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Abstract

Stochastic local search algorithms based on the WalkSAT ar-
chitecture are among the best known methods for solving hard
and large instances of the propositional satisfiability problem
(SAT). The performance and behaviour of these algorithms
critically depends on the setting of the noise parameter, which
controls the greediness of the search process. The optimal set-
ting for the noise parameter varies considerably between dif-
ferent types and sizes of problem instances; consequently, con-
siderable manual tuning is typically required to obtain peak
performance. In this paper, we characterise the impact of the
noise setting on the behaviour of WalkSAT and introduce a
simple adaptive noise mechanism for WalkSAT that does not
require manual adjustment for different problem instances. We
present experimental results indicating that by using this self-
tuning noise mechanism, various WalkSAT variants (includ-
ing WalkSAT/SKC and Novelty+) achieve performance levels
close to their peak performance for instance-specific, manually
tuned noise settings.

Introduction and Background
The WalkSAT family of algorithms (Selman, Kautz, & Cohen
1994; McAllester, Selman, & Kautz 1997) comprises some
of the most widely studied and best-performing stochastic
local search (SLS) algorithms for the propositional satisfi-
ability problem (SAT). WalkSAT algorithms are based on
an iterative search process that in each step selects a cur-
rently unsatisfied clause of the given SAT instance at ran-
dom (according to a uniform probability distribution), se-
lects a variable appearing in that clause and flips it,i.e.,
changes its truth value from true to false or vice versa. Dif-
ferent methods are used for the variable selection within
unsatisfied clauses, giving rise to various WalkSAT algo-
rithms (McAllester, Selman, & Kautz 1997; Hoos 1999;
Hoos & Sẗutzle 2000a). All of these use a parameter called
thenoise parameterto control the degree of greediness in the
variable selection process,i.e., the degree to which variables
are likely to be selected that, when flipped, lead to a maximal
decrease in the number of unsatisfied clauses.

The noise parameter, which for all WalkSAT algorithms
except for WalkSAT/TABU represents a probability and
hence takes values between zero and one, has a major im-
pact on the performance of the respective algorithm, as mea-
sured by the probability of finding a solution,i.e., a model
of the given formula, within a fixed number of steps, or by
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the expected number of steps required for finding a solu-
tion. Not only is there a significant quantitative impact of
the noise parameter setting on performance, but the quali-
tative behaviour of the algorithm can be different depend-
ing on the noise setting. In particular, it has been shown
that for sufficiently high noise settings, the other important
parameter common to all WalkSAT algorithms, the num-
ber of steps after which the search process is restarted from
a randomly selected variable assignment (also calledcutoff
parameter) has little or no impact on the behaviour of the
algorithm (Parkes & Walser 1996; Hoos & Stützle 1999).
For low noise settings, however, finding an appropriate cut-
off setting is typically crucial for obtaining good perfor-
mance (Hoos & Sẗutzle 2000a). Fortunately, for many of the
most prominent and best-performing WalkSAT algorithms,
including WalkSAT/SKC, WalkSAT/TABU, Novelty+, and
R-Novelty+, peak performance is obtained for noise settings
high enough that the cutoff parameter does not affect perfor-
mance unless it is chosen too low, in which case performance
is degraded. This leaves the noise setting to be optimised
in order to achieve maximal performance of these WalkSAT
algorithms.1

Unfortunately, finding the optimal noise setting is typically
a difficult task. Because optimal noise settings appear to dif-
fer considerably depending on the given problem instance,
this task often requires experience and substantial experimen-
tation with various noise values (Hoos & Stützle 2000a). We
will see later that even relatively minor deviations from the
optimal noise setting can lead to a substantial increase in the
expected time for solving a given instance; and to make mat-
ters worse, the sensitivity of WalkSAT’s performancew.r.t.
the noise setting seems to increase with the size and hard-
ness of the problem instance to be solved. This complicates
the use of WalkSAT for solving SAT instances as well as the
evaluation, and hence the development, of new WalkSAT al-
gorithms.

One obvious approach for developing a self-tuning mech-
anism for the noise parameter in WalkSAT is to build on
McAllester et al.’s “invariants” that relate optimal noise pa-
rameter settings to certain statistics of the number of unsatis-
fied clauses over a (partial) WalkSAT trajectory (McAllester,

1It may be noted that Novelty+ and R-Novelty+ have an addi-
tional secondary noise parameter, which, however, seems to have
less impact on performance than the primary noise parameter. Fur-
thermore, one uniform setting of this parameter seems to achieve
excellent performance for a broad range of SAT instances and in-
stance types (Hoos 1999; Hoos & Stützle 2000a).
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Figure 1:Left: Noise response for Novelty+ on easy, medium, and hard instances from test-setflat100-239-100. Right:
RTDs for for WalkSAT/SKC on SAT-encoded block world planning instancebw large.b for approx. optimal, lower and
higher noise settings.

Selman, & Kautz 1997). Recently, it has been demonstrated
that these invariants can be used as the basis for automati-
cally tuning the noise parameter in WalkSAT/SKC (Patterson
& Kautz 2001). It should be noted, however, that these rela-
tionships are of an approximate nature and that thus far, they
have only be established for WalkSAT algorithms.

The approach followed in this paper is based on a more
general principle that can easily be generalised to SLS algo-
rithms other than the WalkSAT architecture and to hard com-
binatorial problems different from SAT. It substantially dif-
fers from the method proposed in (Patterson & Kautz 2001),
which optimises the noise setting for a given problem in-
stance prior to the actual (unmodified) search process, dur-
ing which the noise parameter setting is held fixed. The key
idea behind our noise mechanism is to use high noise values
only when they are needed to escape from stagnation situa-
tions in which the search procedure appears to make no fur-
ther progress towards finding a solution. This idea is closely
related to the motivation behind Reactive Tabu Search (Bat-
titi & Tecchiolli 1994) and Iterated Local Search (Lourenço,
Martin, & Stützle 2000), two high-performing SLS algo-
rithms for combinatorial optimisation. Applied to WalkSAT
algorithms such as Novelty+, this approach not only achieves
a remarkably robust and high performance, in some cases it
also improves over the peak performance of the best previ-
ously known WalkSAT variant for the respective problem in-
stance.

The Noise Response
We use the termnoise responseto refer to the functional de-
pendency of the local search cost on the setting of the noise
parameter. The noise response captures the characteristicim-
pact of the noise setting on the performance of a given al-
gorithm for a specific problem instance.Local search cost
(abbreviatedlsc) is defined as the expected time required by
a given algorithm (for specific parameter settings) to solvea
given problem instance. We estimatelsc by taking the av-
erage of an empirical run-time distribution (RTD). Since the
variance of WalkSAT RTD is typically very high, stable esti-
mates oflsc require empirical RTDs based on a large number

of successful runs. Unless specifically stated otherwise, the
lsc measurements reported in this paper are based on at least
250 successful runs. Furthermore, random restart within runs
was generally disabled by setting WalkSAT’s cutoff parame-
ter effectively to infinity. As we will see later, this does not
affect the peak performance of the algorithms studied here.

Measuring the noise response for more than 300 SAT
instances (most of which were taken from the SATLIB
Benchmark Collection), including SAT-encoded planning
and graph colouring problems, we found that the noise re-
sponse for WalkSAT/SKC, Novelty+, and R-Novelty+ has
always the same characteristic, concave shape: There ex-
ists a unique optimal noise setting minimisinglsc; for noise
higher than this optimal value,lsc increases monotonically;
likewise, lsc increases monontonically as noise is decreased
below the optimum value (typical examples are shown in
Figure 1) The response curve is asymmetric with a steeper
increase inlsc for lower-than-optimal than for higher-than-
optimal noise values and there is no evidence for discontinu-
ities in any of its derivatives.

As a consequence of this shape of the noise response curve,
there is a certain robustnessw.r.t. to minor variations in the
noise setting around the optimal value. Furthermore, lower-
than-optimal noise values tend to cause significantly more
difficulties in solving a problem instance than higher-than-
optimal noise values. (This is particularly the case for some
of the best-performing WalkSAT variants, such as Novelty+

and R-Novelty+.)
It has been previously observed that for optimal and

higher-than-optimal noise settings, WalkSAT and other SLS
algorithms for SAT show exponential RTDs (Hoos & Stützle
1999). For lower-than-optimal noise settings, RTDs indicate
stagnation behaviour reflected in an increase in the varia-
tion coefficient (mean/stddev) with decreasing noise (Hoos
& Stützle 2000a). (Typical RTDs are shown in Figure 1.)
Because of the effect of the initial search phase that is most
pronounced for relatively easy problem instances (relative to
their size) around the optimal noise value, the variation co-
efficient can also slightly increase as the noise is increased
beyond its optimal value.

There has also been some evidence in the literature that for
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Figure 2: Approx. optimal noise valuesvs. lscfor Novelty+

on test-setflat100-239-100.

sets of syntactically very similar problem instances, in par-
ticular for test-sets sampled from Uniform Random-3-SAT
distributions (Cheeseman, Kanefsky, & Taylor 1991), the op-
timal noise values for WalkSAT/SKC are very similar (Hoos
& Stützle 1999). This observation appears to hold for other
sets of syntactically similar problem instances as well as for
other WalkSAT variants A typical example is shown in Fig-
ure 2; note that despite the syntactical similarity of the in-
stances there are substantial differences in local search cost,
which, however, are not significantly correlated with optimal
noise settings. It may be noted that even at 250 tries per in-
stance thelsc estimates, and hence our estimates for optimal
noise settings, are often not very stable. For the test-set used
in Figure 2, differences in search cost between the extreme
optimal noise values obtained were smaller than a factor of
1.5.

However, optimal noise settings vary considerably with in-
stance type and size (McAllester, Selman, & Kautz 1997;
Hoos & Sẗutzle 2000a). This is particularly noticable for the
widely used SAT-encoded blocksworld planning instances
(Kautz & Selman 1996; Hoos & Stützle 2000b), where
the optimal noise values appear to decrease monotonically
with problem size. For other instance types, including Uni-
form Random-3-SAT instances and SAT-encoded Flat Graph
Colouring instances, the optimal noise value is apparentlynot
affected by instance size. Overall, it appears that for those
types of SAT instances where optimal noise changes with
instance size, larger instances tend to have smaller optimal
noise values (cf. Table 1).

Finally, there are significant differences in optimal noise
levels between different WalkSAT variants. This is not sur-
prising, considering the differences in how the noise param-
eter is used within these variants; but it is relevant in this
context because it means that when comparing the perfor-
mance of the variance for a given set of problem instances,
the noise parameter setting needs to be optimised for each
variant individually. This observation is particularly relevant
in the context of recent finding that no single WalkSAT vari-
ant generally outperforms all others (Hoos & Stützle 2000a).

These observations suggest the following approach to
manually tuning the noise parameter: For two initial guesses
for the optimal noise value, empirical RTDs are measured and

lsc values are calculated from these. These two initial noise
values are guessed in such a way that they are likely to be
slightly higher than the optimal noise value. Assuming that
the lsc measurements are reasonably accurate, and exploit-
ing the typical concave shape of the noise response curve, a
simple iterative method can be used to narrow down the opti-
mal noise value by measuring additionallscvalues for appro-
priately chosen noise settings. Typically, RTDs for no more
than four noise values need to be evaluated in order to obtain
a noise setting for which thelsc value is no more than 20%
above the minimum. The initial guesses are often based on
obvious structural properties of the problem instances, such
as the ratio of clauses to variables, or background knowledge
about the origin of the problem instances, including the trans-
formations used for encoding them into SAT.

The drawback of this method is that it requires to solve the
problem instance under consideration hundreds, maybe thou-
sands of times. This only makes sense when tuning an al-
gorithm for a whole class of problem instances in a scenario
where a large number of similar problem instances have to
be solved subsequently. According to our observation that
for several widely studied classes of SAT instances the opti-
mal noise settings seem to be very similar or identical over
whole distributions of problem instances, this situation is not
unrealistic (especially in the context of comparative studies
of SLS algorithms over a wide range of problem instances).

WalkSAT with Dynamic Noise
Given the observations made in the previous section, it ap-
pears very desirable to have a mechanism that automatically
adjusts the noise parameter in such a way that manual pa-
rameter tuning is no longer necessary for obtaining optimal
performance.

There are at least four types of information that can poten-
tially be used by such a mechanism:

(a) background knowledge provided by the algorithm de-
signer; this knowledge might reflect extensive experience
with the algorithm on various types of instances or theo-
retical insights into the algorithm’s behaviour;

(b) syntactic information about the problem instance; for
SAT instances, this may include the number of clauses and
variables as well information about clause lengths,etc.;

(c) information collected over the run of the algorithm so
far; in particular, this includes information about the search
space positions and objective function values encountered
over the (incomplete) search trajectory;

(d) information collected by specific mechanisms (or agents)
that perform certain types of “semantic” analyses on the
given problem instances; this can include active measure-
ments of properties of the underlying search space, such
as autocorrelation lengths for random walks (Weinberger
1990) or density of local optima (Frank, Cheeseman, &
Stutz 1997).

Obviously, a self-tuning noise mechanism can integrate vari-
ous types of information. In the following, we study a tech-
nique that is based on information of type (a), (b), and (c).
Ultimately, we believe that information of type (d) should
also be integrated, leading to a more robust and even better
performing algorithm. However, from a scientific perspective



as well as from an engineering point of view, it seems prefer-
able to start with rather simple self-tuning algorithms before
studying complex combinations of techniques.

Our approach is based on a simple and fairly general idea:
Based on the effect of the noise setting on the search pro-
cess, as described previously, and consistent with earlierob-
servations by McAllesteret al. (1997), it appears that op-
timal noise settings are those that achieve a good balance
between an algorithms ability to greedily find solutions by
following loca gradients, and its ability to escape from local
minima and other regions of the search space that attract the
greedy component of the algorithm, yet contain no solutions.
From this point of view, the standard static noise mechanism
that performs non-greedy (or not-so greedy) search steps re-
quired to escape from situations in which the search would
otherwise stagnate with a constant probability, seems to bea
rather crude and wasteful solution. Instead, it appears much
more reasonable to use this escape mechanism only when it
is really needed.

This leads to our adaptive noise approach, in which the
probability for performing greedy steps (or noise setting)is
dynamically adjusted based on search progress, as reflected
in the time elapsed since the last improvement in the objective
function has been achieved. At the beginning of the search
process, we use greedy search exclusively (noise=0). This
will typically lead to a series of rapid improvements in the ob-
jective function value, followed by stagnation (unless a solu-
tion to the given problem instance is found). In this situation,
the noise value is increased. If this increase is not sufficient to
escape from the stagnation situation,i.e., if it does not lead to
an improvement in objective function value within a certain
number of steps, the noise value is further increased. Even-
tually, the noise value should be high enough that the search
process overcomes the stagnation, at which point, the noise
can be gradually decreased, until the next stagnation situa-
tion is detected or a solution to the given problem instance is
found.

Our first implementation of the adaptive noise mechanism
uses very simple techniques for the basic components of stag-
nation detection, noise increase, and noise decrease. As an
indicator for search stagnation we use a predicate that is true
iff no improvement in objective function value has been ob-
served over the lastθ · m search steps, wherem is the num-
ber of clauses of the given problem instance andθ = 1/6.
Every incremental increase in the noise value is realised as
wp := wp + (1 − wp) · φ. the decrements are defined as
wp := wp − wp · φ/2 [see (*) at the end of paper], where
wp is the noise level andφ = 0.2.

The asymmetry between increases and decreases in the
noise setting is motivated by the fact that detecting search
stagnation is computationally more expensive than detecting
search progress and by the earlier observation that it is ad-
vantageous to approximate optimal noise levels from above
rather than from below. After the noise setting has been in-
creased or decreased, the current objective function valueis
stored and becomes the basis for measuring improvement,
and hence for detecting search stagnation. As a consequence,
between increases in noise level there is always a phase dur-
ing which the trajectory is monitored for search progress
without further increasing the noise. No such delay is en-
forced between successive decreases in noise level.

It may be noted that this adaptive noise mechanism uses

two internal parameters,θ andφ, that control its behaviour.
While it appears that this merely replaced the problem of
tuning one parameter,wp, by the potentially more difficult
problem of tuning these new parameters, the values ofθ and
φ used in this study were determined in preliminary experi-
ments and then kept fixed throughout the rest of this study.
In particular, the same values forθ andφ were used for all
problem instances used in our performance evaluation. As
we will see in the next section, various WalkSAT algorithms,
when using the adaptive noise mechanism introduced here,
achieve very impressive performance for the same fixed val-
ues ofθ andφ, while the same algorithms, for the same fixed
value ofwp perform substantially worse. This indicates that,
while our adaptive mechanism has some possible internal ad-
justments, these adjustments do not have to be tuned for each
problem instance or instance type to achieve good perfor-
mance.

Experimental Results and Discussion
The adaptive noise mechanism described in the previous sec-
tion can be easily integrated into existing implementations
of WalkSAT. In order to evaluate its performance against
against peak performance as obtained for manually tuned
static noise, we conducted extensive computational experi-
ments on widely used benchmark instances for SAT obtained
from SATLIB (Hoos & Sẗutzle 2000b). The benchmark set
used for our evaluation comprises SAT-encoded blocksworld
and logistics planning instances, two types of SAT-encoded
graph coulouring problems, critically constrained Uniform
Random-3-SAT instances, and SAT-encoded all-intervall-
series problems. In addition, primarily to assess scaling be-
haviour, we generated a new test-set of 100 critically con-
strained, satisfiable Uniform Random-3-SAT instances with
400 variables and 1700 clauses each. The instances labelled
uf∗-hard are those instances from the respective critically
constrained Uniform Random-3-SAT test-sets with highest
lsc for WalkSAT with manually tuned static noise.

As can be seen from Table 1, Novelty+ with dynamic
noise performs very well, considering the fact that it used no
instance-specific parameter tuning, and keeping in mind that
when using the standard static noise mechanism, especially
for hard and large instances, even relatively small deviations
from the optimal noise setting can easily lead to increases in
lsc of more than an order of magnitude. It may be noted that
the weakest performance is observed for the large DIMACS
graph colouring instances,g125 17 andg125 18. Addi-
tional experiments (not shown here) indicated that by usinga
different stagnation criterion, performance on these instances
can be significantly improved; this stagnation criterion, how-
ever, does not perform as well on the other instances tested
here. Similarly, we observed that for different parameter set-
ings θ andφ of the dynamic noise mechanism, the perfor-
mance on almost all instances can be further improved. These
observations suggest that more sophisticated mechanisms for
adjusting the noise should be able to achieve overall perfor-
mance improvements and in some cases are likely to exceed
the performance of the best known SLS algorithms for SAT.

It is worth noting that in three cases, dynamic noise
achieves better performance than approx. optimal static
noise. At the first glance, this might appear surprising; how-
ever, it should be noted that the adaptive noise mechanism
does not merely attempt to find the optimal static noise level,

hoos
wp := wp − wp · Á/2 [see (*) at the end of paper],



instance nov+opt nov+dyn dyn / opt
lsc noise lsc noise lsc ratio

bw large.a 9,388 0.40 12,156 0.47 ± 0.07 1.29
bw large.b 197,649 0.35 212,671 0.30 ± 0.05 1.08
bw large.c 7.57 · 10

6 0.20 8.77 · 10
6

0.19 ± 0.02 1.16
log.c 123,984 0.40 141,580 0.34 ± 0.03 1.14
flat100-hard 139,355 0.60 111,772 0.44 ± 0.07 0.80
g125 18 8,634 0.45 32,498 0.55 ± 0.04 3.76
g125 17 0.84 · 10

6 0.25 1.41 · 10
6

0.26 ± 0.03 1.68
uf100-hard 38,473 0.55 41,733 0.46 ± 0.07 1.08
uf250-hard 3.71 · 10

6 0.55 2.92 · 10
6

0.37 ± 0.02 0.79
uf400-hard 22.9 · 10

6 0.55 22.8 · 10
6

0.32 ± 0.01 1.00
ais10 1.96 · 10

6 0.40 1.72 · 10
6

0.33 ± 0.04 0.88

Table 1: Novelty+ with approx. optimal static noisevs. dynamic noise mechanism on individual benchmark instances. lsc
estimates are based on at least 250 runs for all instances except foruf400-hard, for which only 100 runs have been conducted.
For Novelty+ with dynamic noise, the mean and standar deviation of the noise over all runs is reported.
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Figure 3: Correlation betweenlsc for Novelty+ with opti-
mal static noisevs. dynamic noise mechanism on test-set
flat100-239-100.

but is rather based on the idea of using noise only when it is
actually needed. Nevertheless, as can be seen from compar-
ing the approx. optimal static noise levels and the statistics
over the noise levels used by the dynamic variants, there is a
correlation between the noise levels used in both cases. An
interesting exception can be observed for the hard Random-3-
SAT instances, for which the adaptive noise mechanism uses
noise levels that are sinificantly lower than the optimal static
noise setting. Generally, the low variation in noise level for
the dynamic mechanism indicates that the noise levels used
within runs on an individual instance are very consistent.

Table 2 shows the relative performance obtained by
Novelty+ with dynamic vs. approx. optimal static noise
across four of the test-sets of instances used in our evalua-
tion. Interestingly, the dynamic noise variant achieves a sig-
nificantly lower variation inlsc across all test-sets, as can be
seen by comparing the respective variation coefficients (vc).
Furthermore, as illustrated in Figure 3, there is a very strong
correlation between the performance of both variants, witha
small but significant tendency for dynamic noise to achieve
lower lsc than static noise on hard instances. This is con-
sistent with the intuition that the adaptive noise mechanism

requires a certain amount of time before reaching good noise
levels. (This “homing in” phenomenon can be observed from
traces of the actual noise level over search trajectories ofthe
algorithm, not shown here.)

As noted earlier, a significant advantage for conventional
WalkSAT algorithms including WalkSAT/SKC, Novelty+,
R-Novelty+ with static noise lies in the fact that they show
memory-less behaviour for optimal noise levels. This makes
their performance robustw.r.t. to the cutoff parameter and
provides the basis for achieving optimal speedup using a
straight-forward multiple independent tries parallelisation. It
turns out that the WalkSAT variants with dynamic noise also
have this property. In all cases, the respective RTDs can be
approximated well with exponential distributions, which is
indicative of the same memory-less behaviour as observed
for approx. optimal static noise.

So far, we have only compared run-times in terms of in-
dividual variable flips. But obviously, the time-complexity
of these search steps also needs to be taken into account
when assessing the performance of the new WalkSAT vari-
ants with dynamic noise. The time-complexity of search
steps was measured on a PC with dual Pentium III 733MHz
CPUs, 256MB CPU cache, and 1GB RAM running Redhat
Linux Version 2.4.9-6smp. It was found that for Novelty+,
R-Novelty+, and WalkSAT/SLK on set of benchmark in-
stances, the CPU-time per variable flip was typically about
5–10% higher for the dynamic noise variant compared to the
respective versions with standard static noise. This confirms
that even when using a straight-forward implementation, the
dynamic noise mechanism causes only a minimal overhead
w.r.t. the time-complexity of search steps. It may be noted
that in some cases, such as for WalkSAT/SKC when run-
ning onbw large.c, search steps were up to 20% faster
for dynamic than for static noise. This is caused by the fact
that the time-complexity of WalkSAT search steps depends
on the number of unsatisfied clauses, which in these cases
drops more rapidly in the initial search phase when using the
adaptive noise mechanism.

Due to space constraints, in this paper we report perfor-
mance results for Novelty+ with dynamic noise only. We ob-
tained, however, empirical evidence indicating that the same
adaptive noise mechanism appears to works well for Walk-
SAT/SKC and R-Novelty+. Using the same values forθ and



test-set lsc for nov+opt lsc for nov+dyn
mean cv median mean cv median

flat100-239 17,205 1.18 10,497 21,102 1.07 13,231
flat200-479 495,018 1.70 241,981 573,176 1.47 317,787
uf100-430∗ 2512.8 2.98 898.5 2550.9 2.16 1121.8
uf250-1065 53,938 5.26 8,755 64,542 4.72 13,015

Table 2: Novelty+ with dynamicvs.approx. optimal static noise on various sets of benchmark instances. (∗) The data for test-set
uf100-430 was computed for 100 randomly selected instances from that set. ‘cv’ denotes the coefficient of variation,i.e.,
stddev/mean, of the distribution oflscacross the respective test-sets.

φ as in the present study, the performance (lsc) achieved by
R-Novelty+ with dynamic noise is within a factor of 1.5 of
the performance obtained using approx. optimal static noise
settings for 8 of the 11 instances listed in Table 1; in four
of these cases, using dynamic noise results in substantially
better performane than using approx. optimal static noise.
Even better performance can be achieved for slightly differ-
entθ andφ settings. Similar results were obtained for Walk-
SAT/SKC; full reports on these experiments will be included
in an extended version of this paper (currently available asa
technical report).

Conclusions
We have characterised the noise response of WalkSAT al-
gorithms and introduced an adaptive noise mechanism that
achieve very good performance on a broad range of widely
used benchmark problems when compared to the peak perfor-
mance of traditional variants of WalkSAT with static noise.

In principle, this adaptive noise mechanism is easily ap-
plicable to a much wider range of stochastic local search al-
gorithms for SAT and other combinatorial problems. This
is particularly attractive for other high-performance algo-
rithms, such as WalkSAT/TABU (McAllester, Selman, &
Kautz 1997) and GSAT with tabu lists (Selman, Kautz, & Co-
hen 1994), DLM (Wu & Wah 1999), or ESG (Schuurmans,
Southy, & Holte 2001), which all have parameters that are
in many ways analogous to the noise parameter in the Walk-
SAT variants studied here. While the implementation of our
adaptive noise strategy for these algorithms is rather straight-
forward, its effectivity in terms of achieving good and robust
performance remains to be shown.

Another avenue for further investigation is the develop-
ment and analysis of different and improved criteria for
search stagnation which can be used within our generic adap-
tive mechanism. We strongly believe that the simple stagna-
tion criteria studied here can be substantially improved,e.g.,
by including measures such as search mobility (Schuurmans
& Southy 2000) or the ones used in McAllesteret al.’s invari-
ants (McAllester, Selman, & Kautz 1997). Further improve-
ments of the noise adaption mechanism and of adaptive SLS
algorithms in general could possibly be achieved by integrat-
ing simple search space analysis techniques into the search
control. Another promising avenue for further investigation
is to study the use of machine learning techniques for iden-
tifying features that are effective for detecting search stagna-
tion or for predicting optimal noise values.

Finally, it should be noted that the deeper reasons under-
lying the characteristic shape of the noise response curve for
WalkSAT algorithms and the shape of the corresponding run-
time distributions are unknown. Since these are intimitely

connected to crucial aspects of SLS behaviour, further inves-
tigation in this direction could lead to improvements in our
understanding of current SLS algorithms and in the design of
future methods.
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