
Space-Filling Designs

for Computer Experiments

Holger H. Hoos

based on Chapter 5 of T.J. Santner et al.:
The Design and Analysis of Computer Experiments, Springer, 2003.



Goals

I Review basic principles of experimental design (= input
selection) and their applicability to ‘computer experiments’
(5.1.1, 5.1.2)

I Space filling designs and basic methods for generating them,
in particular, Latin hypercube designs (5.2)

I Briefly address weaknesses of simple LHDs and some basic
approaches for overcoming them (p.130f., 5.2.4)

I Discuss measures for spread and distance-based designs (5.3)

I Discuss uniform designs (5.4)

I Briefly discuss designs satisfying combinations of criteria (5.5)



Goals

I Review basic principles of experimental design (= input
selection) and their applicability to ‘computer experiments’
(5.1.1, 5.1.2)

I Space filling designs and basic methods for generating them,
in particular, Latin hypercube designs (5.2)

I Briefly address weaknesses of simple LHDs and some basic
approaches for overcoming them (p.130f., 5.2.4)

I Discuss measures for spread and distance-based designs (5.3)

I Discuss uniform designs (5.4)

I Briefly discuss designs satisfying combinations of criteria (5.5)



Goals

I Review basic principles of experimental design (= input
selection) and their applicability to ‘computer experiments’
(5.1.1, 5.1.2)

I Space filling designs and basic methods for generating them,
in particular, Latin hypercube designs (5.2)

I Briefly address weaknesses of simple LHDs and some basic
approaches for overcoming them (p.130f., 5.2.4)

I Discuss measures for spread and distance-based designs (5.3)

I Discuss uniform designs (5.4)

I Briefly discuss designs satisfying combinations of criteria (5.5)



Goals

I Review basic principles of experimental design (= input
selection) and their applicability to ‘computer experiments’
(5.1.1, 5.1.2)

I Space filling designs and basic methods for generating them,
in particular, Latin hypercube designs (5.2)

I Briefly address weaknesses of simple LHDs and some basic
approaches for overcoming them (p.130f., 5.2.4)

I Discuss measures for spread and distance-based designs (5.3)

I Discuss uniform designs (5.4)

I Briefly discuss designs satisfying combinations of criteria (5.5)



Goals

I Review basic principles of experimental design (= input
selection) and their applicability to ‘computer experiments’
(5.1.1, 5.1.2)

I Space filling designs and basic methods for generating them,
in particular, Latin hypercube designs (5.2)

I Briefly address weaknesses of simple LHDs and some basic
approaches for overcoming them (p.130f., 5.2.4)

I Discuss measures for spread and distance-based designs (5.3)

I Discuss uniform designs (5.4)

I Briefly discuss designs satisfying combinations of criteria (5.5)



Goals

I Review basic principles of experimental design (= input
selection) and their applicability to ‘computer experiments’
(5.1.1, 5.1.2)

I Space filling designs and basic methods for generating them,
in particular, Latin hypercube designs (5.2)

I Briefly address weaknesses of simple LHDs and some basic
approaches for overcoming them (p.130f., 5.2.4)

I Discuss measures for spread and distance-based designs (5.3)

I Discuss uniform designs (5.4)

I Briefly discuss designs satisfying combinations of criteria (5.5)



Introduction

I Experimental design = selection of inputs at which to
compute output of computer experiment to achieve specific
goals

I Chapters 5 and 6 of DACE covers different methods for doing
this

I Terminology:

I experimental region: set of (combinations of) input values for
which we wish to study or model response
point in experimental region: specific set of input values

I experimental design: set of points in experimental region for
which we compute the response



Introduction

I Experimental design = selection of inputs at which to
compute output of computer experiment to achieve specific
goals

I Chapters 5 and 6 of DACE covers different methods for doing
this

I Terminology:

I experimental region: set of (combinations of) input values for
which we wish to study or model response
point in experimental region: specific set of input values

I experimental design: set of points in experimental region for
which we compute the response



Some Basic Principles of Experimental Design

I Goal: study how response varies as inputs are changed.

I In physical experiments (or any other scenario with
uncontrolled factors) this is is complicated by

I noise (unsystematic effect of uncontrolled factors)
I bias (systematic effect of uncontrolled factors)

I Classical experimental design uses
I replication and blocking to control for noise
I randomisation to control for bias

I In (deterministic) ‘computer experiments’, noise and bias
don’t occur, so replication, blocking and randomisation are
not needed.



Some Basic Principles of Experimental Design

I Goal: study how response varies as inputs are changed.

I In physical experiments (or any other scenario with
uncontrolled factors) this is is complicated by

I noise (unsystematic effect of uncontrolled factors)
I bias (systematic effect of uncontrolled factors)

I Classical experimental design uses
I replication and blocking to control for noise
I randomisation to control for bias

I In (deterministic) ‘computer experiments’, noise and bias
don’t occur, so replication, blocking and randomisation are
not needed.



Some Basic Principles of Experimental Design

I Goal: study how response varies as inputs are changed.

I In physical experiments (or any other scenario with
uncontrolled factors) this is is complicated by

I noise (unsystematic effect of uncontrolled factors)
I bias (systematic effect of uncontrolled factors)

I Classical experimental design uses
I replication and blocking to control for noise
I randomisation to control for bias

I In (deterministic) ‘computer experiments’, noise and bias
don’t occur, so replication, blocking and randomisation are
not needed.



Some Basic Principles of Experimental Design

I Goal: study how response varies as inputs are changed.

I In physical experiments (or any other scenario with
uncontrolled factors) this is is complicated by

I noise (unsystematic effect of uncontrolled factors)
I bias (systematic effect of uncontrolled factors)

I Classical experimental design uses
I replication and blocking to control for noise
I randomisation to control for bias

I In (deterministic) ‘computer experiments’, noise and bias
don’t occur, so replication, blocking and randomisation are
not needed.



Additional complications can arise from:

I Correlated inputs (collinearity)

I Incorrect assumptions in the statistic model of the relation
between inputs and response (model bias)

I Experimental design methods are used to address these
problems:

I orthogonal design: use of uncorrelated input values makes it
possible to independently assess effects of individual inputs on
response (see also factorial designs)

I designs for model bias + use of diagnostics (e.g., scatter plots,
quantile plots) can protect against certain types of bias



Additional complications can arise from:

I Correlated inputs (collinearity)

I Incorrect assumptions in the statistic model of the relation
between inputs and response (model bias)

I Experimental design methods are used to address these
problems:

I orthogonal design: use of uncorrelated input values makes it
possible to independently assess effects of individual inputs on
response (see also factorial designs)

I designs for model bias + use of diagnostics (e.g., scatter plots,
quantile plots) can protect against certain types of bias



Additional complications can arise from:

I Correlated inputs (collinearity)

I Incorrect assumptions in the statistic model of the relation
between inputs and response (model bias)

I Experimental design methods are used to address these
problems:

I orthogonal design: use of uncorrelated input values makes it
possible to independently assess effects of individual inputs on
response (see also factorial designs)

I designs for model bias + use of diagnostics (e.g., scatter plots,
quantile plots) can protect against certain types of bias



Optimal designs:

I formulate purpose of experiment in terms of optimising an
objective f

I select design such that design (i.e., set of points from
experimental region) optimises f

Example:

I Fit straight line to given data

I Goal: select design to give most precise (min variance)
estimate of slope



Optimal designs:

I formulate purpose of experiment in terms of optimising an
objective f

I select design such that design (i.e., set of points from
experimental region) optimises f

Example:

I Fit straight line to given data

I Goal: select design to give most precise (min variance)
estimate of slope



Some common objectives for linear models:

I minimise generalised variance of least squares estimates of
model parameters (determinant of covariance matrix)
 D-optimal designs

I minimise average variance (trace of covariance matrix)
 A-optimal designs

I minimise average of predicted response over experimental
region
 I-optimal designs



Note:

I Many experiments have multiple goals and it is unclear how to
formulate an optimisation objective.

I Even if an optimisation objective has been formulated it,
finding optimal designs can be difficult.

I Chapter 6 will look further into optimal design; as it turns
out, one has to resort to heuristic optimisation methods for
practical implementations.



‘Computer experiments’ are deterministic, therefore:

I the only source of error is model bias
Note: In many cases there will be a trade-off between model accuracy

and model complexity. At least in cases where one experimental goal is to

gain a better understanding of the behaviour of the algorithm, e.g., for

the purpose of improving it, highly complex models may be undesirable.

I Designs should not take more than one observation for any set
of inputs. (If the code and the execution environment do not
change.)

I Designs should allow one to fit a variety of models.

I Designs should provide information about all portions of
experimental region. (If there is no prior knowledge /
assumptions about true relationship between inputs and
response.)



‘Computer experiments’ are deterministic, therefore:

I the only source of error is model bias
Note: In many cases there will be a trade-off between model accuracy

and model complexity. At least in cases where one experimental goal is to

gain a better understanding of the behaviour of the algorithm, e.g., for

the purpose of improving it, highly complex models may be undesirable.

I Designs should not take more than one observation for any set
of inputs. (If the code and the execution environment do not
change.)

I Designs should allow one to fit a variety of models.

I Designs should provide information about all portions of
experimental region. (If there is no prior knowledge /
assumptions about true relationship between inputs and
response.)



‘Computer experiments’ are deterministic, therefore:

I the only source of error is model bias
Note: In many cases there will be a trade-off between model accuracy

and model complexity. At least in cases where one experimental goal is to

gain a better understanding of the behaviour of the algorithm, e.g., for

the purpose of improving it, highly complex models may be undesirable.

I Designs should not take more than one observation for any set
of inputs. (If the code and the execution environment do not
change.)

I Designs should allow one to fit a variety of models.

I Designs should provide information about all portions of
experimental region. (If there is no prior knowledge /
assumptions about true relationship between inputs and
response.)



‘Computer experiments’ are deterministic, therefore:

I the only source of error is model bias
Note: In many cases there will be a trade-off between model accuracy

and model complexity. At least in cases where one experimental goal is to

gain a better understanding of the behaviour of the algorithm, e.g., for

the purpose of improving it, highly complex models may be undesirable.

I Designs should not take more than one observation for any set
of inputs. (If the code and the execution environment do not
change.)

I Designs should allow one to fit a variety of models.

I Designs should provide information about all portions of
experimental region. (If there is no prior knowledge /
assumptions about true relationship between inputs and
response.)



As a corrolary of the last principle, one should use space-filling
designs, i.e., designs that spread points evenly throughout
experimental region.

Another reason for the use of space-filling designs:

I predictors for response are often based on interpolators (e.g.,
best linear unbiased predictors from Ch.3)

I prediction error at any point is relative to its distance from
clostest design point

I uneven designs can yield predictors that are very inaccurate in
sparsely observed parts of experimental region



As a corrolary of the last principle, one should use space-filling
designs, i.e., designs that spread points evenly throughout
experimental region.

Another reason for the use of space-filling designs:

I predictors for response are often based on interpolators (e.g.,
best linear unbiased predictors from Ch.3)

I prediction error at any point is relative to its distance from
clostest design point

I uneven designs can yield predictors that are very inaccurate in
sparsely observed parts of experimental region



Simple Designs

Select points using ...

I regular grid over experimental region

I simple random sampling
for small samples in high-dimensional regions often exhibits
clustering and poorly covered areas

I stratified random sampling:
I divide region into n strata (spread evenly), sample one point
I randomy select one point from each stratum



Simple Designs

Select points using ...

I regular grid over experimental region

I simple random sampling

for small samples in high-dimensional regions often exhibits
clustering and poorly covered areas

I stratified random sampling:
I divide region into n strata (spread evenly), sample one point
I randomy select one point from each stratum



Simple Designs

Select points using ...

I regular grid over experimental region

I simple random sampling
for small samples in high-dimensional regions often exhibits
clustering and poorly covered areas

I stratified random sampling:
I divide region into n strata (spread evenly), sample one point
I randomy select one point from each stratum



Simple Designs

Select points using ...

I regular grid over experimental region

I simple random sampling
for small samples in high-dimensional regions often exhibits
clustering and poorly covered areas

I stratified random sampling:
I divide region into n strata (spread evenly), sample one point
I randomy select one point from each stratum



Latin Hypercube Designs (LHDs)

Motivation:

I if we expect that output depends only on few of the inputs
(factor sparsity), points should be evenly spaced when
projecting onto experimental region onto these factors

I if we assume (approximately) additive model, we also want a
design whose points are projected evenly over the values of
individual inputs

I it can be shown that (at least under some assumptions),
LHDs are better than (equally sized) designs obtained from
simple random sampling

Holger H. Hoos
Pencil



Latin Hypercube Designs (LHDs)

Motivation:

I if we expect that output depends only on few of the inputs
(factor sparsity), points should be evenly spaced when
projecting onto experimental region onto these factors

I if we assume (approximately) additive model, we also want a
design whose points are projected evenly over the values of
individual inputs

I it can be shown that (at least under some assumptions),
LHDs are better than (equally sized) designs obtained from
simple random sampling



Latin Hypercube Designs (LHDs)

Motivation:

I if we expect that output depends only on few of the inputs
(factor sparsity), points should be evenly spaced when
projecting onto experimental region onto these factors

I if we assume (approximately) additive model, we also want a
design whose points are projected evenly over the values of
individual inputs

I it can be shown that (at least under some assumptions),
LHDs are better than (equally sized) designs obtained from
simple random sampling



How to construct an LHD with n points for two continuous
inputs:

1. partition experimental region into a square with n2 cells (n
along each dimension)

2. labels the cells with integers from {1, . . . , n} such that a Latin
square is obtained

in a Latin square, each integer occurs exactly once in each
row and column

3. select one of the integers, say i , at random

4. sample one point from each cell labelled with i



How to construct an LHD with n points for two continuous
inputs:

1. partition experimental region into a square with n2 cells (n
along each dimension)

2. labels the cells with integers from {1, . . . , n} such that a Latin
square is obtained

in a Latin square, each integer occurs exactly once in each
row and column

3. select one of the integers, say i , at random

4. sample one point from each cell labelled with i



How to construct an LHD with n points for two continuous
inputs:

1. partition experimental region into a square with n2 cells (n
along each dimension)

2. labels the cells with integers from {1, . . . , n} such that a Latin
square is obtained

in a Latin square, each integer occurs exactly once in each
row and column

3. select one of the integers, say i , at random

4. sample one point from each cell labelled with i



How to construct an LHD with n points for two continuous
inputs:

1. partition experimental region into a square with n2 cells (n
along each dimension)

2. labels the cells with integers from {1, . . . , n} such that a Latin
square is obtained

in a Latin square, each integer occurs exactly once in each
row and column

3. select one of the integers, say i , at random

4. sample one point from each cell labelled with i



General procedure for constructing an LHD of size n given d
continuous, independent inputs:

1. divide domain of each input into n intervals

2. construct an n × d matrix Π whose columns are different
randomly selected points permutations of {1, . . . , n}

3. each row of Π corresponds to a cell in the hyper-rectangle
induced by the interval partitioning from Step 1
sample one point from each of these cells (for deterministic
inputs: centre of each cell)



General procedure for constructing an LHD of size n given d
continuous, independent inputs:

1. divide domain of each input into n intervals

2. construct an n × d matrix Π whose columns are different
randomly selected points permutations of {1, . . . , n}

3. each row of Π corresponds to a cell in the hyper-rectangle
induced by the interval partitioning from Step 1
sample one point from each of these cells (for deterministic
inputs: centre of each cell)



General procedure for constructing an LHD of size n given d
continuous, independent inputs:

1. divide domain of each input into n intervals

2. construct an n × d matrix Π whose columns are different
randomly selected points permutations of {1, . . . , n}

3. each row of Π corresponds to a cell in the hyper-rectangle
induced by the interval partitioning from Step 1
sample one point from each of these cells (for deterministic
inputs: centre of each cell)



Note: LHDs need not be space-filling!

Potential remedies:

I randomised orthogonal array designs: ensure that
u-dimensional projections of points (for u = 1, . . . , t) are
regular grids
exist only for certain values of n and t

I cascading LHDs: construct secondary LHDs for small regions
around points of primary LHD

I use additional criteria to select ‘good’ LHD (can also be
applied to designs obtained from simple or stratified random
sampling)



Note: LHDs need not be space-filling!

Potential remedies:

I randomised orthogonal array designs: ensure that
u-dimensional projections of points (for u = 1, . . . , t) are
regular grids
exist only for certain values of n and t

I cascading LHDs: construct secondary LHDs for small regions
around points of primary LHD

I use additional criteria to select ‘good’ LHD (can also be
applied to designs obtained from simple or stratified random
sampling)



Note: LHDs need not be space-filling!

Potential remedies:

I randomised orthogonal array designs: ensure that
u-dimensional projections of points (for u = 1, . . . , t) are
regular grids
exist only for certain values of n and t

I cascading LHDs: construct secondary LHDs for small regions
around points of primary LHD

I use additional criteria to select ‘good’ LHD (can also be
applied to designs obtained from simple or stratified random
sampling)



Note: LHDs need not be space-filling!

Potential remedies:

I randomised orthogonal array designs: ensure that
u-dimensional projections of points (for u = 1, . . . , t) are
regular grids
exist only for certain values of n and t

I cascading LHDs: construct secondary LHDs for small regions
around points of primary LHD

I use additional criteria to select ‘good’ LHD (can also be
applied to designs obtained from simple or stratified random
sampling)



Distance-based designs

Key idea: Use measure of spread to assess quality of design

Examples:

I maximin distance design: design D that maximises smallest
distance between any two points in D
distance can be measured using L1 or L2 norm (or other
metrics)

I minimax distance design: design D that minimises the largest
distance between any point in the experimental region and the
design



Distance-based designs

Key idea: Use measure of spread to assess quality of design

Examples:

I maximin distance design: design D that maximises smallest
distance between any two points in D
distance can be measured using L1 or L2 norm (or other
metrics)

I minimax distance design: design D that minimises the largest
distance between any point in the experimental region and the
design



Distance-based designs

Key idea: Use measure of spread to assess quality of design

Examples:

I maximin distance design: design D that maximises smallest
distance between any two points in D
distance can be measured using L1 or L2 norm (or other
metrics)

I minimax distance design: design D that minimises the largest
distance between any point in the experimental region and the
design



I optimal average distance design: design D that minimises
average distance between pairs of points in D

generalisation: use average distance criterion function instead
of simple average of pairwise distance

Note: these designs need not have non-redundant projections.

To avoid this potential problem, optimal average distance
criterion can be computed for each relevant projection, and
the average of these is minimised to obtain a optimal average
projection designs.

[The formulae look somewhat daunting, but are conceptually quite

simple; when considering projections into subspaces with different

dimensions, distances need to be normalised to make them comparable.]



I optimal average distance design: design D that minimises
average distance between pairs of points in D

generalisation: use average distance criterion function instead
of simple average of pairwise distance

Note: these designs need not have non-redundant projections.

To avoid this potential problem, optimal average distance
criterion can be computed for each relevant projection, and
the average of these is minimised to obtain a optimal average
projection designs.

[The formulae look somewhat daunting, but are conceptually quite

simple; when considering projections into subspaces with different

dimensions, distances need to be normalised to make them comparable.]



I optimal average distance design: design D that minimises
average distance between pairs of points in D

generalisation: use average distance criterion function instead
of simple average of pairwise distance

Note: these designs need not have non-redundant projections.

To avoid this potential problem, optimal average distance
criterion can be computed for each relevant projection, and
the average of these is minimised to obtain a optimal average
projection designs.

[The formulae look somewhat daunting, but are conceptually quite

simple; when considering projections into subspaces with different

dimensions, distances need to be normalised to make them comparable.]



Uniform Designs

Key idea: Measure uniformity of design by comparison against
uniform distribution using discrepancy measures

Examples:

I L∞ discrepancy: largest deviation between empirical
distribution and uniform distribution function (= test statistic
of Kolmogorov-Smirnov test for goodness of fit to uniform
distribution)

[Formal complication: cumulative empirical distribution
function of vectors is based on componentwise ordering of
vectors in d-dimensional space.]

I Lp discrepancy: average deviation distance empirical
distribution and uniform distribution function, where distance
is measured using an Lp norm



Uniform Designs

Key idea: Measure uniformity of design by comparison against
uniform distribution using discrepancy measures

Examples:

I L∞ discrepancy: largest deviation between empirical
distribution and uniform distribution function (= test statistic
of Kolmogorov-Smirnov test for goodness of fit to uniform
distribution)

[Formal complication: cumulative empirical distribution
function of vectors is based on componentwise ordering of
vectors in d-dimensional space.]

I Lp discrepancy: average deviation distance empirical
distribution and uniform distribution function, where distance
is measured using an Lp norm



Uniform designs are designs with minimal discrepancy.

Uniform designs have some useful properties, e.g.

I for standard regression model (with known regression
functions, unknown regression parameters, unknown model
bias function π and normal random error, see p.144), under
certain conditions on φ uniform designs maximise the power
of the F test of regression.

I uniform designs may often be orthogonal designs
 efficient algorithms for finding uniform designs may be
useful in searching for orthogonal designs



Uniform designs are designs with minimal discrepancy.

Uniform designs have some useful properties, e.g.

I for standard regression model (with known regression
functions, unknown regression parameters, unknown model
bias function π and normal random error, see p.144), under
certain conditions on φ uniform designs maximise the power
of the F test of regression.

I uniform designs may often be orthogonal designs
 efficient algorithms for finding uniform designs may be
useful in searching for orthogonal designs



Uniform designs are designs with minimal discrepancy.

Uniform designs have some useful properties, e.g.

I for standard regression model (with known regression
functions, unknown regression parameters, unknown model
bias function π and normal random error, see p.144), under
certain conditions on φ uniform designs maximise the power
of the F test of regression.

I uniform designs may often be orthogonal designs
 efficient algorithms for finding uniform designs may be
useful in searching for orthogonal designs



Method for constructing (nearly) uniform designs:

Key idea: Use uniform 1-dimensional designs for each input to
reduce the domain of the experimental region

Search over LHDs constructed from n × d matrices consisting of d
permutations of {1, . . . , n} to find discrepancy-minimising design.

[Fang et al. (2000) use threshold accepting, a stochastic local
search method similar to Simulated Annealing, for solving this
discrete combinatorial optimisation problem.]



Method for constructing (nearly) uniform designs:

Key idea: Use uniform 1-dimensional designs for each input to
reduce the domain of the experimental region

Search over LHDs constructed from n × d matrices consisting of d
permutations of {1, . . . , n} to find discrepancy-minimising design.

[Fang et al. (2000) use threshold accepting, a stochastic local
search method similar to Simulated Annealing, for solving this
discrete combinatorial optimisation problem.]



Method for constructing (nearly) uniform designs:

Key idea: Use uniform 1-dimensional designs for each input to
reduce the domain of the experimental region

Search over LHDs constructed from n × d matrices consisting of d
permutations of {1, . . . , n} to find discrepancy-minimising design.

[Fang et al. (2000) use threshold accepting, a stochastic local
search method similar to Simulated Annealing, for solving this
discrete combinatorial optimisation problem.]



Method for constructing (nearly) uniform designs:

Key idea: Use uniform 1-dimensional designs for each input to
reduce the domain of the experimental region

Search over LHDs constructed from n × d matrices consisting of d
permutations of {1, . . . , n} to find discrepancy-minimising design.

[Fang et al. (2000) use threshold accepting, a stochastic local
search method similar to Simulated Annealing, for solving this
discrete combinatorial optimisation problem.]



Note:

I discrepancy as measured by L∞ does not always adequately
reflect our intuitive notion of uniformity (see Example 5.7,
p.164ff.)

I other discrepancy measure may perform better [but no one
seems to be sure of this]



Designs satisfying multiple criteria

I each of the the previously discussed methods and criteria
produces designs with attractive properties

I but: none of them is completely satisfactory on their own

I Idea: Generate designs that combine attractive features

I Generate and test method:

1. generate multiple candidate designs, typically a set of
LHDs

2. select a candidate design based on a secondary criterion,
e.g., uniformity



Designs satisfying multiple criteria

I each of the the previously discussed methods and criteria
produces designs with attractive properties

I but: none of them is completely satisfactory on their own

I Idea: Generate designs that combine attractive features

I Generate and test method:

1. generate multiple candidate designs, typically a set of
LHDs

2. select a candidate design based on a secondary criterion,
e.g., uniformity




