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Goals

I Review basic principles of experimental design (= input
selection) and their applicability to ‘computer experiments’
(5.1.1, 5.1.2)

I Space filling designs and basic methods for generating them,
in particular, Latin hypercube designs (5.2)

I Briefly address weaknesses of simple LHDs and some basic
approaches for overcoming them (p.130f., 5.2.4)

I Discuss measures for spread and distance-based designs (5.3)

I Discuss uniform designs (5.4)

I Briefly discuss designs satisfying combinations of criteria (5.5)
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Introduction

I Experimental design = selection of inputs at which to
compute output of computer experiment to achieve specific
goals

I Chapters 5 and 6 of DACE covers different methods for doing
this

I Terminology:

I experimental region: set of (combinations of) input values for
which we wish to study or model response
point in experimental region: specific set of input values

I experimental design: set of points in experimental region for
which we compute the response
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Some Basic Principles of Experimental Design

I Goal: study how response varies as inputs are changed.

I In physical experiments (or any other scenario with
uncontrolled factors) this is is complicated by

I noise (unsystematic effect of uncontrolled factors)
I bias (systematic effect of uncontrolled factors)

I Classical experimental design uses
I replication and blocking to control for noise
I randomisation to control for bias

I In (deterministic) ‘computer experiments’, noise and bias
don’t occur, so replication, blocking and randomisation are
not needed.
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Additional complications can arise from:

I Correlated inputs (collinearity)

I Incorrect assumptions in the statistic model of the relation
between inputs and response (model bias)

I Experimental design methods are used to address these
problems:

I orthogonal design: use of uncorrelated input values makes it
possible to independently assess effects of individual inputs on
response (see also factorial designs)

I designs for model bias + use of diagnostics (e.g., scatter plots,
quantile plots) can protect against certain types of bias
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Optimal designs:

I formulate purpose of experiment in terms of optimising an
objective f

I select design such that design (i.e., set of points from
experimental region) optimises f

Example:

I Fit straight line to given data

I Goal: select design to give most precise (min variance)
estimate of slope
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Some common objectives for linear models:

I minimise generalised variance of least squares estimates of
model parameters (determinant of covariance matrix)
 D-optimal designs

I minimise average variance (trace of covariance matrix)
 A-optimal designs

I minimise average of predicted response over experimental
region
 I-optimal designs



Note:

I Many experiments have multiple goals and it is unclear how to
formulate an optimisation objective.

I Even if an optimisation objective has been formulated it,
finding optimal designs can be difficult.

I Chapter 6 will look further into optimal design; as it turns
out, one has to resort to heuristic optimisation methods for
practical implementations.



‘Computer experiments’ are deterministic, therefore:

I the only source of error is model bias
Note: In many cases there will be a trade-off between model accuracy

and model complexity. At least in cases where one experimental goal is to

gain a better understanding of the behaviour of the algorithm, e.g., for

the purpose of improving it, highly complex models may be undesirable.

I Designs should not take more than one observation for any set
of inputs. (If the code and the execution environment do not
change.)

I Designs should allow one to fit a variety of models.

I Designs should provide information about all portions of
experimental region. (If there is no prior knowledge /
assumptions about true relationship between inputs and
response.)
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As a corrolary of the last principle, one should use space-filling
designs, i.e., designs that spread points evenly throughout
experimental region.

Another reason for the use of space-filling designs:

I predictors for response are often based on interpolators (e.g.,
best linear unbiased predictors from Ch.3)

I prediction error at any point is relative to its distance from
clostest design point

I uneven designs can yield predictors that are very inaccurate in
sparsely observed parts of experimental region
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Simple Designs

Select points using ...

I regular grid over experimental region

I simple random sampling
for small samples in high-dimensional regions often exhibits
clustering and poorly covered areas

I stratified random sampling:
I divide region into n strata (spread evenly), sample one point
I randomy select one point from each stratum
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Latin Hypercube Designs (LHDs)

Motivation:

I if we expect that output depends only on few of the inputs
(factor sparsity), points should be evenly spaced when
projecting onto experimental region onto these factors

I if we assume (approximately) additive model, we also want a
design whose points are projected evenly over the values of
individual inputs

I it can be shown that (at least under some assumptions),
LHDs are better than (equally sized) designs obtained from
simple random sampling

Holger H. Hoos
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How to construct an LHD with n points for two continuous
inputs:

1. partition experimental region into a square with n2 cells (n
along each dimension)

2. labels the cells with integers from {1, . . . , n} such that a Latin
square is obtained

in a Latin square, each integer occurs exactly once in each
row and column

3. select one of the integers, say i , at random

4. sample one point from each cell labelled with i
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General procedure for constructing an LHD of size n given d
continuous, independent inputs:

1. divide domain of each input into n intervals

2. construct an n × d matrix Π whose columns are different
randomly selected points permutations of {1, . . . , n}

3. each row of Π corresponds to a cell in the hyper-rectangle
induced by the interval partitioning from Step 1
sample one point from each of these cells (for deterministic
inputs: centre of each cell)
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Note: LHDs need not be space-filling!

Potential remedies:

I randomised orthogonal array designs: ensure that
u-dimensional projections of points (for u = 1, . . . , t) are
regular grids
exist only for certain values of n and t

I cascading LHDs: construct secondary LHDs for small regions
around points of primary LHD

I use additional criteria to select ‘good’ LHD (can also be
applied to designs obtained from simple or stratified random
sampling)
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Distance-based designs

Key idea: Use measure of spread to assess quality of design

Examples:

I maximin distance design: design D that maximises smallest
distance between any two points in D
distance can be measured using L1 or L2 norm (or other
metrics)

I minimax distance design: design D that minimises the largest
distance between any point in the experimental region and the
design



Distance-based designs

Key idea: Use measure of spread to assess quality of design

Examples:

I maximin distance design: design D that maximises smallest
distance between any two points in D
distance can be measured using L1 or L2 norm (or other
metrics)

I minimax distance design: design D that minimises the largest
distance between any point in the experimental region and the
design



Distance-based designs

Key idea: Use measure of spread to assess quality of design

Examples:

I maximin distance design: design D that maximises smallest
distance between any two points in D
distance can be measured using L1 or L2 norm (or other
metrics)

I minimax distance design: design D that minimises the largest
distance between any point in the experimental region and the
design



I optimal average distance design: design D that minimises
average distance between pairs of points in D

generalisation: use average distance criterion function instead
of simple average of pairwise distance

Note: these designs need not have non-redundant projections.

To avoid this potential problem, optimal average distance
criterion can be computed for each relevant projection, and
the average of these is minimised to obtain a optimal average
projection designs.

[The formulae look somewhat daunting, but are conceptually quite

simple; when considering projections into subspaces with different

dimensions, distances need to be normalised to make them comparable.]
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Uniform Designs

Key idea: Measure uniformity of design by comparison against
uniform distribution using discrepancy measures

Examples:

I L∞ discrepancy: largest deviation between empirical
distribution and uniform distribution function (= test statistic
of Kolmogorov-Smirnov test for goodness of fit to uniform
distribution)

[Formal complication: cumulative empirical distribution
function of vectors is based on componentwise ordering of
vectors in d-dimensional space.]

I Lp discrepancy: average deviation distance empirical
distribution and uniform distribution function, where distance
is measured using an Lp norm
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Uniform designs are designs with minimal discrepancy.

Uniform designs have some useful properties, e.g.

I for standard regression model (with known regression
functions, unknown regression parameters, unknown model
bias function π and normal random error, see p.144), under
certain conditions on φ uniform designs maximise the power
of the F test of regression.

I uniform designs may often be orthogonal designs
 efficient algorithms for finding uniform designs may be
useful in searching for orthogonal designs
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Method for constructing (nearly) uniform designs:

Key idea: Use uniform 1-dimensional designs for each input to
reduce the domain of the experimental region

Search over LHDs constructed from n × d matrices consisting of d
permutations of {1, . . . , n} to find discrepancy-minimising design.

[Fang et al. (2000) use threshold accepting, a stochastic local
search method similar to Simulated Annealing, for solving this
discrete combinatorial optimisation problem.]
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Note:

I discrepancy as measured by L∞ does not always adequately
reflect our intuitive notion of uniformity (see Example 5.7,
p.164ff.)

I other discrepancy measure may perform better [but no one
seems to be sure of this]



Designs satisfying multiple criteria

I each of the the previously discussed methods and criteria
produces designs with attractive properties

I but: none of them is completely satisfactory on their own

I Idea: Generate designs that combine attractive features

I Generate and test method:

1. generate multiple candidate designs, typically a set of
LHDs

2. select a candidate design based on a secondary criterion,
e.g., uniformity
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