algorithmic thinking

we need names for the data

* ais the array of ordered data items, indexed
starting at 1:

12 13 14

\"5':7‘3 a m|arg||asn||asp||cys||glu|| hlS || 1le || leu || lys ||met||phe||pro|ﬂm

* a[1] is the first data item, a[2] is the second data
item, and so on, up to a[15]
query

* query is the item we are searching for

* our task: given query, output the index of query
in array a

more names

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a |arg||asn||asp||cys||glu||his || ile || leu” lys ||phe||pr0|| ser || thr |

“."'{‘_f « first and last refer to the indices bounding the part
of the array we are searching,

| » middle is the index halfway between first and last

* initially, first is 1 and last is 15

first middle last
1 15

binary search algorithm

query
input: output: index of query in a
first middle last
S initially: 1 15
~ search
s/et middle to be halfway between first and last \
\|if query == a[middle] then(" pow to do
output middle the update?
else
update first and last
\search in a between first and /ast /

examples of updating first, last

11 12 13 14 15
a m|arg”asn”asp”cys”glu”h1s || 11e || leu || lys ||met||phe||pro|| ser || thr|

query first middle last
leu 1 8 15
first middle last
9 12 15
first middle last
9 10 11
first middle last

9 9 9

binary search algorithm

search

middle = first + (last — first)/2 \
if query == a[middle] then
output middle
else
if query < a[middle] then last = middle - 1;
if query > a[middle] then first = middle + 1;
search in a between first and last /

binary search algorithm

1. 23 4 5 6 7 8 9 10 11 12 13 14 15
a |arg||asn||asp||cys||glu”his || ile || leu || lys ||met||phe||pro|| ser || thr|
input: query
output: index of query in array a
first = 1; last = 15;
search
/middle = first + (last — first)/2 \
if query == a[middle] then
output middle

else
if query < a[middle] then last = middle - 1;
if query > a[middle] then first = middle + 1,
\ search in a between first and last /

things in a program
variables: data items that may change over time

identifiers: names of variables

instructions/statements: actions on data items
- compare data values
- assignment statement: assign a new value to a variable

control flow instructions
- if ... then ... else
- while / repeat

identifier/variable
input: query

output: index of query in array a
first=1; last = 15;

middle = first + (last — first)/2
if query == a[middle] then
output middle

else
if query < a[middle] then|/ast = middle - 1;
if query > a[middle] then(first = middle + 1;
search in a between first and /as!

assignment
Statements

real java code for binary search!

private int search(int query, int first, int last)
{ int middle, result;
middle := (first + last)/2;
if (query == a[middle]) result = middle;
else if (query < a[middle])
result = search(query, first, middle-1);
else result = search(query, middle+1, last);
return result; }

food for thought

« Under which conditions (regarding the input
data) does our search algorithm work?

(Hint: Think about the number and sequence
of entries in the array.)

* How can the algorithm be extended to work in
cases where these assumptions don't hold?

