CMPT 120
Lists and Strings

Summer 2012
Instructor: Hassan Khosravi

All of the variables that we have used have held a single item
One integer, floating point value, or string

often you find that you want to store a collection of values in your
programs.

a list of values that have been entered by the user or a collection of
values that are needed to draw a graph.

In Python, lists can be used to store a collection of values.

Python can hold values of any type; they are written as a comma-
separated list enclosed in square brackets:

numlist = [23, 10, -100, 2]
words = ['zero’, 'one’, 'two’]
junk = [0, 1, 'two’, [1,1,1], 4.0]

1.2

® To get a particular value out of a list, it can be subscripted
testlist = [0, 10, 20, 30, 40, 50]
print testlist[2]
20
print testlist[O]
0
print testlist[10]
IndexError: list index out of range
Like strings, the first element in a list is element O

1.3

® You can determine the length of a list with the len function:
print len(testlist)
6

m foriin range(len(testlist)):
] print testlist[i],
0 10 20 30 40 50

1.4

Lists can be joined (concatenated) with the + operator:
testlist + [60, 70, 80]
[0, 10, 20, 30, 40, 50, 60, 70, 80]
[one’, 'two’, three’] + [1, 2, 3]

[one’, 'two’, ‘three’, 1, 2, 3]

It is also possible to delete an element from a list
colours = [red’, 'yellow’, 'blue’]
del colours[1]
print colours
[red’, 'blue’]
del colours[1]
print colours
[red’]

1.5

® You can also add a new element to the end of a list with the append
colours = [red’, 'yellow’, 'blue’]
colours.append(’orange’)
colours.append('green’)
print colours
[red’, 'yellow’, 'blue’, ‘'orange’, 'green’]

® In order to do something similar with a string, a new string must be
built with the + operator:

letters = "abc’
letters = letters + 'd’
letters = letters + ‘e’
print letters

abcde

1.6

®m print "Enter some numbers, 0 to stop:"

numbers =]
x=1
while x!=0:

X = int(raw_input())

if x!=0:

numbers.append(Xx)

print "The numbers you entered are:"
print numbers

1.7

Lists and for loops

range(10)

[0,1,2,3,4,5,6,7,8, 9]
range(1,17,3)

1,4, 7,10, 13, 16]
Range(13,1,2)

[
Range(13,1,-2)

[13, 11,9, 7,5, 3]
for i in range(10):

do something with |

For loop in Python can iterate over any list
not just those produced by the range function.

1.8

There, the for loop iterates over each element in the list words.

words = ["up", "down", "green", "cabbage"]
for word in words:

print "Here’s a word: " + word

Here’s a word: up
Here’s a word: down
Here’s a word: green
Here’s a word: cabbage

1.9

Slicing and Dicing

colours = [red’, 'yellow’, 'blue’]
colours[1] = 'green’ # set an element with indexing
Print colours[1]
green
print colours[2] # index to retrieve an element
‘blue’

colours = ['red’, 'yellow’, 'green’, 'blue’]
print colours[1:3]

['yellow’, 'green’]

In general, the slice [a:b] extracts elements a to b-1
Same as range

1.10

Special Slice Positions

Negative values count from the end of a list.
-1 refers to the last item in the list
-2 to the second-last, and so on

colours = [red’, 'yellow’, ‘green’, 'blue’]
print colours[0:-1]
[red’, 'yellow’, 'green’]

If you leave out one of the values in the slice, it will default to the start
or end of the list.

[:num] refers to elements 0 to num-1.
[2:] gives elements from 2 to the end of the list.

111

Examples

colours = [red’, 'yellow’, ‘green’, 'blue’, 'orange’]
print colours[2:]
['green’, 'blue’, ‘orange’]
print colours|:3]
[red’, 'yellow’, 'green’]
print colours[:-1]
[red’, 'yellow’, 'green’, 'blue’]

e [:-1] will always give you everything except the last element;
[1:] will give everything but the first element.

1.12

Examples Fibonacci

Store the first 20 values in the Fibonacci series in a list such that the
index | of the list stores the ith element.

] Fibonacci series are the numbers in the following integer
sequence:

10,1,1,2,3,5,...

OF,=F,;+F.,

T F,=0,F; =1

1.13

Example Fibonacci

fib =]
fib.append(‘garbage’)
fib.append(0)
fib.append(1)
for i in range(3,20):
new = fib[i-1] + fib[i-2]
fib.append(new)
print fib

1.14

Example Fibonacci

Store the first 20 values in the Fibonacci series in a list such that the
index | of the list stores the ith element.

] Fibonacci series are the numbers in the following integer
sequence:

10,1,1,2,3,5,...

OF,=F,;+F.,

T F,=0,F; =1

For the odd elements of the series calculate their average
For even elements of the series calcuate their sum

1.15

Example Fibonacci

def average(list):

length = len(list)

j=0

sum=0

foriin range(1,length,2):
=i+l
sum = sum-+list][i]
print list[i]

average = float(sum)/

return average

1.16

def sumforfib(list):
length = len(list)
sum=0
for i in range(length,?2):
sum = sum-+list[i]
print list[i]
return sum

Example Duplicate

Store a list of 10 words and determine whether any word has been
entered more than once.

words=[]
for i in range(10):
words.append(raw_input("enter word please: "))

flag = False
for i in range(10):
for jin range(i+1,10):
if words[i] == wordsJj]:
print "duplicated"
flag = True

if flag == False:
print "No duplicates"

1.17

Words containing ‘s’

Store a list of 10 words and determine whether each contains the
letter s or not.

words=[]
for i in range(10):
words.append(raw_input(“enter word please: "))

for w in words:
flag = False
for let in w:
if let =="s"
print w, "contains s"
flag = True
if flag == False:
print w, "does not contain s"

1.18

Store a list of 10 words and determine whether each contains the
letter s or not. Remove all occurrences of letter s from all words

words=[]
foriin range(4):
words.append(raw_input("enter word please: "))

length = len(words)
for i in range(length):
for let in wordsi]:
if let I="s":
temp = temp + let
wordsJi]=temp
print words

1.19

Manipulating Slices

® You can actually do almost anything with list slices
colours = [red’, 'yellow’, 'green’, 'blue’]
colours[1:3] = ['yellowish’, ‘greenish’]
print colours
['red’, 'yellowish’, 'greenish’, 'blue’]
colours[1:3] = ['pink’, 'purple’, ’ecru’]
print colours
[red’, 'pink’, 'purple’, 'ecru’, 'blue’]
B we assigned a list of three elements to a slice of length two
The list expands to make room or the new elements
['yellowish’, ‘greenish] is replaced with ['pink’, 'purple’, 'ecru’].

1.20

Manipulating Slices

If the list assigned is shorter than the slice, the list would shrink
colours = ['red’, 'yellow', 'green’, 'blue']
colours[1:3] = "red"
print colours
['red’, 'r", 'e', 'd", 'blue’]

colours = ['red', 'yellow', 'green’, 'blue']
colours[1:3] = ['red’]
print colours

['red’, 'red', 'blue']

1.21

Deleting Slices

You can also remove any slice from a list:
colours = [red’, 'yellow’, 'green’, 'blue’]
del colours[1:3]
print colours

[red’, 'blue’]

1.22

Strings

Strings are a sequence of characters; lists are a sequence of any
combination of types.

Any type that represents a collection of values can be used as the
“list” in a for loop.

Since a string represents a sequence of characters, it can be
used.

for char in "abc":
print "A character:", char

A character: a

A character: b
A character: c

1.23

Slicing Strings
®m Slices In strings are read only

®m sentence = "Look, I'm a string!”
® print sentencel:5]
Look
m print sentence[6:11]
I'm a
B print sentencel-7:]
string!

1.24

But, you can’t modify a string slice

sentence = "Look, I'm a string!”
sentence[:5] = "Wow"

TypeError: object doesn’t support slice assignment
del sentence[6:10]

TypeError: object doesn’t support slice assignment

1.25

Mutability

dots = dots + "." # statement #1

The right side of = is evaluated and put into dots. The old value of
dots is lost in the assignment

values = values + [n] # statement #2
Same with this method of modifying lists
values.append(n) # statement #3
The output of this statement is the same as statement 2.
Statement 3 requires a lot less work.
The whole list in not rebuilt.

Data structures that can be changed in-place like lists are called
mutable.

Strings and numbers are not mutable: they are immutable.

Objects depends how they are written, but they have the capability to
be mutable

1.26

References

There are several cases where the contents of one variable are
copied to another.

X copied into y:
y=xX

You probably don'’t think of copying the contents of a variable as a
difficult operation, but consider the case where x is a list with millions
of elements.

Python avoids making copies where possible

To understand this, we need to understand references.

1.27

Every variable in Python is actually a reference to the place in memory
where its contents are stored.

Conceptually, you should think of a variable referencing its contents
like an arrow pointing to the contents in memory.

Statements:
my string = "one" + "two" + "three"
my list = [0, 10, 20]
Result:
#Ejﬁfﬂ% "onetwothree"
my string

my list /—_/,‘ [0, 10, 20]

1.28

When you use a variable in an expression, Python follows the
reference to find its contents.

Usually, the expression on the right side of an assignment creates a
new object in memory.

Total = a+b calculates a+b, stores this in memory, and sets total to
reference that value.

® The exception to this is when the right side of an assignment is simply
a variable reference

(like total=a).

In this case, the result is already in memory and the variable can
just reference the existing contents

1.29

Aliases

®m When two variables refer to the same contents, they are aliases of
each other.

it's generally good since it doesn’t require copying the contents to
another location in memory.

Statements:
my string = "one" + "two" + "three"
string copy = my string
string copy = string_copy + "four™

Result:

my_stringﬁ##ﬂfd___}
,_,;ffﬂ; "onetwothreefour" ‘

"onetwothres"

string copy

® When you assign to a variable, you are changing it so the variable
now references different contents.

(The old contents are thrown away since they are no longer being
referenced.)

1.30

Mutable data structures and aliases

® Mutable data structures (lists and some objects), aliases complicate

things.

Mutable data structures can be changed without totally rebuilding

them, we can change the contents without moving the reference to
a new object in memory

m |t's possible to change a variable, and the changes will affect any
other variables that reference the same contents.

my_list and list_copy are aliases of the same contents. When
either one is changed, both are affected. |

Statements:

my list = [0, 10, Z20]
list copy = my list

Result:

Statements:
my list = [0, 10, 20]
list copy = my list
list copy.append(30)
my list.append(40)

,f“H’FP_F_%

Result:

my list Hg}//ffx?

list copy

_— 21 [0, 10, 20, 30,

40]

my list Hﬁgﬁfﬂf&

list copy

1.31

Any expression (that's more complicated than a variable reference)
will result in a new reference being created. If this Iis assigned to a
variable, then there is no aliasing.

Statements:
my string = "one" + "two" + "three"
string copy = my string

string copy = string copy + "four®

Result:

my_string”;;ﬂfd___}
'_f,ff#; "onetwothreefour™

"opnetwothree"

string copy

Statements:

my list = [0, 10, 20]
bigger list = my list + [30]

Result:
[0, 10, 20]

.-'—Ff-_}
_//,/——) [0, 10, 20, 30]

my list

bigger list

1.32

Really Copying

m If you want to make a copy of a variable that isn’t a reference, it's
necessary to force Python to actually copy its contents to a new place
in memory. This is called cloning. Cloning is more expensive than
aliasing,

® There are three methods for this
The slice operator can be used to create a clone.

Statements:
my list = [0, 10, 20]
list copy = my list[:]

Result:

Liet — 1 10, 10, 201

my

- > [0, 10, 20]

You could also make a copy of a list with the list function that
creates a new list (out of the old one). So, list(my_list) would give
the same result as my_list[:].

the copy module contains a copy function. This function will take
any Python object and clone its contents

import copy
new_obj = copy.copy(obj)

1.33

