
CMPT 120

Functions and Decomposition

Summer 2012

Instructor: Hassan Khosravi

1.2

Defining Functions

 We have already seen how several functions work in Python

 raw_input,

 range,

 int, and str

 A function must be given arguments.

 These are the values in parentheses that come after the name of

the function.

 int("321"), the string "321" is the argument.

 Functions can have no arguments, or they can take several.

 Functions that return values can be used as part of an expression.

 x = 3*int("10") + 2

 , the variable x will contain the number 32.

1.3

Defining your own functions

 Functions are defined with a def block

 def linespace():

 print

 print "Hello"

 linespace()

 print "My name is Hassan"

1.4

Example

 Read 10 numbers and return their squares using function

 def square(num):

 num = num*num

 return num

 for i in range(10):

 input = int(raw_input("enter number: "))

 input_squared = square(input)

 print input_squared

1.5

Perfect numbers

Find all perfect numbers between 1 to 100

 def perfect(number):

 sum_divisor =0

 for i in range(number-1):

 if number%(i+1) == 0:

 sum_divisor = sum_divisor + i+1

 if number == sum_divisor:

 return True

 else:

 return False

 for j in range (1,101):

 if perfect(j) == True:

 print j, "is perfect"

1.6

Defining your own functions

Write a read_integer function

 def read_integer(prompt):

 flag = True

 while flag == True:

 input = raw_input(prompt)

 if input.isdigit() == True:

 flag = False

 return int(input)

 num = read_integer("Type a number: ")

 print "One more is", num+1

 num = read_integer("Type another: ")

 print "One less is", num-1

1.7

I-clicker question
 def middle_value(a, b, c):

 if a <= b <= c or a >= b >= c:

 return b

 elif b <= a <= c or b >= a >= c:

 return a

 else:

 return c

 print middle_value(8,2,6) / 2

 A:3

 B:2

 C:6

 D:5

 E:4

1.8

What happens when computer runs this

code

 half_mid = middle_value(8,2,6) / 2

 The expression on the right of the variable assignment must be evaluated

before the variable can be assigned

 It evaluates the expression middle_value(4,2,6) / 2.

 The sub-expressions on either side of the division operator must be evaluated.

 Evaluate middle_value(4,2,6)

 Now, this statement is put on hold while the function does its thing

 The function middle_value is called.

 The arguments that are given in the calling code (4,2,6) are assigned to the

local variables given in the argument list (a,b,c).

 a =4 , b=2, c=6

 c=6 is returned by the function

 The calling code gets the return value, 6. The expressions is now 6/2.

 The integer 3 is assigned to the variable half_mid.

1.9

Why Use Functions?

 Functions can be used to break your program into logical sections.

 Easier to build and debug

 Makes the program easier to read

 Functions are also quite useful to prevent duplication of similar

code.

 YOU SHOULD NEVER COPY PASTE CODE

 What happens when you want to update code?

– You need to haunt for that code everywhere to fix it

 maintaining it is much easier.

 Easier to distribute the work

1.10

 You are throwing a party

 Among other things you need to

 Greet friends coming in

 Handle food

 Handle Alcohol

 Instead of doing all that yourself you decide to get help from friends

 Greeting friends  Jack

 Food  James

 Alcohol  Jim

1.11

Variable Scope

 Variables used inside a function are only available inside that function.

 It is local inside that function

 def square(num):

 num = num*num

 return num

 for i in range(10):

 input = int(raw_input("enter number: "))

 input_squared = square(input)

 print input_squared

1.12

 This is actually a very good thing. It means that when you write a

function, you can use a variable like num without worrying that some

other part of the program is already using it.

 Alcohol  Jim

 Mike

 Greeting friends  Jack

 Food  James

 Jim

1.13

Use of variable i

 def perfect(number):

 sum_divisor =0

 for i in range(number-1):

 if number%(i+1) == 0:

 sum_divisor = sum_divisor + i+1

 if number == sum_divisor:

 return True

 else:

 return False

 for i in range (1,101):

 if perfect(i) == True:

 print i, "is perfect"

1.14

If that was not the case

 it becomes very hard to write large programs.

 Imagine trying to write some code and having to check 20 different

functions every time you introduce a new variable to make sure you’re

not using the same name over again.

 The code has very limited interaction with the rest of the program. This

makes it much easier to debug programs that are separated with

functions.

 Greeting friends  Jack

 Food  James

 Alcohol  Jim

 Each use ten of their friends to help them.

1.15

Assignment 1

What sort of functions may be helpful for the assignment?

1.16

Python Modules

 In most programming languages, you aren’t expected to do everything

from scratch.

 Some prepackaged functions come with the language

 These are usually called libraries

 In python they are called modules

 There are many available modules in Python.

 Module time (you should check the documentation for a module to

see how to work with it)

 http://docs.python.org/library/time.html

 The time module has a function strftime that can be used to

output the current date and time in a particular format.

 Modules need to be imported before being used

 they can be used. There are so many modules that if they were all

imported automatically, programs would take a long time to startup

http://docs.python.org/library/time.html

1.17

 import time

 print "Today is " + time.strftime("%B %d, %Y") + ".“

 If you import a function like import time

 then you can use methods like time.strftime("%B %d, %Y")

 If you import a function like From time import *

 strftime("%B %d, %Y")

1.18

Objects

 Objects are collections of properties and methods.

 Objects are only touched on in this course and are usually

covered in details in higher level courses.

 Real life objects:

 A DVD player is an example of an object

 Buttons correspond to various actions the player can do

 Objects in programming language

 Are very similar to real objects

1.19

Properties and methods

 Properties works like variables. It holds some information about the

object.

 The current position in the movie might be a property. (you can

change the value)

 In python you can set properties like variables

 A method works like a function. It performs some operation on the

object.

 For the DVD player, a method might be something like “play this

DVD”.

 A method might change some of the method’s properties

– like set the counter to 0:00:00

1.20

Class and instances

 A particular kind of object is called a class

 there is a class called “DVD Player”.

 When you create (buy) an object in the class it’s called an instance.

 An instance behaves a lot like any other variable, except

 it contains methods and properties.

 So, objects are really variables that contain variables and

functions of their own.

1.21

Objects in Python

 Classes in Python can be created by the programmer or can come

from modules.

 We won’t be creating our own classes in this course, just using

classes provided by modules.

 To instantiate an object, its constructor is used. This is a function that

builds the object and returns it.

 Buying your DVD player for you and setting it up

 import datetime

 newyr = datetime.date(2005, 01, 01) # constructor

 print newyr.year # the year property

 print newyr.strftime("%B %d, %Y") # the strftime method

 print newyr

1.22

 The ways you can use an object depend on how the class has been

defined.

 The things you can do with you DVD player depends on the DVD

player.

 For example date class does not know how to add in the date object

 import datetime

 first = datetime.date(1989, 12, 17)

 print first

 print first+7

 TypeError: unsupported operand type(s) for +: ’datetime.date’

and ’int’

 So, Python doesn’t know how to add the integer 7

1.23

 But, it does know how to subtract dates:

 import datetime

 first = datetime.date(1989, 12, 17)

 second = datetime.date(1990, 1, 14)

 print second- first

 print type(second-first)

 Stores the time between two events

 print second + first

 still doesn’t work

1.24

Handling Errors

 m_str = raw_input("Enter your height (in metres): ")

 metres = float(m_str)

 feet = 39.37 * metres / 12

 print "You are " + str(feet) + " feet tall.“

 Traceback (most recent call last): File "C:/Documents and

Settings/abozorgk/Desktop/sum.py", line 2, in <module> metres

= float(m_str) ValueError: could not convert string to float:

 This isn’t very helpful for the user as it terminates the whole program

 Errors that happen while the program is running are called exceptions

1.25

 Python lets you catch any kind of error,

 m_str = raw_input("Enter your height (in metres): ")

 try:

 metres = float(m_str)

 feet = 39.37 * metres / 12

 print "You are " + str(feet) + " feet tall."

 except:

 print "That wasn't a number."

 The try/except block lets the program handle exceptions when they

happen.

 If any exceptions happen while the try part is running, the except code

is executed. It is ignored otherwise.

1.26

 got_height = False

 while not got_height:

 m_str = raw_input("Enter your height (in metres): ")

 try:

 metres = float(m_str)

 got_height = True # if we're here, it was converted.

 except:

 print "Please enter a number."

 feet = 39.37 * metres / 12

 print "You are " + str(feet) + " feet tall."

1.27

Catching Different Types of Errors

 got_height = False

 while not got_height:

 m_str = raw_input("Enter your height (in metres): ")

 try:

 b= 10/0

 metres = float(m_str)

 got_height = True # if we're here, it was converted.

 except:

 print "Please enter a number."

 feet = 39.37 * metres / 12

 print "You are " + str(feet) + " feet tall."

1.28

 Type of errors

 10/0

 ZeroDivisionError

 Float(“asd”)

 ValueError

 got_height = False

 while not got_height:

 m_str = raw_input("Enter your height (in metres): ")

 try:

 metres = float(m_str)

 got_height = True # if we're here, it was converted.

 except ValueError:

 print "Please enter a number."

 feet = 39.37 * metres / 12

 print "You are " + str(feet) + " feet tall."

1.29

 got_height = False

 while not got_height:

 m_str = raw_input("Enter your height (in metres): ")

 try:

 metres = float(m_str)

 10/ metres

 got_height = True # if we're here, it was converted.

 except ZeroDivisionError:

 print "division by zero"

 except ValueError:

 print "please enter integer"

 feet = 39.37 * metres / 12

 print "You are " + str(feet) + " feet tall."

1.30

Example
 Write a program that finds the average of three numbers.

 If the remainder of average divided by four is 0 then ask for the

first name name and surname of

 If the remainder of average divided by four is 1 then calculate and

print (average)3 - (average)2

 If the remainder of average divided by four is 2 then ask for a new

number n and calculate and print average/n

 If the remainder of average divided by four is 3 then print all

positive even numbers smaller than 15

1.31

Main

average = avgThreeNum()

If average %4 ==0

 firstname,secondname=getname()

If average %4 ==1

 result = calc(average)

If average %4 ==2

 resultDiv = division(avg)

If average %4 ==3

 printeven()

Example

division

Input: avg

Get num1

Handle division by zero, avg is number

Return value

getName

Input: nothing

Get fname, sname

Handle: make sure not empty

Return fname,sname

avgThreeNum

Input: nothing

Get num1,num2,num3

Handle: make sure numbers

return average

calc

Input: avg

Handle: Avg is number

Return value

printeven

Input: nothing

Return nothing

1.32

 def printeven():

 for i in range(0,15,2):

 print i

printeven

Input: nothing

Return nothing

1.33

 def division(avg):

 num1 = read_integer("please enter a

number")

 try:

 value = avg/num1

 except ZeroDivisionError:

 print "you had division by zero"

 return 0

 except TypeError:

 print "avg is not a number"

 return 0

 return value

division

Input: avg

Get num1

Handle division by zero, avg is number

Return value

 def read_integer(prompt):

 flag = True

 while flag == True:

 input = raw_input(prompt)

 if input.isdigit() == True:

 flag = False

 return int(input)

1.34

 def calc(avg):

 try:

 avg = float(avg)

 except ValueError:

 print "avg in calc is not a number"

 return 0

 value = avg*avg*avg - avg**2

 return value

calc

Input: avg

Handle: Avg is number

Return value

1.35

 def getName():

 fname = raw_input("What is your first name? ")

 while fname=="":

 fname = raw_input("Please enter your name: ")

 sname = raw_input("What is your surname name? ")

 while sname=="":

 sname = raw_input("Please enter your surname: ")

 return fname, sname

getName

Input: nothing

Get fname, sname

Handle: make sure not empty

Return fname,sname

1.36

 def avgThreeNum():

 num1 = read_integer("please enter first number")

 num2 = read_integer("please enter second number")

 num3 = read_integer("please enter third number")

 avg = (num1 +num2 + num3)/3

 return avg

avgThreeNum

Input: nothing

Get num1,num2,num3

Handle: make sure numbers

return average

1.37

 avg = avgThreeNum()

 print avg

 if avg % 4 == 0:

 firstname, secondname = getName()

 print firstname, secondname

 elif avg % 4 == 1:

 results = calc(avg)

 print results

 elif avg % 4 == 2:

 results = division(avg)

 print results

 else:

 printeven()

Main

average = avgThreeNum()

If average %4 ==0

 firstname,secondname=getname()

If average %4 ==1

 result = calc(average)

If average %4 ==2

 resultDiv = division(avg)

If average %4 ==3

 printeven()

