
CMPT 120

Lists and Strings

Summer 2012

Instructor: Hassan Khosravi

1.2

 All of the variables that we have used have held a single item

 One integer, floating point value, or string

 often you find that you want to store a collection of values in your

programs.

 a list of values that have been entered by the user or a collection of

values that are needed to draw a graph.

 In Python, lists can be used to store a collection of values.

 Python can hold values of any type; they are written as a comma-

separated list enclosed in square brackets:

 numlist = [23, 10, -100, 2]

 words = [’zero’, ’one’, ’two’]

 junk = [0, 1, ’two’, [1,1,1], 4.0]

1.3

 To get a particular value out of a list, it can be subscripted

 testlist = [0, 10, 20, 30, 40, 50]

 print testlist[2]

 20

 print testlist[0]

 0

 print testlist[10]

 IndexError: list index out of range

 Like strings, the first element in a list is element 0

1.4

 You can determine the length of a list with the len function:

 print len(testlist)

 6

 for i in range(len(testlist)):

 print testlist[i],

 0 10 20 30 40 50

1.5

 Lists can be joined (concatenated) with the + operator:

 testlist + [60, 70, 80]

 [0, 10, 20, 30, 40, 50, 60, 70, 80]

 [’one’, ’two’, ’three’] + [1, 2, 3]

 [’one’, ’two’, ’three’, 1, 2, 3]

 It is also possible to delete an element from a list

 colours = [’red’, ’yellow’, ’blue’]

 del colours[1]

 print colours

 [’red’, ’blue’]

 del colours[1]

 print colours

 [’red’]

1.6

 You can also add a new element to the end of a list with the append

 colours = [’red’, ’yellow’, ’blue’]

 colours.append(’orange’)

 colours.append(’green’)

 print colours

 [’red’, ’yellow’, ’blue’, ’orange’, ’green’]

 In order to do something similar with a string, a new string must be

built with the + operator:

 letters = ’abc’

 letters = letters + ’d’

 letters = letters + ’e’

 print letters

 abcde

1.7

 print "Enter some numbers, 0 to stop:"

 numbers = []

 x=1

 while x!=0:

 x = int(raw_input())

 if x!=0:

 numbers.append(x)

 print "The numbers you entered are:"

 print numbers

1.8

Lists and for loops

 range(10)

 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

 range(1,17,3)

 [1, 4, 7, 10, 13, 16]

 Range(13,1,2)

 []

 Range(13,1,-2)

 [13, 11, 9, 7, 5, 3]

 for i in range(10):

 # do something with I

 For loop in Python can iterate over any list

 not just those produced by the range function.

1.9

 There, the for loop iterates over each element in the list words.

 words = ["up", "down", "green", "cabbage"]

 for word in words:

 print "Here’s a word: " + word

 Here’s a word: up

 Here’s a word: down

 Here’s a word: green

 Here’s a word: cabbage

1.10

Slicing and Dicing

 colours = [’red’, ’yellow’, ’blue’]

 colours[1] = ’green’ # set an element with indexing

 Print colours[1]

 green

 print colours[2] # index to retrieve an element

 ’blue’

 colours = [’red’, ’yellow’, ’green’, ’blue’]

 print colours[1:3]

 [’yellow’, ’green’]

 In general, the slice [a:b] extracts elements a to b-1

 Same as range

1.11

Special Slice Positions

 Negative values count from the end of a list.

 -1 refers to the last item in the list

 -2 to the second-last, and so on

 colours = [’red’, ’yellow’, ’green’, ’blue’]

 print colours[0:-1]

 [’red’, ’yellow’, ’green’]

 If you leave out one of the values in the slice, it will default to the start

or end of the list.

 [:num] refers to elements 0 to num-1.

 [2:] gives elements from 2 to the end of the list.

1.12

Examples

 colours = [’red’, ’yellow’, ’green’, ’blue’, ’orange’]

 print colours[2:]

 [’green’, ’blue’, ’orange’]

 print colours[:3]

 [’red’, ’yellow’, ’green’]

 print colours[:-1]

 [’red’, ’yellow’, ’green’, ’blue’]

 e [:-1] will always give you everything except the last element;

 [1:] will give everything but the first element.

1.13

Examples Fibonacci

 Store the first 20 values in the Fibonacci series in a list such that the

index i of the list stores the ith element.

 Fibonacci series are the numbers in the following integer

 sequence:

 0,1,1,2,3,5,…

 Fn = Fn-1 + Fn-2

 F0 = 0, F1 =1

1.14

Example Fibonacci

 fib = []

 fib.append('garbage')

 fib.append(0)

 fib.append(1)

 for i in range(3,20):

 new = fib[i-1] + fib[i-2]

 fib.append(new)

 print fib

1.15

Example Fibonacci

 Store the first 20 values in the Fibonacci series in a list such that the

index i of the list stores the ith element.

 Fibonacci series are the numbers in the following integer

 sequence:

 0,1,1,2,3,5,…

 Fn = Fn-1 + Fn-2

 F0 = 0, F1 =1

 For the odd elements of the series calculate their average

 For even elements of the series calcuate their sum

1.16

Example Fibonacci

 def average(list):

 length = len(list)

 j=0

 sum=0

 for i in range(1,length,2):

 j=j+1

 sum = sum+list[i]

 print list[i]

 average = float(sum)/j

 return average

 def sumforfib(list):

 length = len(list)

 sum=0

 for i in range(length,2):

 sum = sum+list[i]

 print list[i]

 return sum

1.17

Example Duplicate

 Store a list of 10 words and determine whether any word has been

entered more than once.

 words= []

 for i in range(10):

 words.append(raw_input("enter word please: "))

 flag = False

 for i in range(10):

 for j in range(i+1,10):

 if words[i] == words[j]:

 print "duplicated"

 flag = True

 if flag == False:

 print "No duplicates"

1.18

Words containing ‘s’

 Store a list of 10 words and determine whether each contains the

letter s or not.

 words= []

 for i in range(10):

 words.append(raw_input("enter word please: "))

 for w in words:

 flag = False

 for let in w:

 if let == 's':

 print w, "contains s"

 flag = True

 if flag == False:

 print w, "does not contain s"





1.19

 Store a list of 10 words and determine whether each contains the

letter s or not. Remove all occurrences of letter s from all words

 words= []

 for i in range(4):

 words.append(raw_input("enter word please: "))

 length = len(words)

 for i in range(length):

 temp = ""

 for let in words[i]:

 if let != 's':

 temp = temp + let

 words[i]= temp

 print words



1.20

Manipulating Slices

 You can actually do almost anything with list slices

 colours = [’red’, ’yellow’, ’green’, ’blue’]

 colours[1:3] = [’yellowish’, ’greenish’]

 print colours

 [’red’, ’yellowish’, ’greenish’, ’blue’]

 colours[1:3] = [’pink’, ’purple’, ’ecru’]

 print colours

 [’red’, ’pink’, ’purple’, ’ecru’, ’blue’]

 we assigned a list of three elements to a slice of length two

 The list expands to make room or the new elements

 [’yellowish’, ’greenish] is replaced with [’pink’, ’purple’, ’ecru’].

1.21

Manipulating Slices

 If the list assigned is shorter than the slice, the list would shrink

 colours = ['red', 'yellow', 'green', 'blue']

 colours[1:3] = "red"

 print colours

 ['red', 'r', 'e', 'd', 'blue']

 colours = ['red', 'yellow', 'green', 'blue']

 colours[1:3] = ['red']

 print colours

 ['red', 'red', 'blue']

1.22

Deleting Slices

 You can also remove any slice from a list:

 colours = [’red’, ’yellow’, ’green’, ’blue’]

 del colours[1:3]

 print colours

 [’red’, ’blue’]

1.23

Strings

 Strings are a sequence of characters; lists are a sequence of any

combination of types.

 Any type that represents a collection of values can be used as the

“list” in a for loop.

 Since a string represents a sequence of characters, it can be

used.

 for char in "abc":

 print "A character:", char

 A character: a

 A character: b

 A character: c

1.24

Slicing Strings

 Slices in strings are read only

 sentence = "Look, I’m a string!“

 print sentence[:5]

 Look

 print sentence[6:11]

 I’m a

 print sentence[-7:]

 string!

1.25

 But, you can’t modify a string slice

 sentence = "Look, I’m a string!“

 sentence[:5] = "Wow"

 TypeError: object doesn’t support slice assignment

 del sentence[6:10]

 TypeError: object doesn’t support slice assignment

1.26

Mutability

 dots = dots + "." # statement #1

 The right side of = is evaluated and put into dots. The old value of

dots is lost in the assignment

 values = values + [n] # statement #2

 Same with this method of modifying lists

 values.append(n) # statement #3

 The output of this statement is the same as statement 2.

 Statement 3 requires a lot less work.

 The whole list in not rebuilt.

 Data structures that can be changed in-place like lists are called

mutable.

 Strings and numbers are not mutable: they are immutable.

 Objects depends how they are written, but they have the capability to

be mutable

1.27

References

 There are several cases where the contents of one variable are

copied to another.

 # x copied into y:

 y = x

 You probably don’t think of copying the contents of a variable as a

difficult operation, but consider the case where x is a list with millions

of elements.

 Python avoids making copies where possible

 To understand this, we need to understand references.

1.28

 Every variable in Python is actually a reference to the place in memory

where its contents are stored.

 Conceptually, you should think of a variable referencing its contents

like an arrow pointing to the contents in memory.

1.29

 When you use a variable in an expression, Python follows the

reference to find its contents.

 Usually, the expression on the right side of an assignment creates a

new object in memory.

 Total = a+b calculates a+b, stores this in memory, and sets total to

reference that value.

 The exception to this is when the right side of an assignment is simply

a variable reference

 (like total=a).

 In this case, the result is already in memory and the variable can

just reference the existing contents

1.30

Aliases

 When two variables refer to the same contents, they are aliases of

each other.

 it’s generally good since it doesn’t require copying the contents to

another location in memory.

 When you assign to a variable, you are changing it so the variable

now references different contents.

 (The old contents are thrown away since they are no longer being

referenced.)

1.31

Mutable data structures and aliases

 Mutable data structures (lists and some objects), aliases complicate

things.

 Mutable data structures can be changed without totally rebuilding

them, we can change the contents without moving the reference to

a new object in memory

 It’s possible to change a variable, and the changes will affect any

other variables that reference the same contents.

 my_list and list_copy are aliases of the same contents. When

either one is changed, both are affected. I

1.32

 Any expression (that’s more complicated than a variable reference)

will result in a new reference being created. If this is assigned to a

variable, then there is no aliasing.

1.33

Really Copying

 If you want to make a copy of a variable that isn’t a reference, it’s

necessary to force Python to actually copy its contents to a new place

in memory. This is called cloning. Cloning is more expensive than

aliasing,

 There are three methods for this

 The slice operator can be used to create a clone.

 You could also make a copy of a list with the list function that

creates a new list (out of the old one). So, list(my_list) would give

the same result as my_list[:].

 the copy module contains a copy function. This function will take

any Python object and clone its contents

 import copy

 new_obj = copy.copy(obj)

