
CMPT 120

Lists and Strings

Summer 2012

Instructor: Hassan Khosravi

1.2

 All of the variables that we have used have held a single item

 One integer, floating point value, or string

 often you find that you want to store a collection of values in your

programs.

 a list of values that have been entered by the user or a collection of

values that are needed to draw a graph.

 In Python, lists can be used to store a collection of values.

 Python can hold values of any type; they are written as a comma-

separated list enclosed in square brackets:

 numlist = [23, 10, -100, 2]

 words = [’zero’, ’one’, ’two’]

 junk = [0, 1, ’two’, [1,1,1], 4.0]

1.3

 To get a particular value out of a list, it can be subscripted

 testlist = [0, 10, 20, 30, 40, 50]

 print testlist[2]

 20

 print testlist[0]

 0

 print testlist[10]

 IndexError: list index out of range

 Like strings, the first element in a list is element 0

1.4

 You can determine the length of a list with the len function:

 print len(testlist)

 6

 for i in range(len(testlist)):

 print testlist[i],

 0 10 20 30 40 50

1.5

 Lists can be joined (concatenated) with the + operator:

 testlist + [60, 70, 80]

 [0, 10, 20, 30, 40, 50, 60, 70, 80]

 [’one’, ’two’, ’three’] + [1, 2, 3]

 [’one’, ’two’, ’three’, 1, 2, 3]

 It is also possible to delete an element from a list

 colours = [’red’, ’yellow’, ’blue’]

 del colours[1]

 print colours

 [’red’, ’blue’]

 del colours[1]

 print colours

 [’red’]

1.6

 You can also add a new element to the end of a list with the append

 colours = [’red’, ’yellow’, ’blue’]

 colours.append(’orange’)

 colours.append(’green’)

 print colours

 [’red’, ’yellow’, ’blue’, ’orange’, ’green’]

 In order to do something similar with a string, a new string must be

built with the + operator:

 letters = ’abc’

 letters = letters + ’d’

 letters = letters + ’e’

 print letters

 abcde

1.7

 print "Enter some numbers, 0 to stop:"

 numbers = []

 x=1

 while x!=0:

 x = int(raw_input())

 if x!=0:

 numbers.append(x)

 print "The numbers you entered are:"

 print numbers

1.8

Lists and for loops

 range(10)

 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

 range(1,17,3)

 [1, 4, 7, 10, 13, 16]

 Range(13,1,2)

 []

 Range(13,1,-2)

 [13, 11, 9, 7, 5, 3]

 for i in range(10):

 # do something with I

 For loop in Python can iterate over any list

 not just those produced by the range function.

1.9

 There, the for loop iterates over each element in the list words.

 words = ["up", "down", "green", "cabbage"]

 for word in words:

 print "Here’s a word: " + word

 Here’s a word: up

 Here’s a word: down

 Here’s a word: green

 Here’s a word: cabbage

1.10

Slicing and Dicing

 colours = [’red’, ’yellow’, ’blue’]

 colours[1] = ’green’ # set an element with indexing

 Print colours[1]

 green

 print colours[2] # index to retrieve an element

 ’blue’

 colours = [’red’, ’yellow’, ’green’, ’blue’]

 print colours[1:3]

 [’yellow’, ’green’]

 In general, the slice [a:b] extracts elements a to b-1

 Same as range

1.11

Special Slice Positions

 Negative values count from the end of a list.

 -1 refers to the last item in the list

 -2 to the second-last, and so on

 colours = [’red’, ’yellow’, ’green’, ’blue’]

 print colours[0:-1]

 [’red’, ’yellow’, ’green’]

 If you leave out one of the values in the slice, it will default to the start

or end of the list.

 [:num] refers to elements 0 to num-1.

 [2:] gives elements from 2 to the end of the list.

1.12

Examples

 colours = [’red’, ’yellow’, ’green’, ’blue’, ’orange’]

 print colours[2:]

 [’green’, ’blue’, ’orange’]

 print colours[:3]

 [’red’, ’yellow’, ’green’]

 print colours[:-1]

 [’red’, ’yellow’, ’green’, ’blue’]

 e [:-1] will always give you everything except the last element;

 [1:] will give everything but the first element.

1.13

Examples Fibonacci

 Store the first 20 values in the Fibonacci series in a list such that the

index i of the list stores the ith element.

 Fibonacci series are the numbers in the following integer

 sequence:

 0,1,1,2,3,5,…

 Fn = Fn-1 + Fn-2

 F0 = 0, F1 =1

1.14

Example Fibonacci

 fib = []

 fib.append('garbage')

 fib.append(0)

 fib.append(1)

 for i in range(3,20):

 new = fib[i-1] + fib[i-2]

 fib.append(new)

 print fib

1.15

Example Fibonacci

 Store the first 20 values in the Fibonacci series in a list such that the

index i of the list stores the ith element.

 Fibonacci series are the numbers in the following integer

 sequence:

 0,1,1,2,3,5,…

 Fn = Fn-1 + Fn-2

 F0 = 0, F1 =1

 For the odd elements of the series calculate their average

 For even elements of the series calcuate their sum

1.16

Example Fibonacci

 def average(list):

 length = len(list)

 j=0

 sum=0

 for i in range(1,length,2):

 j=j+1

 sum = sum+list[i]

 print list[i]

 average = float(sum)/j

 return average

 def sumforfib(list):

 length = len(list)

 sum=0

 for i in range(length,2):

 sum = sum+list[i]

 print list[i]

 return sum

1.17

Example Duplicate

 Store a list of 10 words and determine whether any word has been

entered more than once.

 words= []

 for i in range(10):

 words.append(raw_input("enter word please: "))

 flag = False

 for i in range(10):

 for j in range(i+1,10):

 if words[i] == words[j]:

 print "duplicated"

 flag = True

 if flag == False:

 print "No duplicates"

1.18

Words containing ‘s’

 Store a list of 10 words and determine whether each contains the

letter s or not.

 words= []

 for i in range(10):

 words.append(raw_input("enter word please: "))

 for w in words:

 flag = False

 for let in w:

 if let == 's':

 print w, "contains s"

 flag = True

 if flag == False:

 print w, "does not contain s"

1.19

 Store a list of 10 words and determine whether each contains the

letter s or not. Remove all occurrences of letter s from all words

 words= []

 for i in range(4):

 words.append(raw_input("enter word please: "))

 length = len(words)

 for i in range(length):

 temp = ""

 for let in words[i]:

 if let != 's':

 temp = temp + let

 words[i]= temp

 print words

1.20

Manipulating Slices

 You can actually do almost anything with list slices

 colours = [’red’, ’yellow’, ’green’, ’blue’]

 colours[1:3] = [’yellowish’, ’greenish’]

 print colours

 [’red’, ’yellowish’, ’greenish’, ’blue’]

 colours[1:3] = [’pink’, ’purple’, ’ecru’]

 print colours

 [’red’, ’pink’, ’purple’, ’ecru’, ’blue’]

 we assigned a list of three elements to a slice of length two

 The list expands to make room or the new elements

 [’yellowish’, ’greenish] is replaced with [’pink’, ’purple’, ’ecru’].

1.21

Manipulating Slices

 If the list assigned is shorter than the slice, the list would shrink

 colours = ['red', 'yellow', 'green', 'blue']

 colours[1:3] = "red"

 print colours

 ['red', 'r', 'e', 'd', 'blue']

 colours = ['red', 'yellow', 'green', 'blue']

 colours[1:3] = ['red']

 print colours

 ['red', 'red', 'blue']

1.22

Deleting Slices

 You can also remove any slice from a list:

 colours = [’red’, ’yellow’, ’green’, ’blue’]

 del colours[1:3]

 print colours

 [’red’, ’blue’]

1.23

Strings

 Strings are a sequence of characters; lists are a sequence of any

combination of types.

 Any type that represents a collection of values can be used as the

“list” in a for loop.

 Since a string represents a sequence of characters, it can be

used.

 for char in "abc":

 print "A character:", char

 A character: a

 A character: b

 A character: c

1.24

Slicing Strings

 Slices in strings are read only

 sentence = "Look, I’m a string!“

 print sentence[:5]

 Look

 print sentence[6:11]

 I’m a

 print sentence[-7:]

 string!

1.25

 But, you can’t modify a string slice

 sentence = "Look, I’m a string!“

 sentence[:5] = "Wow"

 TypeError: object doesn’t support slice assignment

 del sentence[6:10]

 TypeError: object doesn’t support slice assignment

1.26

Mutability

 dots = dots + "." # statement #1

 The right side of = is evaluated and put into dots. The old value of

dots is lost in the assignment

 values = values + [n] # statement #2

 Same with this method of modifying lists

 values.append(n) # statement #3

 The output of this statement is the same as statement 2.

 Statement 3 requires a lot less work.

 The whole list in not rebuilt.

 Data structures that can be changed in-place like lists are called

mutable.

 Strings and numbers are not mutable: they are immutable.

 Objects depends how they are written, but they have the capability to

be mutable

1.27

References

 There are several cases where the contents of one variable are

copied to another.

 # x copied into y:

 y = x

 You probably don’t think of copying the contents of a variable as a

difficult operation, but consider the case where x is a list with millions

of elements.

 Python avoids making copies where possible

 To understand this, we need to understand references.

1.28

 Every variable in Python is actually a reference to the place in memory

where its contents are stored.

 Conceptually, you should think of a variable referencing its contents

like an arrow pointing to the contents in memory.

1.29

 When you use a variable in an expression, Python follows the

reference to find its contents.

 Usually, the expression on the right side of an assignment creates a

new object in memory.

 Total = a+b calculates a+b, stores this in memory, and sets total to

reference that value.

 The exception to this is when the right side of an assignment is simply

a variable reference

 (like total=a).

 In this case, the result is already in memory and the variable can

just reference the existing contents

1.30

Aliases

 When two variables refer to the same contents, they are aliases of

each other.

 it’s generally good since it doesn’t require copying the contents to

another location in memory.

 When you assign to a variable, you are changing it so the variable

now references different contents.

 (The old contents are thrown away since they are no longer being

referenced.)

1.31

Mutable data structures and aliases

 Mutable data structures (lists and some objects), aliases complicate

things.

 Mutable data structures can be changed without totally rebuilding

them, we can change the contents without moving the reference to

a new object in memory

 It’s possible to change a variable, and the changes will affect any

other variables that reference the same contents.

 my_list and list_copy are aliases of the same contents. When

either one is changed, both are affected. I

1.32

 Any expression (that’s more complicated than a variable reference)

will result in a new reference being created. If this is assigned to a

variable, then there is no aliasing.

1.33

Really Copying

 If you want to make a copy of a variable that isn’t a reference, it’s

necessary to force Python to actually copy its contents to a new place

in memory. This is called cloning. Cloning is more expensive than

aliasing,

 There are three methods for this

 The slice operator can be used to create a clone.

 You could also make a copy of a list with the list function that

creates a new list (out of the old one). So, list(my_list) would give

the same result as my_list[:].

 the copy module contains a copy function. This function will take

any Python object and clone its contents

 import copy

 new_obj = copy.copy(obj)

