
Propositional Satisfiability
and Constraint Satisfaction

(preliminary slide set based on a presentation by Suling Yang)

Holger H. Hoos
Cross-Out

The SAT Problem

● Given a propositional formula F, decide whether there
exists an assignment a of truth values to the variables in
F such that F is true under a.

● SAT algorithms are typically restricted to CNF
formulae as input; these arise naturally in many
applications of SAT (in other cases, CNF
transformations are used)

Polynomial Simplifications

● Elimination of duplicate literals and clauses:
– E.g.

● Elimination of tautological clauses:
– E.g.

● Elimination of subsumed clauses:
– E.g.

● Elimination of clauses containing pure literals

)()()()()(babababaaba 

Taa )(

)()()(bacbaba 

Unit Propagation

● Unit clause: a clause consisting of only a single
literal.
– E.g.

● Unit Resolution:

– E.g.

● Complete unit propagation: repeat application of
unit resolution until:
– no more unit clause, or
– empty clause, or
– no more clauses.

)()(baa 

)()()(bbaa 

Practical Applications of SAT

● Hardware verification:
Bounded Model Checking (BMC)

● Asynchronous circuit design:
Complete State Coding (CSC) Problem in State Transition
Graphs (STGs)

● Sports scheduling problems:
Finding fair schedules for basket ball tournaments

Generalisations and Related Problems

● Constraint Satisfaction Problems, in particular:
– Multi-Valued SAT (MVSAT)
– Pseudo-Boolean CSPs

● MAX-SAT (unweighted and weighted)

● Dynamic SAT (DynSAT)

● Propositional Validity Problem (VAL)

● Satisfiability of Quantified Boolean Formulae (QSAT)

● #SAT

The GSAT Architecture

● Based on 1-exchange neighbourhood

● Evaluation function g(F,a) maps each variable
assignment a to the number of clauses of the given
formula F unsatisfied under a (note: g(F,m)=0 iff m is a
model of F)

● GSAT algorithms differ primarily in the method used for
selecting the variable to be flipped in each step

● Initialisation: Random picking from space of all variable
assignments.

The Basic GSAT Algorithm

procedure GSAT(F, maxTries, maxSteps)
input: CNF formula F, positive integers maxTries and maxSteps
output: model of F or ‘no solution found’
for try := 1 to maxTries do

a := randomly chosen assignment of the variables in formula F;
for step := 1 to maxSteps do

if a satisfies F then return a end
x := randomly selected variable flipping which minimizes the

number of unsatisfied clauses;
a := a with x flipped;

 end
end
return ‘no solution found’

end GSAT

Basic GSAT (1)

● Simple iterative best improvement procedure: in each
step, a variable is flipped such that a maximal decrease
in the number of unsatisfied clauses is achieved,
breaking ties uniformly at random)

● Uses static restart mechanism to escape from local
minima

● Terminates when a model has been found, or maxTries
sequences of maxSteps variable flips have been
performed without finding a model

Basic GSAT (2)

● For any fixed number of restarts, GSAT is essentially
incomplete; severe stagnation behaviour is observed on
most SAT instances

● Provided the basis for many more powerful SLS algorithms
for SAT

The GWSAT Algorithm

procedure GWSAT(F, maxTries, maxSteps)
input: CNF formula F, positive integers maxTries and maxSteps
output: model of F or ‘no solution found’
for try := 1 to maxTries do

a := randomly chosen assignment of the variables in formula F;
for step := 1 to maxSteps do

if a satisfies F then return a end
with probability 1-wp: select a variable whose flip minimizes the

number of unsatisfied clauses
otherwise: choose a variable appearing in an unsatisfied

clause.uniformly at random
a := a with x flipped;

 end
end
return ‘no solution found’

end GWSAT

GSAT with Random Walk (GWSAT)

● Randomised best-improvement procedure – incorporates
conflict-directed random walk steps with probability wp

● Allows arbitrarily long sequences of random walk steps;
this implies that from arbitrary assignment, a model can
be reached with a positive, bounded probability, i.e.,
GWSAT is PAC

● Uses the same static restart mechanism as Basic GSAT

GSAT with Random Walk (continued)

● Substantially outperforms Basic GSAT

● Does not suffer from stagnation behaviour with sufficiently
high noise setting; shows exponential RTDs

● For low noise settings, stagnation behaviour is frequently
observed

The WalkSAT Architecture

● Based on 2-stage variable selection process focused on
the variables occurring in currently unsatisfied clauses:
– 1st stage: A clause c that is unsatisfied under the current

assignment is selected uniformly at random.
– 2nd stage: one of the variables appearing in c is flipped to

obtain the new assignment.

● Dynamically determined subset of the GSAT
neighbourhood relation – substantially reduced effective
neighbourhood size

● Random initialisation and static random restart
mechanism as in GSAT

WalkSAT Algorithm Outline

procedure WalkSAT(F, maxTries, maxSteps, slc)
input: CNF formula F, positive integers maxTries and maxSteps,

heuristic function slc
output: model of F or ‘no solution found’
for try := 1 to maxTries do

a := randomly chosen assignment of the variables in formula F;
for step := 1 to maxSteps do

if a satisfies F then return a end
c := randomly selected clause unsatisfied under a;
x := variable selected from c according to heuristic function slc;
a := a with x flipped;

 end
end
return ‘no solution found’

end WalkSAT

Novelty

● Uses a history-based variable selection mechanism;
based on age, i.e., the number of local search steps that
have been performed since a variable was last flipped.

● Uses the same scoring function as GSAT.

● Variable selection scheme:
– If the variable with the highest score does not have

minimal age among the variables within the same
clause, it is always selected.

– Otherwise, it is only selected with probability of 1-
p, where p is a parameter called noise setting.

– In the remaining cases, the variable with the
second-highest score is selected.

Novelty (2)

● Novelty always chooses between the best and second
best variable in the selected clause

● Compared to WalkSAT/SKC, Novelty is greedier and
more deterministic

● Novelty often performs substantially better than
WalkSAT/SKC, but it is essentially incomplete and
sometimes shows extreme stagnation behaviour.

Novelty+

● By extending Novelty with conflict-directed random
walk analogously to GWSAT, the essential
incompleteness as well as the empirically observed
stagnation behaviour can be overcome.

● With probability 1-wp, Novelty+ selects the variable
to be flipped according to the standard Novelty
mechanism; otherwise, it performs a random walk
step.

● Novelty+ is provably PAC for wp>0 and shows
exponential RTDs for sufficiently high setting of the
primary noise parameter p.

WalkSAT with Adaptive Noise

● The performance of WalkSAT algorithms such as
Novelty+ critically depends on noise parameter
setting

● Optimal noise setting depend on the given problem
instance and are typically rather difficult to
determine

● Adaptive WalkSAT use high noise values only when
they are needed to escape from stagnation situations.

Dynamic Local Search Algorithms for SAT

● Most DLS algorithms for SAT are based on variants of
GSAT as their underlying local search procedure.

● The penalty associated with clause c, clp(c), is updated in
each iteration.

● Evaluation function:

● Or equivalently:





),(
)(),(:),('

aFCUc
cclpaFgaFg








),(

)(:),('
1)(:)(

aFCUc

cclwaFg
cclpcclw

GSAT with Clause Weights
● Weights associated with clauses are initially set to one;

before each restart, the weights of all currently unsatisfied
clauses are increased by one.

● Underlying local search procedure: a variant of basic
GSAT that uses the modified evaluation function.

● Begins each local search phase from a randomly selected
variable assignment (different from other DLS methods).

● Performs substantially better than basic GSAT on some
instances; with GWSAT as underlying local search
procedure, further performance improvements can be
achieved.

Exponentiated Subgradient Algorithm (ESG)

● Based on a simple variant of GSAT that in each step
selects a variable appearing in a currently unsatisfied
clauses whose flip leads to a maximal reduction in the
total weight of unsatisfied clauses

● Scaling stage: weights of all clauses are multiplied by
a factor depending on their satisfaction status.

● Smoothing stage: all clause weights are smoothed
using the formula

● Note: Weight update steps are computationally much
more expensive than the weighted search steps.

wcclwcclw )1()(:)(

Scaling and Probabilistic Smoothing (SAPS)

● Scaling stage is restricted to the weights of currently
unsatisfied clauses; smoothing is only performed with a
certain probability.

● By applying the expensive smoothing operation only
occasionally, the time complexity of the weight update
procedure can be substantially reduced.

● Compared to ESG, SAPS typically requires a similar
number of variable flips for finding a model of a given
formula, but in terms of time performance it is
significantly superior to ESG, DLM, and best known
WalkSAT variants(except for Novelty+, which performs
better in some cases).

