problem instance?

Question 1 from this list has been discussed in general terms elsewhere (see, e.g., Hoos and Stützle, 2004,
Chapter 4), and the specific answer often depends on the problem (and algorithm) under consideration.
Often, empirical scaling studies make use of random instance generators; we note that by deriving the
instance distributions underlying such generators from ‘real-world’ instances, this approach can maintain
a focus on instance characteristics relevant in practical applications (see, e.g., Leyton-Brown et al., 2000;
Andronescu et al., 2004; Aguirre-Hernández et al., 2007). Using an instance generator has the advantage
that large numbers of instances per instance size can be obtained, which facilitates empirical scaling studies
in various ways, as will become apparent in the following.

The answer to Question 2 from our list, regarding the instance sizes to be used in a scaling analysis, de-
pends strongly on the goals of the study. In many cases, these goals involve predicting the run-time of one
or several given algorithms for instance sizes larger than those considered in the analysis (extrapolation).
In other cases, the focus is on predictions for previously not considered, intermediate problem sizes (inter-
polation). In both cases, a parametric function called a scaling model is fitted to the run-times observed for
a number of instance sizes and the values of that fitted function are then used as predictions. The data to
which a model is fitted is called the support of the model, and we call the interval formed by the smallest
and the largest instance size in the support the range of the support. The process of fitting a scaling model
to observed run-time data and of challenging this model by comparing predictions instance sizes different
from those in the support will be described in detail in Sections 4 and 5 of this report. However, it is intu-
itively clear that the accuracy of a scaling model typically benefits from a large range of support containing
many different instance sizes.

For algorithms whose run-time is known or expected to scale super-polynomially or polynomially with
large degree (i.e., degree larger than 3), the instances sizes used in the support typically form an arithmetic
series, while in the case of sub-polynomial scaling or polynomial scaling with small degree, arithmetic or
geometric series are used.2 Furthermore, in order to maximise prediction accuracy for an extrapolation
challenge, it is useful to keep the distance between the largest instance size in the support and the smallest
instance size for which a run-time prediction is desired relatively small. At the same time, if the main
interest is to arrive at models that are as general as possible in terms of generating reasonably accurate
predictions over a very large range of instance sizes, extrapolation challenges to instance sizes much larger
than those contained in the support can provide more compelling empirical evidence in favour of a given
model. (This issue will be further discussed in Sections 5 and 6.) Given limited overall computation time,
there can furthermore be trade-offs between the number and range of instance sizes used for constructing a
model and the number of instances per size.

2A common variation are pseudo-geometric progressions of instance sizes, such as 10, 20, 50, 100, 200, 500, 1000.

3

The question regarding the number of instances to be used per problem size (Question 3 from our list)
is closely related to the way in which we deal with variations in run-time between different instances and
multiple runs of a randomised algorithm on the same instance (Questions 5 and 6). We will therefore
postpone discussing this question until the end of this section; since the ultimate answer also depends on
other aspects of the analysis, we will furthermore revisit it in Sections 5 and 6 of this report.

Before addressing Questions 4–6, we make the following assumptions:

• The software implementation of the algorithm to be analysed, from here on referred to as the solver,
takes as its only input a problem instance to be solved. For reasons of reproducibility, even in cases
where instances are generated by means of a randomised instance generator, explicit representations
of the instance data should be stored in files, ideally in a human-readable plain-text format. These
files are read by the solver; any other arguments or parameters of the solver are kept constant.

• The solver terminates when a given problem instance is solved, reporting that fact along with data on
the run-time used and possibly additional information on the solution found and the process of pro-
ducing this solution (this may be useful for verifying solutions or performing more in-depth analyses
of the behaviour of the solver).

• All runs of the solver are successful and error-free, i.e., have resulted correct solutions to the respec-
tive problem instances (we will comment later on how to deal with cases in which runs had to be
aborted due to excessive run-time requirements).

We now turn our attention to to Question 4, namely the manner in which the time required for a single
run is measured. It has been argued elsewhere that for maximum reproducibility and comparability of
results, run-time measurements should be performed in a manner that abstracts as much as possible from
the execution environment (machine and operating system; see Hoos and Stützle, 2004, Ch. 4). This can be
achieved by performing (machine-load-independent) CPU time measurements; as an additional precaution,
it is advisable to keep the amount of other processes as well as memory, disk and network usage on the
machine(s) used for run-time measurements to a minimum. Also, particularly in cases where the resolution
of typical CPU time measurement methods become problematic (i.e., in situations where run-times may be
in the order of CPU seconds or less), it is advisable to measure run-time by using cost models based on
suitably defined elementary operations (whose actual run-time needs to be constant for any given problem
instance). When used appropriately, this enables CPU time measurement accuracies far greater than the
resolution provided by the typical process timing mechanisms provided by the operating system. (For a
more detaild discussion, see Hoos and Stützle, 2004, p. 169; operation counts have also been advocated by
Ahuja and Orlin, 1996, Sanders and Fleischer, 2001, and Goldsmith et al., 2007.)

Question 5 from our list deals with the variation of the run-time of a given solver over problem instances
of the same size; this variation can be, and often is, quite large. This is particularly the case for high-
performance heuristic algorithms for computationally hard problems, where it is not uncommon for the
run-times observed on instances of the same size to differ by multiple orders of magnitude (see, e.g., Gomes
et al., 1997; Hoos and Stützle, 1998; Gomes et al., 2000). Therefore, empirical scaling analyses are often
focussed on location statistics of the distributions of run-time over instances of the same size (so-called
solution cost distributions, short SCDs), such as the mean or median run-time. While the empirical mean
run-time approximates the run-time a solver would be expected to require for solving an arbitrary instance of
a given size, this expectation may not be very meaningful in the presence of SCDs with extreme variability;
in fact, for so-called heavy-tailed SCDs, which have occasionally been observed for high-performance
algorithms (see, e.g., Gomes et al., 2000), the theoretical mean is infinite and the empirical mean behaves
erratically. Therefore, it is often preferably to focus on median run-time instead; this has the additional
advantage that in the presence of instances on which runs had to be aborted due to excessive run-time
requirements, the median (unlike the mean) can still be determined (by considering the run-time of these
censored runs to be larger than the cut-off time used).

While it can be of interest to report minimum and maximum run-times as empirical bounds on best-case and
worst-case performance, they are typically unsuitable as a basis for scaling studies of empirical worst-case

4

(or best-case) performance; the reason for this lies in the statistical instability of the sample maximum (or
minimum), particularly if the underlying distibution has a fat or even heavy right tail.3 Instead, higher (or
lower) SCD quantiles, such as the 75-, 90- or 95-percentile, can provide a solid basis for studying the scaling
of relatively high (or low) run-times observed for instances of a given size; it should be noted, however, that
in order to obtain reasonably stable estimates of these quantiles, larger numbers of instances per problem
size are required than for simply estimating the median.

Finally, Question 6 from our list arises because high-performance solvers for many problems are based on
randomised algorithms, that is, algorithms, whose run-time varies betweeen multiple independent runs on
the same problem instance as a result of decisions within the algorithms that are made using a randomised
mechanisms (these are usually implemented using data obtained from a pseudo-random number generator).
In that case, the behaviour of the algorithm on any given instance is not characterised by any single run-time
value, but by the probability distribution of run-times over multiple independent runs, the so-called run-time
distribution (RTD). As has been argued elsewhere, in this situation, it can be very important to distinguish
the variation of run-time across multiple runs on the same problem instance (caused by randomised de-
cisions within the algorithm and characterised by the RTD) from variation in run-time observed between
different problem instances of the same size Hoos and Stützle (1998, 2004).

However, it has been shown that under certain circumstances, in particular when investigating solely the
average run-time over both, instances and runs on the same instance in situations where at least as many in-
stances are available as runs can be performed (e.g., as a result of being able to produce arbitrary numbers of
problem instances using a random instance generator), it is advantageous to perform only one run per prob-
lem instance (Birattari, 2004). To simplify our discussion without making overly restrictive assumptions, in
the following, as far as randomised algorithms are concerned, we will focus on types of scaling analysis that
only consider a location statistic of the RTD of each given problem instance, such as the mean or median;
once such a statistic has been empirically determined (based on multiple runs of the algorithm on the given
instance), it is treated in exactly the same way as the uniquely defined run-time of a deterministic algorithm.
Therefore, when analysing the empirical scaling of run-time for a randomised solver, the run-time for each
instance size could be the mean over instances and multiple runs or, in light of the considerations regarding
high-variance SCDs, the median mean run-time (where the mean is taken over multiple runs on the same
instance, and the median is taken over the means for multiple instances) or, if there is also high variability
in the RTDs, the median median run-time.

Based on our discussions of Questions 5 and 6, we can now briefly make some general statements regarding
the number of instances to be considered per instance size (Question 3 from our list). In a nutshell, the
number of instances needs to be large enough to obtain reasonably stable estimates for the run-time statistics
collected over instance sets and, in the case of randomised solvers, over multiple runs on each individual
problem instance. The higher the variability of run-time over instances of the same size, the more instances
are needed to obtain stable estimates for mean run-time. The same holds, to a lesser extent, when measuring
median run-times; furthermore, when considering higher (or lower) run-time quantiles, even larger numbers
of instances per size are required to achieve reasonable statistical stability, depending on the probability
mass found in the tails of the respective solution cost distribution. In addition, for randomised algorithms the
accuracy of the run-time statistics obtained for individual instances is limited by the number of independent
runs performed for each instance; as a consequence, typically larger sets of instances are needed to obtain
similarly stable run-time statistics for each given instance size than in the case of deterministic algorithms.

From here on, we will assume that sufficiently many instances per instance size (and, in the case of ran-
domised solvers, runs per instance) have been performed to obtain reasonably stable run-time statistics for
each problem size. We will revisit the choice of these sample sizes in Sections 6 and 7. In the following,
we will use n1, n2, . . . nk to denote the series of instance sizes that comprise the support of the models to
be constructed, and t(ni) to refer to the aggregate run-time over the instances of ni, where some statistic
(such as mean or median) is used for aggregation. We will further denote the run-time data, aggregated by
instance size, on a given instances set I as B(I).

3Unfortunately, there is some disagreement regarding the definitions of the terms heavy-tailed and fat-tailed in the literature; we
consider a distribution to be fat-tailed if, and only if, at has excess kurtosis larger than zero (i.e., if at least one of its tails decays slower
than that of a normal distribution) and heavy-tailed if, and only if, at least one tail decays according to a power-law, i.e., following
x−(1+α) for some α > 0. According to those definitions, heavy-tailed distributions are a special case of fat-tailed distributions.

5

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

 0 500 1000 1500 2000 2500 3000

ru
n-

tim
e

[C
P

U
 s

ec
]

problem size [# vertices]

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

 10 100 1000 10000

ru
n-

tim
e

[C
P

U
 s

ec
]

problem size [# vertices]

Figure 1: Scaling of mean run-time required by the Concorde solver for solving RUE TSP instances (left
pane: semi-log plot; right pane: log-log plot). The data uses for this plot has been taken directly from
the book by Applegate et al. (2006), p.496, Table 16.6; mean run-times for n ≤ 1000 are based on 10 000
instances per instance size and those for n > 1000 are based on 1 000 instances per size.

3 Graphical Analysis

Perhaps the simplest way to empirically characterise and analyse the scaling behaviour of a given algorithm
is to plot its observed run-time, t(n), vs instance size, n. Depending on the type of plot used, various
types scaling behaviour can be detected very easily, exploiting the ability of the human visual system to
perceive straight lines. While linear trends can be detected directly in a standard Cartesian plot, logarithmic
and exponential scaling is indicated by linear trends in semi-logarithmic plots (in which instance or run-
time are shown on a logarithmic scale, respectively), and arbitrary polynomial scaling by linear trends in a
log-log plot (i.e., using logarithmic scales for run-time and instance size).

The example shown in Figure 1 illustrates this type of graphical scaling analysis. The semi-log plot in
the left pane is a reproduction of Figure 16.1 from the book of Applegate et al. (2006), who interpret it as
follows (p. 496):

The plot of mean values in Figure 16.1 indicates that the running times are increasing as an
exponential function of n, [...]

This interpretation is supported by the fact that for increasing instance size, the observed mean run-times
appear to asymptotically approach a straight line, while the deviations from that line may indicate atypical
behaviour for small instance sizes. Interestingly, a log-log plot of the same data (shown in the right pane of
Figure 1) admits the same interpretation with respect to polynomial scaling, which indicates the limitations
of this type of scaling analysis.

An actual scaling model can be determined by fitting a line to the plotted data; this can be done either
manually or by using appropriate fitting techniques on the linearised data, in particular, least-squares linear
model fitting. The goodness of the resulting fits can be evaluated using standard metrics, such as the root
mean square deviation (RMSD) or root mean square error (RMSE), defined as√√√√ k∑

i=1

r2i ,

where each residual ri is the difference between an observed run-time value, b(ni), and the corresponding
value of the model, p(ni), i.e., ri := b(ni)− p(ni).

6

One potential problem with this approach is that any transformation of the run-time data also leads to a
transformation of the error metric minimised by least-squares fitting on the linearised data. In such cases,
what is minimised by the fitting procedure no longer corresponds to RMSE on the original data, but to
RMSE on the transformed run-time data. While in some circumstances, this can be desirable (for example,
when in the context of exponential scaling behaviour one cares more about relative than about absolute
deviations between the run-times derived from the model and those observed), in others it may introduce
undesired bias into a scaling analysis.

There are factors beyond RMSE that are important when assessing the quality of a fit, in particular the pres-
ence of systematic deviations between observed run-times and a given scaling model. Such deviations can
also be detected graphically, by plotting the residuals against instance size. The presence of any regularity
or trend in the residuals not only indicates a systematic weakness of the scaling model, but may also suggest
corrections or improvements.

The basic idea of linearising scaling data by applying appropriate transformations to instance sizes and/or
run-time measurements can be generalised in a straight-forward manner by considering larger families of
transformations. However, unless very clearly defined hypotheses regarding the scaling behaviour of the
algorithm(s) under consideration are investigated, this approach can be labour-intensive and open-ended.

4 Model Fitting

Often, hypotheses regarding the scaling behaviour of a given algorithm take the form of a parametric func-
tion; for example, simple exponential scaling can be expressed in the form Exp[α1, α2](n) := α1 · exp(α2 ·
n), where specific members of this parametric family are obtained by instantiating the parameters α1 and
α2. Hypotheses of this form can, for example, be based on theoretical results on the worst-case complexity
of a given problem, or the (theoretically or empirically determined) scaling behaviour of another, previously
studied algorithm.

Given this type of hypothesis and the same type of empirical data considered in the previous section (i.e.,
pairs of instance sizes, ni, and run-times, t(ni)), the question arises of how to determine parameter values
α1, . . . , αp such that the corresponding scaling function F [α1, . . . , αp](n) fits the given run-time data best.
Clearly, this is a generalisation of the line fitting approach discussed in the previous section, and in principle,
similar methods can be applied. In particular, least squares fitting techniques based on numerical optimi-
sation procedures can be used in this context, such as the Levenberg-Marquardt Algorithm (implemented,
e.g., in the fit function of the widely used Gnuplot data and function plotting software).

Figure 2 illustrates the results of fitting the two 2-parameter polynomial and exponential models Exp[a, b](n)
= a · bn and Poly[a, b](n) = a ·nb to the data from our earlier example (see Figure 1). As can be seen from
the semi-log and log-log plots, both scaling models provide good fits to the run-times observed for large
instance sizes, but show systematic deviations for smaller instances. The reason for this lies, of course,
in the fact that in the logarithmic representation of run-time used in both plots, the large relative differ-
ences between the models and the observed data for small instance sizes correspond to small differences in
absolute run-time, as considered by the model fitting procedure.

Several issues have to be addressed when using this model fitting approach. The use of standard metrics
that are minimised to obtain good fits, in particular RMSE, in principle provides a basis for quantitative
assessments of the fits thus obtained; however, as previously mentioned, RMSE does not adequately reflect
systematic deviations between the scaling model and the observed behaviour. Therefore, at least during the
final evaluation of a scaling model obtained by model fitting based on RMSE-minimisation, the residuals
should be analysed as described in the previous section. Particularly in cases where there is substantial
interest of using a scaling model for predicting the run-time of the given algorithm for instance sizes larger
than those used in the fit, residuals that systematically grow with instance size are a concern, and fits that
do not suffer from this problem may be preferable to ones that do, even if their RMSE is larger (e.g., due to
poorer fits for small n, which may be caused by overhead of the algorithm on small instances that becomes
irrelevant for larger n).

7

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 0 500 1000 1500 2000 2500 3000

ru
n-

tim
e

[C
P

U
 s

ec
]

problem size [# vertices]

best-fit exponential model
observed mean run-time
best-fit polynomial model

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 100 1000 10000

ru
n-

tim
e

[C
P

U
 s

ec
]

problem size [# vertices]

best-fit exponential model
observed mean run-time
best-fit polynomial model

Figure 2: Scaling of mean run-time required by the Concorde solver for solving RUE TSP instances (left
pane: semi-log plot; right pane: log-log plot); the exponential and polynomial scaling models shown,
60.31 · 1.00272n and 4.71331 · 10−16 · n5.90256, respectively, were fitted using the Levenberg-Marquardt
Algorithm (as implemented in the Gnuplot ‘fit’ function) on the untransformed instance size and run-time
data for n = 100..2500, resulting in RMSE values of 214.80 for the exponential and 246.83 for the poly-
nomial model. The data uses for this plot has been taken directly from the book by Applegate et al. (2006),
p.496, Table 16.6; mean run-times for n ≤ 1000 are based on 10 000 instances per instance size and those
for n > 1000 are based on 1 000 instances per size. (This difference in the number of instances per instance
size, although not ideal in terms of experimental design, results from a compromise between the goal of
obtaining accurate observations and the need to keep overall computing times within reasonable limits.)

Furthermore, standard numerical optimisation procedures, such as the Levenberg-Marquardt Algorithm,
can be quite sensitive to the initial values of the parameters α1, . . . , αp. Particularly for highly parame-
terised fitting functions, even small differences in those initial values can result in final fits of substantially
different quality, due to numerical instability of the fitting algorithm or local optima in the fitting function.
One strategy that tends to minimise the occurence of these problems in practice is to limit the number of
parameters to be optimised, and to choose initial values such that the corresponding initial fit is close to
prominent observed data points, such as those for the smallest, the largest and an intermediate problem size
(depending on the number of model parameters). In the case of complex models with many parameters,
preliminary fits with a reduced number of parameters (e.g., by clamping a lower-order term to zero) can
lead to reasonable initial parameter values for the final fit of the full model. In any case, it is advisable
to carefully check the quality of the fits obtained on the full support of the fitted model, graphically or at
least in terms of RMSE, and to allow for the possibility that a poor fit may reflect a problem with the fitting
procedure (caused by unsuitable initial parameter values) rather than indicate that no member of the given
functional family fits the empirical run-time data well.

Finally, the complexity of a model, i.e., the number of parameters to be optimised, has important conse-
quences for the quality of the fits obtained based on that model. As is well-known from statistics, machine
learning and numerical optimisation, models with many parameters can typically fit a wider range of ob-
served data; nevertheless, they do not necessarily lead to better predictions. One reason for this stems from
the fact that complex models are often much more difficult to fit (as discussed previously). Furthermore,
there can be a risk of overfitting the observed data: Because of the flexibility of a complex model, it can
fit spurious aspects of the observed data, such as measurement inaccuracies (e.g., due to randomness in
the given algorithm), discretisation effects for small problem sizes or small CPU times, or spurious aspects
of scaling (e.g., small-size effects due to cost of initialising data structures) that are not of interest for the
analysis. A related problem can in principle arise from the fact that two very different, but sufficiently
highly parameterised models could potentially give equally good fits for a given set of observations; as an
extreme example, consider a case where only two data points are given, and 2-parameter exponential and
polynomial models are fitted to those observations. In reality, this problem does not arise in empirical scal-
ing analyses to the same extent as it occurs in other contexts (e.g., in many machine learning tasks), because

8

the cost of computational experiments is usually small enough to allow for the collection of sufficiently
large data sets.

When comparing the fits obtained using two different models, it is important to ensure that both models
have similar flexibility, i.e., the same or almost the same number of parameters. Therefore, it would be
problematic to compare fits obtained from a 2-parameter exponential model and a 6-parameter polynomial
model. At the same time, Occam’s razor does apply in this context: Between two models of the same
quality (i.e., the same quality of fit to the given observations and the same predictive power), the simpler
(i.e., that with fewer parameters) is to be preferred. The application of this principle is complicated by the
fact that two models rarely have exactly the same quality, and that (as previously discussed), quality may
not be easily and entirely quantifiable. Therefore, the application of Occam’s razor may involve the use of
judgement as to when two models are considered to be of the same quality.

5 Challenging Models by Extrapolation

In all of science, models serve two main purposes: To provide a conceptual framework for understanding
phenomena and to generate predictions. Mathematical models for the scaling of the run-time of a given
algorithm with problem instance size are often considered useful because they allow to predict run-time on
new instances. This is particularly relevant in cases where running the algorithm in question may require a
large amount of limited or costly resources (such as run-time on a fast machine), or where computation is
severely limited by the nature of an application (e.g., in a real-time system).

Indeed, the capacity of a model to produce falsifiable predictions is key to the scientific method of generating
knowledge. Such predictions challenge the model from which they were obtained in the sense that they may
turn out to be in disagreement with observations from a subsequent experiment. Models for the scaling of
algorithm run-time with instance size can be subjected to interpolation and extrapolation challenges. In case
of the former, the predictions concern instances sizes in-between those used for generating the observations
underlying the model; in case of the latter, predictions are made for instance sizes smaller or larger than
any of those considered when constructing the model. Considering the practical motivation behind scaling
studies as well as the tendency of model inaccuracies to increase with distance from the model’s support,
extrapolation – especially to larger problem sizes – is typically more interesting and also more challenging
than interpolation.

The basic procedure used for challenging a scaling model by extrapolation is as follows:

1. collect run-time data B(I) for a set of problem instances I (see Section 2);

2. fit a parametric scaling model M to the data B(I) (see Section 4);

3. obtain predictions P (J) from M for a set a set J of instances sizes that fall outside of the range
covered by D (i.e., outside of the support of M);

4. collect run-time data B(J) for the instance sizes in J ;

5. compare the observed run-times in B(J) against the predictions P (J).

In Step 3, the selection of one or more instance sizes for which first predictions and subsequently observa-
tions will be made will typically be strongly based on the scaling model M and the time budget available
for experiments in Step 4. Particularly in cases where substantial differences in run-time are expected on
different instances of the same size, there is a tradeoff between the number of instances and the problem
sizes considered: Using a larger set of instances for a given problem size will result in more accurate run-
time statistics but also be costlier, and may therefore limit the extrapolation study to smaller instance sizes;
for large instance sizes, on the other hand, each run may be so costly that only a small number of runs can
be performed.

9

100

101

102

103

104

105

106

 0 500 1000 1500 2000 2500 3000 3500

ru
n-

tim
e

[C
P

U
 s

ec
]

problem size [# vertices]

best-fit exponential model
 best-fit root-exponential model

challenge data
support data

best-fit polynomial model

Figure 3: Scaling of median run-time required by the Concorde solver for solving RUE TSP instances;
the exponential, root-exponential and polynomial scaling models shown, 9.07594 · 1.0031n, 0.210057 ·
1.24194

√
n, 8.83431 · 10−10 · n3.78269, respectively, were fitted using the Levenberg-Marquardt Algorithm

(as implemented in the Gnuplot ‘fit’ function) on the untransformed instance size and run-time data for
n = 500..1500; the data for larger instance sizes have not been used for fitting the models. The data uses
for this plot has been taken from a new scaling study by Hoos and Stützle (2009); median run-times for
n ≤ 2000 are based on 1 000 instances per instance size and those for n > 2000 are based on 1 00 instances
per size.

Further factors that may play into the selection of problem sizes for extrapolation are the accuracy of the
model on the original instance set I , the presence of systematic error inM on I and the cost of producing or
obtaining large instances for inclusion in J . (The latter would arise, for example, in the context of a study
of incomplete algorithms for solving problem instances that need to be pre-processed using a complete
algorithm; in the context of SAT, complete solvers would be used to filter out unsatisfiable instances, and in
the context of TSP, a complete solver would be used to determine provably optimal solution qualities.)

The predictions made in an extrapolation challenge will rarely be precisely confirmed by empirical obser-
vations. This give rise to the question how the quality of the predictions given corresponding observations
(from Step 4) should be assessed. In principle, it is possible to use RMSE in this context, either based on
the instance set J or based on the combined instance set I ∪ J ; the latter reflects the overall accuracy of
the given model M , while the former focusses solely on the extrapolations obtained from M and provides
therefore a more direct indication of M ’s ability to make meaningful predictions outside of its support.

The absolute value of the RMSE R(J) obtained on instance set J is often not very meaningful, but can
be useful as a basis for comparing different models. Furthermore, R(J) can be meaningfully compared
to R(I), and in particular, to the residuals on the largest problem instances in I . Finally, even imprecise
extrapolations (as, for example, obtained from biased models) can be useful, e.g., in that they can provide
empirical upper or lower bounds on scaling behaviour.

An example for challenging scaling models by extrapolation is shown in Figure 3 and Table 1. We note
that, unlike in the examples illustrated in Figures 1 and 2, where mean run-time was considered, here,
median run-time was studied. The empirical median has the advantage of being more robust with respect
to outliers than the empirical mean and, more importantly, unlike the mean, the median is unaffected by

10

predicted median run-time
instance size polynomial model exponential model root-exponential model observed median run-time

2 000 2 709.80 4 446.53 3 393.90 3 400.82 (1000/1000)
2 500 6 302.61 21 020.46 10 651.96 8 855.28 (100/100)
3 000 12 561.47 99 371.86 29 957.63 30 024.49 (99/100)

Table 1: Predicted median run-times from polynomial and exponential fits for Concorde on RUE instances
vs observed median run-times. Best polynomial fit (n = 500..1500, untransformed data): 8.83·10−10·n3.78,
RMSE= 15.38; best exponential fit (n = 500..1500, untransformed data): 8.90 ·1.00311n, RMSE= 12.81;
best root-exponential fit (n = 500..1500, untransformed data): 0.21 · 1.24194

√
n, RMSE= 8.83; RMSE

values are on the support of the respective model. The data for n = 3000 is based on run-time data for 99
out of 100 instances; the run on the remaining instance was terminated after several weeks of CPU time,
but the median run-time has been calculated correctly over all 100 instances.

‘censored’ runs, which were aborted after reaching a high CPU time cutoff (in this case, more than one CPU
day). Evidently, in this example, the root-exponential model produces substantially more accurate run-time
predictions for larger instance sizes than the polynomial and exponential models. The close agreement
between the prediction of the root-exponential model for n = 3000 is particularly impressive, considering
that the support of the model only ranges from n = 500 to 1500.

An interesting generalisation of the method described earlier in this section can be used to assess whether the
run-times measured on individual problem instances agrees with the predictions obtained by extrapolating
from scaling models: In this case, scaling models are independently fitted on two quantiles of the SCDs (i.e.,
the distributions of run-time over instances of the same size), Ql and Qh. Extrapolation of those models
then yields predictions for the respective quantiles at larger (or smaller) instances sizes, If the models were
accurate, we would expect a fraction h − l of instances at each size to show observed run-times falling
within the intervals formed by these predictions, and therefore, observed fractions close to the target of
h − l can be seen as evidence supporting the model. (Some deviations between the observed and target
fraction of instances are likely to arise, especially when very small numbers of instances are tested in this
manner.) When using this approach, care needs to be taken that the number of instances corresponding to
the quantiles computed on the support for each instance size is sufficiently large to give reasonably stable
estimates (the required number depends on the nature of the underlying distribution of run-times).

Alternatively, if a parametric model can be fitted to the SCDs at a given instance size, model fitting and
extrapolation can be performed on the parameters of that SCD model. This allows the extrapolation of SCD
models to instance sizes outside of the support, from which quantiles can then be determined analytically,
and run-times observed on individual instances can be assessed against these. Formally, the Kolmogorov-
Smirnov test can be used to investigate the hypothesis that a given set of observed run-times stems from the
extrapolated SCD for a given instance size. As a special case, for a single instance of size n with run-time
t, the value r for which the quantile Qr of the extrapolated SCD for size n is equal to t can be used to
determine a p-value for the statistical hypothesis test that t does indeed stem from the predicted SCD. A
challenge instance (or set of instances) that pass this test provide support for the combination of the model
predicting SCDs as a function of instance size.

6 Validation using Bootstrap Confidence Intervals

Typically, the run-time of a given algorithm varies between instances of the same size, and even for distri-
butions of syntactically very similar problem instances (such as Uniform-Random-3-SAT instances with a
fixed number of clauses and variables) extreme variations have been observed (see, e.g., Hoos and Stützle,
1998). As previously mentioned, in such cases, models for the scaling of run-time with instance size typi-
cally capture dscriptive statistics such as mean or median run-time. Clearly, any such model M depends on
the on actual set of instances I for which run-time measurements were performed and subsequently used

11

for fitting the model, and for different sets I ′, different models M ′ are be obtained. This raises the question
to which extent predictions obtained from a model M reflect particularities in the underlying instance set I
rather than the true scaling behaviour of the given algorithm.

To investigate this question, a statistical method known as bootstrap analysis can be used (see, e.g., Efron
and Tibshirani, 1993). The key idea underlying this method is to repeatedly resample a given set S of
empirical data in order to obtain a collection of samples (where each sample has the same size as S and
corresponds to a subset of S, with some elements repeated), which can then be used as a basis for analysing
properties of a statistical estimator (such as its variance) or for performing statistical hypothesis testing. In
the context considered here, bootstrap analysis can be used to obtain confidence intervals for the predictions
generated by a given scaling model M ; based on such confidence intervals, it is then possible to determine
to which degree observed run-times are statistically supported by the model, and hence to assess the validity
of the model in terms of its compatibility with those data.

To perform this type of analysis, we propose the following basic procedure:

1. collect run-time data B(I) for a set of problem instances I (see Section 2) such that for each problem
size in I run-time data for m instances are available;

2. for each problem size ni in I , independently draw r samples Ii,1, . . . , Ii,r, where each Ii,j consists
of m instances and is determined by independent uniform random sampling with replacement from
the full set of size-i instances in I;

3. for each series of instance sets I1,j , . . . , Ik,j , where n1, . . . , nk are the instances sizes represented in
I , fit a parametric scaling model Mj to the corresponding observed run-times B(I1,j), . . . , B(Ik,j)
(see Section 4);

4. for a given instance size n, determine a series of predictions P := (P1(n), . . . , Pr(n)), where Pj(n)
is the prediction obtained from model Mj ;

5. from the series of predictions P , determine the bootstrap percentile confidence interval for a given
confidence level α as CI := [Q(0.5−α/2), Q(0.5+α/2)], where Qx denotes the x-quantile of the empir-
ical distribution of the values in P (typically, α = 0.95 is used in this context);

6. determine the actual run-time B(n) by running the given algorithm on a set of problem instances of
size n;

7. if B(n) ∈ CI, we say that the observed data B(n) is in agreement with the given parametric scaling
model, otherwise we say that B(n) is in disagreement with the model (at confidence level α).

In Step 2, the run-time data used for building the model is resampled, motivated by the idea that the empir-
ical distribution of the run-time data for a given instance size can be used as a proxy for the underlying true
solution cost distribution. Obviously, sampling has to be performed with replacement, since otherwise the
samples Ii,j would be identical to the original set of data for instance size ni.

In most bootstrap analyses, obtaining and processing a sample from the original data is computationally
cheap; therefore, typically thousands of samples are taken. In the context of our procedure, we need to fit
a model for each of the r samples, which can be costly and difficult. This not only limits the number of
samples, r, that can be processed within reasonable time, but also requires a fully automated and reasonably
reliable method for model fitting. As explained in Section 4, depending on the complexity of the scaling
model, the numerical methods used for model fitting are not always guaranteed to produce a good fit;
therefore, care should be taken to ensure that all models produced in Step 3 are fitted correctly (e.g., by
examining the models M1, . . . ,Mr for suspiciously poor fits to the respective underlying data, based on
RMSE values or graphical inspection).

The differences between the models obtained in Step 4, and therefore also between the predictions obtained
from these models in Step 5, intuitively reflect the impact of variation in the run-time data that can be
considered an artefact of working with particular samples of empirical run-time data (as well as with model

12

fitting procedures that may not achieve truly optimal fits). The size of the confidence intervals obtained in
Step 5 depends on several factors, including

• the size of the original instance set I and the number m of instances per size (small instance sets tend
to lead to larger confidence intervals);

• the distance of n from the nearest problem sizes in I (if that distance is large, e.g., in the case of an
extrapolation challenge, the confidence interval tends to be large as well);

• the parametric model used in Step 3 (for example, exponential scaling models tend to produce larger
confidence intervals than low-order polynomial models, as do models with more parameters com-
pared to models with fewer parameters);

• the confidence level α used in Step 5 (obviously, smaller values of α lead to larger confidence inter-
vals).

The confidence level is usually set to a standard value (e.g., α = 0.95) and cannot be varied without incur-
ring substantial changes in the interpretation of the results, because it controls the acceptable probability
of type 1 errors made in Step 7 of our procedure. As is always the case in statistical hypothesis testing,
α should be chosen before running an experiment and must never be adapted post-hoc in order to achieve
a desired result in Step 7 of our procedure. The parametric model used in a given scaling study is typi-
cally determined (or at least considerably constrained) by the context of the study – although it is worth
reı̈terating that models with many parameters are often more difficult to fit and may be prone to producing
poor predictions.

The first two factors, however, can be varied more freely by the experimenter. The first of those is primarily
constrained by the computational resources available for the study, but otherwise should be chosen as gen-
erously as possible, by using a relatively large range of instances sizes and a large number of instances per
problem size. As stated previously, the latter is especially important for the rather commonly encountered
case of high variability in solver run-time across instances of the same size; typically, sets of least 50–100
instances per size should be used. The range and number of instances sizes considered is related to the
range of instances sizes for which predictions are desired and the number of adjustable parameters in the
model. As a rule of thumb, in order to prevent overfitting, the number of problem sizes considered should
be at least twice as high as the number of problem parameters.

In the case of an extrapolation challenge to larger instance sizes, the extrapolation distance (i.e., the second
of the four factors listed above) aimed for in a study often depends on the nature of the scaling model.
For fast-growing models, i.e., super-polynomial functions or polynomials with high degree (in particular,
higher than cubic), ratios ξ between the extrapolation distance and the range of instance sizes used for fitting
the model between 0.5 and 1 would pose considerable challenges to a model; extrapolation to even larger
ratios can be considered extreme challenges, and smaller ratios would only be modestly challenging. For
slow-growing scaling models, i.e., sub-polynomial functions or polynomials with small degree, the ratios
ξ characterising moderate, considerable and extreme extrapolation challenges would be somewhat larger,
to reflect the fact that small errors would not be expected to amplify as they do in the case of fast-growing
models.

Clearly, obtaining agreement between an observation and a scaling model in Step 7 provides stronger sup-
port for the model if the confidence interval, for reasonably chosen α, is relatively small (since in that case
there is a smaller risk of incorrectly failing to obtain disagreement, because of the model inaccuracy as
reflected in the size of the confidence interval). Therefore, in order to be meaningful, modest extrapolation
challenges should use large numbers of instances per instance size in order to achieve narrow confidence
intervals.

The validation procedure outlined above is particularly useful in the context of two or more scaling models.
In that case, it is desirable to choose I and m (and, in the case of an extrapolation challenge, the extrapo-
lation distance) such that the confidence intervals obtained for the given models are disjoint. If this cannot
be achieved, the overlap in the confidence intervals should be minimised. To avoid problematic bias in the

13

predicted median run-time
instance size polynomial model exponential model root-exponential model observed median run-time

2 000 [2 298.22 , 3 160.39] [3 793.00 , 5 266.68] [2 854.21 , 3 977.55] 3 400.82 (1000/1000)
2 500 [4 987.78 , 7 870.81] [16 378.03 , 28 010.39] [8 266.46 , 13 601.02] 8 855.28 (100/100)
3 000 [9 430.35 , 16 615.93] [70 584.38 , 147 716.74] [21 549.28 , 41 271.35] 30 024.49 (99/100)

Table 2: Bootstrap confidence intervals for α = 0.95 for median run-time predictions for Concorde
on RUE instances. The support data for all three models is based on 1000 instances for each problem
size, n = 500..1500; for 1000 bootstrap replicates with 1000 data points per problem size each, poly-
nomial, root-exponential and exponential fits were performed using the Levenberg-Marquardt Algorithm
(as implemented in the Gnuplot ‘fit’ function) on the untransformed instance size and run-time data, re-
sulting in 1000 predictions per instance size for each model. The α = 0.95 bootstrap confidence in-
tervals for the model parameters are [8.69 · 10−11, 8.44 · 10−9], [3.46, 4.11] for the polynomial model,
[6.71, 11.21], [1.00292, 1.00334] for the exponential model and [0.115, 0.373], [1.2212, 1.2630] for the root-
exponential model. Observed run-time data for n ≥ 2000 are identical to those in Table 1.

experimental protocol, confidence intervals need to be determined before Steps 6 and 7 of our procedure
are executed, i.e., before the observations used for assessing the given models are made.

Table 2 and Figure 4 show the bootstrap confidence intervals obtained by applying our procedure to the same
TSP data and model families considered in Section 5. As could be expected, the width of the confidence
intervals increases with the distance of the instance size considered from the upper boundary of the support.
Nevertheless, the confidence intervals for the three models quickly become disjoint, and only the ones for
the root-exponential model contain the observed median run-times for the three challenge instance sizes – an
observation that strongly supports this particular model of scaling for the median run-time of the Concorde
solver on the RUE TSP instances studied here.

We note that the bootstrap analysis used here for obtaining confidence intervals on model predictions can be
used analogously to determine confidence intervals for model parameters and thus to assess how accurately
the parameter values of a given model are determined by the observations based on which the model has
been built.

7 Discussion and Related Work

Investigations of the scaling of empirical run-time (and other performance measures) with problem instance
size are becoming increasingly popular in various areas of computing science. Such studies are pursued not
only by researchers interested primarily in solving particular application problems as efficiently as possible,
but also by theoreticians (see, e.g., Sanders and Fleischer, 2001).

Several earlier empirical scaling studies can be found in the literature on artificial intelligence. Gent and
Walsh (1993) investigated the scaling of several high-performance stochastic local search procedure for
SAT on satisfiable instances from the phase transition region of Uniform Random-3-SAT. Similar studies
have been reported by Parkes and Walser (1996), Gent et al. (1997) and Hoos and Stützle (2000), who
also fitted various parametric scaling models to the observed run-time data, using the approach discussed
in Section 4. Gent et al. (1997) challenged their models by interpolation and extrapolation to instance sizes
modestly smaller and larger than those used for fitting the models; while they provide anecdotal evidence
for the accuracy of their fits and predictions, they did not use any formalised methods for assessing their
models. Interestingly, the scaling results from all of these studies are somewhat inconclusive and may well
be worth revisiting, using more recent algorithms for the problems studied (SAT and asymmetric TSP) and
the methodology described in this work (particularly in Section 6).

More recent examples of graphical scaling analyses can be found in work by Subramani and Desovski
(2005) on algorithms for the negative cost cycle detection problem, and work by Kunkle (2002) on algo-

14

100

101

102

103

104

105

106

 0 500 1000 1500 2000 2500 3000 3500

ru
n-

tim
e

[C
P

U
 s

ec
]

problem size [# vertices]

best-fit exponential model
 best-fit root-exponential model

challenge data
support data

best-fit polynomial model

Figure 4: Scaling of median run-time required by the Concorde solver for solving RUE TSP instances;
the data and best-fit exponential, root-exponential and polynomial scaling models shown are the same as
in Figure 3. The 95-percentile bootstrap confidence intervals indicated for n ≥ 2000 are the same as in
Table 2.

rithms for longest common subsequence algorithms (this latter study also uses fitting of a single-parameter
model to the observed run-time data).

Aguirre-Hernández et al. (2007) used graphical analysis and model fitting techniques for analysis the run-
time scaling of several algorithms for RNA secondary structure design. To our knowledge, theirs is the
first study to contrast the scaling of the run-times observed for real-world problem instances with run-time
percentiles for a distribution of problem instances that were generated by means of a random generator
designed to produce realistic instances.

Goldsmith et al. (2007) developed a tool called Trend Profiler for determining how many times a set of
basic block in a given program will be executed as a function of given features of the input; besides instance
size, arbitrary other features can be considered. The tool builds simple linear and power-law models using
linear regression (in the latter case on log-transformed data); it also uses clustering of these models to
better deal with a large number of basic blocks (and hence execution counts). The quality of these models
is assessed graphically by means of scatter plots relating input feature values to observed and predicted
execution counts, and to residuals (i.e., differences between observed and predicted counts). Additionally,
R2 measures are used to quantify model accuracy (here, R2, also known as the coefficient of determination,
is the square of Pearson’s correlation coefficient). Interestingly, Trend Profiler also determines bootstrap
percentile confidence intervals for predicting the performance on extrapolated input feature values (using
essentially the same method as we do in Section 6), but does not provide direct support for validating models
based on those extrapolation challenges.

Goldsmith et al. (2007) have used Trend Profiler to analyse several pieces of real-world software, including
the widely used bzip file compressor; all examples they considered show slow-growth scaling of run-time
(polynomial in instance size with degree smaller than two). Their use of linear regression allows them to
circumvent the potential difficulties arising in the context of more general function-fitting techniques at
the price of being restricted to optimising the fits by means of RMSE minimisation on transformed data
(those fits can, and often do, differ significantly from those obtained by minimising errors on the untrans-

15

formed data and may lead to worse predictions, particularly for fast-growing scaling functions currently not
supported by Trend Profiler).

Sanders and Fleischer (2001) discuss various roles empirical run-time data can play in the context of ob-
taining, assessing and sharpening hypotheses about the scaling of a given algorithm’s performance with
instance size and illustrate these with several examples. Two of these examples involve the scaling of
run-time and use graphical analysis (and in one case, a standard t-test) to assess given scaling hypotheses.

McGeoch et al. (1997) and McGeoch et al. (2002) study the use of heuristic techniques for finding func-
tions that provide empirical bounds for the scaling of an algorithm’s run-time with instance size. The various
bounding procedures were designed to work with polynomial scaling functions; they were experimentally
evaluated on artificial and real scaling data designed or known to be bounded by low-order polynomial func-
tions (of degree at most 2). One of the most successful strategies investigated by McGeoch et al. is based
on linear regression (a simple model fitting technique) on log-log transformed data; this is conceptually
closely related to the use of log-log plots for the graphical detection of polynomial scaling (see Section 3).
At the same time, they reported that attempts to fit scaling models using non-linear regression (resulting
in minimum RMSE fits) produced poor results (see McGeoch et al., 2002, Section 5.4.6). We believe that
the reason for this obvservation might lie in their focus on slow-growing scaling functions with lower-order
terms that can render accurate model fitting difficult, as well as in the inadequacy of RMSE-minimisation
as an objective in the context of curve bounding (rather than curve fitting).4

It would be interesting to rigorously evaluate the methodology presented in this report on data from slow-
growing scaling functions, such as the ones considered by McGeoch et al. (1997), and furthermore to extend
our methodology to deal with the problem of bounding asymptotic growth rather than with that of modelling
and estimating run-time on which we focussed in this report.

The bootstrap analysis method presented in Section 6 is based on the standard non-parametric bootstrap
by Efron (see, e.g., Efron and Tibshirani, 1993) with percentile confidence intervals. There are several
alternative resampling methods that draw smaller samples (with or without replacement), as well as more
sophisticated methods for determining confidence intervals (see, e.g., Davison et al., 2003). While in prin-
ciple, such more advanced method should be applicable to the problem of validating scaling models (by
adapting Steps 2 and 5 in the procedure from Section 6 accordingly), the question which methods yield
the best results under which circumstances appears to be still under investigation (using a combination of
theoretical and empirical approaches).

In our own ongoing work on the scaling of high-performance TSP algorithms (which is partially based on
the data used in the examples used for illustrative purposes in this report) we have recently found evidence
that by using the standard bootstrap confidence intervals described in Section 6 we can distinguish mod-
els that fare well when subjected to extreme extrapolation challenges from those who do not (Hoos and
Stützle, 2009). We suspect that similar results can be achieved for algorithms whose empirical run-times
are characterised by slow-growing functions of instance size.

Finally, we note that the methodology outlined in this report for analysing the empirical scaling of run-time
with instance size can be applied analogously to performance measures different from run-time, such as
memory consumption or amount of communication, and to instance characteristics different from instance
size, such as the density of a given graph or the empirical entropy of a collection of items to be sorted.

In future work, we are planning to develop tools to support empirical scaling analyses as outlined in this
report. While similar in functionality to the recent Trend Profiler tool (Goldsmith et al., 2007), we in-
tend to provide support for a large family of non-linear scaling models, including models based on super-
polynomial functions, as well as for automated extrapolation challenges (using parameterised random in-
stance generators). We are also planning to develop tools to support the construction of parameterised
random problem instance generators based on features of collections of real-world instance, and the use of
such generators for obtaining empirical scaling results that meaningfully relate to the run-times observed
for real-world instances. We anticipate to integrate these tools into the High-performance Algorithm Labo-
ratory (HAL) system outlined by Hoos (2008).

4This latter hypothesis was also supported by Catherine McGeoch in personal communication.

16

Acknowledgements.

We thank Jonathan L. Shapiro (University of Manchester) for useful discussion of ideas underlying the
bootstrapping method used for assessing the scaling models during the 2008 Dagstuhl Seminar on Theory
of Evolutionary Algorithms and Thomas Stützle for additional comments. We are also grateful for clarifying
comments received from Catherine McGeoch regarding details of her work on curve bounding.

The run-time data for the Concord TSP Solver that has been used to exemplify our approach has been
generated in a joint project with Thomas Stützle, whose results are discussed and analysed in more detail
in TR-2009-17 (Hoos and Stützle, 2009).

References
Aguirre-Hernández, R., Hoos, H. H., and Condon, A. (2007). Computational RNA secondary structure

design: Empirical complexity and improved methods. BMC Bioinformatics, 8:34.

Ahuja, R. K. and Orlin, J. B. (1996). Use of Representative Operation Counts in Computational Testing of
Algorithms. INFORMS Journal on Computing, 8(3):318–330.

Andronescu, M., Fejes, A. P., Hutter, F., Hoos, H. H., and Condon, A. (2004). A new algorithm for RNA
secondary structure design. Journal of Molecular Biology, 336(3):607–624.

Applegate, D., Bixby, R., Chvatal, V., and Cook, W. (2006). The Traveling Salesman Problem: A Compu-
tational Study. Princeton University Press.

Bentley, J. L. and McIlroy, M. D. (1993). Engineering a sort function. Software–Practice and Experience,
23:1249–1265.

Biggar, P., Nash, N., Williams, K., and Gregg, D. (2008). An experimental study of sorting and branch
prediction. J. Exp. Algorithmics, 12:1–39.

Birattari, M. (2004). On the estimation of the expected performance of a metaheuristic on a class of in-
stances. Technical Report TR/IRIDIA/2004-01, IRIDIA, Université Libre de Bruxelles, Brussels, Bel-
gium.

Davison, A. C., Hinkley, D. V., and Young, G. A. (2003). Recent developments in bootstrap methodology.
Statistical Science, 18:141–157.

Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Chapman & Hall, New York.

Gent, I., Macintyre, E., Prosser, P., and Walsh, T. (1997). The scaling of search cost. In Proceedings of the
American Association of Artificial Intelligence, AAAI-97, pages 315–320. MIT Press.

Gent, I. P. and Walsh, T. (1993). Towards an understanding of hill–climbing procedures for SAT. In
Proceedings of the 10th National Conference on Artificial Intelligence, pages 28–33. AAAI Press / The
MIT Press, Menlo Park, CA, USA.

Goldsmith, S. F., Aiken, A. S., and Wilkerson, D. S. (2007). Measuring empirical computational complex-
ity. In ESEC-FSE ’07: Proceedings of the the 6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software engineering, pages 395–
404, New York, NY, USA. ACM.

Gomes, C. P., Selman, B., and Crato, N. (1997). Heavy-tailed distributions in combinatorial search. In
Proceedings of the 3rd International Conference on Principles and Practice of Constraint Programming
(CP97), volume 1330 of Lecture Notes in Computer Science, pages 121–135. Springer.

Gomes, C. P., Selman, B., Crato, N., and Kautz, H. (2000). Heavy-tailed phenomena in satisfiability and
constraint satisfaction problems. J. Autom. Reason., 24(1-2):67–100.

17

Hoos, H. and Stützle, T. (2000). Local search algorithms for SAT: An empirical evaluation. J. Automated
Reasoning, 24:421–481.

Hoos, H. H. (2008). Computer-aided design of high-performance algorithms. Technical Report TR-2008-
16, University of British Columbia, Department of Computer Science.

Hoos, H. H. and Stützle, T. (1998). Evaluating Las Vegas algorithms — pitfalls and remedies. In Cooper,
G. F. and Moral, S., editors, Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intel-
ligence, pages 238–245. Morgan Kaufmann Publishers, San Francisco, CA, USA.

Hoos, H. H. and Stützle, T. (2004). Stochastic Local Search—Foundations and Applications. Morgan
Kaufmann Publishers, USA.

Hoos, H. H. and Stützle, T. (2009). On the empirical scaling of run-time for finding optimal solutions to the
traveling salesman problem - part 1: Concorde on rue and tsplib instances. Technical Report TR-2009-17,
University of British Columbia.

Johnson, D. S. and McGeoch, L. A. (2002). Experimental analysis of heuristics for the STSP. In Gutin,
G. and Punnen, A., editors, The Traveling Salesman Problem and its Variations, pages 369–443. Kluwer
Academic Publishers.

Kunkle, D. (2002). Empirical complexities of longest common subsequence algorithms. Technical report,
Rochester Institute of Technology, Computer Science Department, Rochester, NY, USA.

Leyton-Brown, K., Pearson, M., and Shoham, Y. (2000). Towards a universal test suite for combinatorial
auction algorithms. In ACM Conference on Electronic Commerce, pages 66–76.

Li, X., Garzarán, M. J., and Padua, D. (2004). A dynamically tuned sorting library. In Proceedings
of the international symposium on Code generation and optimization: feedback-directed and runtime
optimization, CGO ’04, pages 111–122, Washington, DC, USA. IEEE Computer Society.

McGeoch, C., Sanders, P., Fleischer, R., Cohen, P. R., and Precup, D. (2002). Using finite experiments to
study asymptotic performance. pages 93–126.

McGeoch, C. C., Precup, D., and Cohen, P. R. (1997). How to find big-oh in your data set (and how not
to). In IDA ’97: Proceedings of the Second International Symposium on Advances in Intelligent Data
Analysis, Reasoning about Data, pages 41–52, London, UK. Springer-Verlag.

Parkes, A. J. and Walser, J. P. (1996). Tuning local search for satisfiability testing. In Proceedings of the
Thirteenth National Conference on Artificial Intelligence, volume 1, pages 356–362. AAAI Press / The
MIT Press, Menlo Park, CA, USA.

Sanders, P. and Fleischer, R. (2001). Asymptotic complexity from experiments? a case study for random-
ized algorithms. In WAE ’00: Proceedings of the 4th International Workshop on Algorithm Engineering,
pages 135–146, London, UK. Springer-Verlag.

Subramani, K. and Desovski, D. (2005). On the empirical efficiency of the vertex contraction algorithm for
detecting negative cost cyles in networks. In Computational Science ICCS 2005, volume 3514 of LNCS,
pages 180–187. Springer Berlin / Heidelberg.

18

