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All of the variables that we have used have held a single item
One integer, floating point value, or string

often you find that you want to store a collection of values in your
programs.

a list of values that have been entered by the user or a collection of
values that are needed to draw a graph.

In Python, lists can be used to store a collection of values.

Python can hold values of any type; they are written as a comma-
separated list enclosed in square brackets:

numlist = [23, 10, -100, 2]
words = ['zero’, 'one’, 'two’]
junk = [0, 1, 'two’, [1,1,1], 4.0]
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® To get a particular value out of a list, it can be subscripted
testlist = [0, 10, 20, 30, 40, 50]
print testlist[2]
20
print testlist[O]
0
print testlist[10]
IndexError: list index out of range
Like strings, the first element in a list is element O
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® You can determine the length of a list with the len function:
print len(testlist)
6

m foriin range(len(testlist)):
] print testlist[i],
0 10 20 30 40 50
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Lists can be joined (concatenated) with the + operator:
testlist + [60, 70, 80]
[0, 10, 20, 30, 40, 50, 60, 70, 80]
[one’, 'two’, three’] + [1, 2, 3]

[one’, 'two’, ‘three’, 1, 2, 3]

It is also possible to delete an element from a list
colours = [red’, 'yellow’, 'blue’]
del colours[1]
print colours
[red’, 'blue’]
del colours[1]
print colours
[red’]
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® You can also add a new element to the end of a list with the append
colours = [red’, 'yellow’, 'blue’]
colours.append(’orange’)
colours.append('green’)
print colours
[red’, 'yellow’, 'blue’, ‘'orange’, 'green’]

® In order to do something similar with a string, a new string must be
built with the + operator:

letters = "abc’
letters = letters + 'd’
letters = letters + ‘e’
print letters

abcde
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®m print "Enter some numbers, 0 to stop:"

numbers =]
x=1
while x!=0:

X = int(raw_input())

if x!=0:

numbers.append(Xx)

print "The numbers you entered are:"
print numbers
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Lists and for loops

range(10)

[0,1,2,3,4,5,6,7,8, 9]
range(1,17,3)

1,4, 7,10, 13, 16]
Range(13,1,2)

[
Range(13,1,-2)

[13, 11,9, 7,5, 3]
for i in range(10):

# do something with |

For loop in Python can iterate over any list
not just those produced by the range function.
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There, the for loop iterates over each element in the list words.

words = ["up", "down", "green", "cabbage"]
for word in words:

print "Here’s a word: " + word

Here’s a word: up
Here’s a word: down
Here’s a word: green
Here’s a word: cabbage
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Slicing and Dicing

colours = [red’, 'yellow’, 'blue’]
colours[1] = 'green’ # set an element with indexing
Print colours[1]
green
print colours[2] # index to retrieve an element
‘blue’

colours = ['red’, 'yellow’, 'green’, 'blue’]
print colours[1:3]

['yellow’, 'green’]

In general, the slice [a:b] extracts elements a to b-1
Same as range
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Special Slice Positions

Negative values count from the end of a list.
-1 refers to the last item in the list
-2 to the second-last, and so on

colours = [red’, 'yellow’, ‘green’, 'blue’]
print colours[0:-1]
[red’, 'yellow’, 'green’]

If you leave out one of the values in the slice, it will default to the start
or end of the list.

[:num] refers to elements 0 to num-1.
[2:] gives elements from 2 to the end of the list.
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Examples

colours = [red’, 'yellow’, ‘green’, 'blue’, 'orange’]
print colours[2:]
['green’, 'blue’, ‘orange’]
print colours|:3]
[red’, 'yellow’, 'green’]
print colours[:-1]
[red’, 'yellow’, 'green’, 'blue’]

e [:-1] will always give you everything except the last element;
[1:] will give everything but the first element.
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Examples Fibonacci

Store the first 20 values in the Fibonacci series in a list such that the
index | of the list stores the ith element.

] Fibonacci series are the numbers in the following integer
sequence:

10,1,1,2,3,5,...

OF,=F,;+F.,

T F,=0,F; =1

1.13



Example Fibonacci

fib =]
fib.append(‘garbage’)
fib.append(0)
fib.append(1)
for i in range(3,20):
new = fib[i-1] + fib[i-2]
fib.append(new)
print fib
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Example Fibonacci

Store the first 20 values in the Fibonacci series in a list such that the
index | of the list stores the ith element.

] Fibonacci series are the numbers in the following integer
sequence:

10,1,1,2,3,5,...

OF,=F,;+F.,

T F,=0,F; =1

For the odd elements of the series calculate their average
For even elements of the series calcuate their sum
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Example Fibonacci

def average(list):

length = len(list)

j=0

sum=0

foriin range(1,length,2):
=i+l
sum = sum-+list][i]
print list[i]

average = float(sum)/

return average
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def sumforfib(list):
length = len(list)
sum=0
for i in range(length,?2):
sum = sum-+list[i]
print list[i]
return sum



Example Duplicate

Store a list of 10 words and determine whether any word has been
entered more than once.

words=[]
for i in range(10):
words.append( raw_input("enter word please: "))

flag = False
for i in range(10):
for jin range(i+1,10):
if words[i] == wordsJj]:
print "duplicated"
flag = True

if flag == False:
print "No duplicates"
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Words containing ‘s’

Store a list of 10 words and determine whether each contains the
letter s or not.

words=[]
for i in range(10):
words.append( raw_input(“enter word please: "))

for w in words:
flag = False
for let in w:
if let =="s"
print w, "contains s"
flag = True
if flag == False:
print w, "does not contain s"

1.18



Store a list of 10 words and determine whether each contains the
letter s or not. Remove all occurrences of letter s from all words

words=[]
foriin range(4):
words.append( raw_input("enter word please: "))

length = len(words)
for i in range(length):
for let in wordsi]:
if let I="s":
temp = temp + let
wordsJi]=temp
print words
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Manipulating Slices

® You can actually do almost anything with list slices
colours = [red’, 'yellow’, 'green’, 'blue’]
colours[1:3] = ['yellowish’, ‘greenish’]
print colours
['red’, 'yellowish’, 'greenish’, 'blue’]
colours[1:3] = ['pink’, 'purple’, ’ecru’]
print colours
[red’, 'pink’, 'purple’, 'ecru’, 'blue’]
B we assigned a list of three elements to a slice of length two
The list expands to make room or the new elements
['yellowish’, ‘greenish] is replaced with ['pink’, 'purple’, 'ecru’].
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Manipulating Slices

If the list assigned is shorter than the slice, the list would shrink
colours = ['red’, 'yellow', 'green’, 'blue']
colours[1:3] = "red"
print colours
['red’, 'r", 'e', 'd", 'blue’]

colours = ['red', 'yellow', 'green’, 'blue']
colours[1:3] = ['red’]
print colours

['red’, 'red', 'blue']
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Deleting Slices

You can also remove any slice from a list:
colours = [red’, 'yellow’, 'green’, 'blue’]
del colours[1:3]
print colours

[red’, 'blue’]
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Strings

Strings are a sequence of characters; lists are a sequence of any
combination of types.

Any type that represents a collection of values can be used as the
“list” in a for loop.

Since a string represents a sequence of characters, it can be
used.

for char in "abc":
print "A character:", char

A character: a

A character: b
A character: c
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Slicing Strings
®m Slices In strings are read only

®m sentence = "Look, I'm a string!”
® print sentencel:5]
Look
m print sentence[6:11]
I'm a
B print sentencel-7:]
string!
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But, you can’t modify a string slice

sentence = "Look, I'm a string!”
sentence[:5] = "Wow"

TypeError: object doesn’t support slice assignment
del sentence[6:10]

TypeError: object doesn’t support slice assignment
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Mutability

dots = dots + "." # statement #1

The right side of = is evaluated and put into dots. The old value of
dots is lost in the assignment

values = values + [n] # statement #2
Same with this method of modifying lists
values.append(n) # statement #3
The output of this statement is the same as statement 2.
Statement 3 requires a lot less work.
The whole list in not rebuilt.

Data structures that can be changed in-place like lists are called
mutable.

Strings and numbers are not mutable: they are immutable.

Objects depends how they are written, but they have the capability to
be mutable
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References

There are several cases where the contents of one variable are
copied to another.

# X copied into y:
y=xX

You probably don'’t think of copying the contents of a variable as a
difficult operation, but consider the case where x is a list with millions
of elements.

Python avoids making copies where possible

To understand this, we need to understand references.
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Every variable in Python is actually a reference to the place in memory
where its contents are stored.

Conceptually, you should think of a variable referencing its contents
like an arrow pointing to the contents in memory.

Statements:
my string = "one" + "two" + "three"
my list = [0, 10, 20]
Result:
#Ejﬁfﬂ% "onetwothree"
my string

my list /—\_/,‘ [0, 10, 20]
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When you use a variable in an expression, Python follows the
reference to find its contents.

Usually, the expression on the right side of an assignment creates a
new object in memory.

Total = a+b calculates a+b, stores this in memory, and sets total to
reference that value.

® The exception to this is when the right side of an assignment is simply
a variable reference

(like total=a).

In this case, the result is already in memory and the variable can
just reference the existing contents
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Aliases

®m When two variables refer to the same contents, they are aliases of
each other.

it's generally good since it doesn’t require copying the contents to
another location in memory.

Statements:
my string = "one" + "two" + "three"
string copy = my string
string copy = string_copy + "four™

Result:

my_stringﬁ##ﬂfd___}
,_,;ffﬂ; "onetwothreefour" ‘

"onetwothres"

string copy

® When you assign to a variable, you are changing it so the variable
now references different contents.

(The old contents are thrown away since they are no longer being
referenced.)

1.30



Mutable data structures and aliases

® Mutable data structures (lists and some objects), aliases complicate

things.

Mutable data structures can be changed without totally rebuilding

them, we can change the contents without moving the reference to
a new object in memory

m |t's possible to change a variable, and the changes will affect any
other variables that reference the same contents.

my_list and list_copy are aliases of the same contents. When
either one is changed, both are affected. |

Statements:

my list = [0, 10, Z20]
list copy = my list

Result:

Statements:
my list = [0, 10, 20]
list copy = my list
list copy.append(30)
my list.append(40)

,f“H’FP_F_%

Result:

my list Hg}//ffx?

list copy

_— 21 [0, 10, 20, 30,

40]

my list Hﬁgﬁfﬂf&

list copy
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Any expression (that's more complicated than a variable reference)
will result in a new reference being created. If this Iis assigned to a
variable, then there is no aliasing.

Statements:
my string = "one" + "two" + "three"
string copy = my string

string copy = string copy + "four®

Result:

my_string”;;ﬂfd___}
'_f,ff#; "onetwothreefour™

"opnetwothree"

string copy

Statements:

my list = [0, 10, 20]
bigger list = my list + [30]

Result:
[0, 10, 20]

_.-'—Ff_-_}
_//,/——) [0, 10, 20, 30]

my list

bigger list

1.32



Really Copying

m If you want to make a copy of a variable that isn’t a reference, it's
necessary to force Python to actually copy its contents to a new place
in memory. This is called cloning. Cloning is more expensive than
aliasing,

® There are three methods for this
The slice operator can be used to create a clone.

Statements:
my list = [0, 10, 20]
list copy = my list[:]

Result:

Liet — 1 10, 10, 201

my

- > [0, 10, 20]

You could also make a copy of a list with the list function that
creates a new list (out of the old one). So, list(my_list) would give
the same result as my_list[:].

the copy module contains a copy function. This function will take
any Python object and clone its contents

import copy
new_obj = copy.copy(obj)
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