
CMPT 120

Functions and Decomposition

Summer 2012

Instructor: Hassan Khosravi

1.2

Defining Functions

 We have already seen how several functions work in Python

 raw_input,

 range,

 int, and str

 A function must be given arguments.

 These are the values in parentheses that come after the name of

the function.

 int("321"), the string "321" is the argument.

 Functions can have no arguments, or they can take several.

 Functions that return values can be used as part of an expression.

 x = 3*int("10") + 2

 , the variable x will contain the number 32.

1.3

Defining your own functions

 Functions are defined with a def block

 def linespace():

 print

 print "Hello"

 linespace()

 print "My name is Hassan"

1.4

Example

 Read 10 numbers and return their squares using function

 def square(num):

 num = num*num

 return num

 for i in range(10):

 input = int(raw_input("enter number: "))

 input_squared = square(input)

 print input_squared

1.5

Perfect numbers

Find all perfect numbers between 1 to 100

 def perfect(number):

 sum_divisor =0

 for i in range(number-1):

 if number%(i+1) == 0:

 sum_divisor = sum_divisor + i+1

 if number == sum_divisor:

 return True

 else:

 return False

 for j in range (1,101):

 if perfect(j) == True:

 print j, "is perfect"

1.6

Defining your own functions

Write a read_integer function

 def read_integer(prompt):

 flag = True

 while flag == True:

 input = raw_input(prompt)

 if input.isdigit() == True:

 flag = False

 return int(input)

 num = read_integer("Type a number: ")

 print "One more is", num+1

 num = read_integer("Type another: ")

 print "One less is", num-1

1.7

I-clicker question
 def middle_value(a, b, c):

 if a <= b <= c or a >= b >= c:

 return b

 elif b <= a <= c or b >= a >= c:

 return a

 else:

 return c

 print middle_value(8,2,6) / 2

 A:3

 B:2

 C:6

 D:5

 E:4

1.8

What happens when computer runs this

code

 half_mid = middle_value(8,2,6) / 2

 The expression on the right of the variable assignment must be evaluated

before the variable can be assigned

 It evaluates the expression middle_value(4,2,6) / 2.

 The sub-expressions on either side of the division operator must be evaluated.

 Evaluate middle_value(4,2,6)

 Now, this statement is put on hold while the function does its thing

 The function middle_value is called.

 The arguments that are given in the calling code (4,2,6) are assigned to the

local variables given in the argument list (a,b,c).

 a =4 , b=2, c=6

 c=6 is returned by the function

 The calling code gets the return value, 6. The expressions is now 6/2.

 The integer 3 is assigned to the variable half_mid.

1.9

Why Use Functions?

 Functions can be used to break your program into logical sections.

 Easier to build and debug

 Makes the program easier to read

 Functions are also quite useful to prevent duplication of similar

code.

 YOU SHOULD NEVER COPY PASTE CODE

 What happens when you want to update code?

– You need to haunt for that code everywhere to fix it

 maintaining it is much easier.

 Easier to distribute the work

1.10

 You are throwing a party

 Among other things you need to

 Greet friends coming in

 Handle food

 Handle Alcohol

 Instead of doing all that yourself you decide to get help from friends

 Greeting friends Jack

 Food James

 Alcohol Jim

1.11

Variable Scope

 Variables used inside a function are only available inside that function.

 It is local inside that function

 def square(num):

 num = num*num

 return num

 for i in range(10):

 input = int(raw_input("enter number: "))

 input_squared = square(input)

 print input_squared

1.12

 This is actually a very good thing. It means that when you write a

function, you can use a variable like num without worrying that some

other part of the program is already using it.

 Alcohol Jim

 Mike

 Greeting friends Jack

 Food James

 Jim

1.13

Use of variable i

 def perfect(number):

 sum_divisor =0

 for i in range(number-1):

 if number%(i+1) == 0:

 sum_divisor = sum_divisor + i+1

 if number == sum_divisor:

 return True

 else:

 return False

 for i in range (1,101):

 if perfect(i) == True:

 print i, "is perfect"

1.14

If that was not the case

 it becomes very hard to write large programs.

 Imagine trying to write some code and having to check 20 different

functions every time you introduce a new variable to make sure you’re

not using the same name over again.

 The code has very limited interaction with the rest of the program. This

makes it much easier to debug programs that are separated with

functions.

 Greeting friends Jack

 Food James

 Alcohol Jim

 Each use ten of their friends to help them.

1.15

Assignment 1

What sort of functions may be helpful for the assignment?

1.16

Python Modules

 In most programming languages, you aren’t expected to do everything

from scratch.

 Some prepackaged functions come with the language

 These are usually called libraries

 In python they are called modules

 There are many available modules in Python.

 Module time (you should check the documentation for a module to

see how to work with it)

 http://docs.python.org/library/time.html

 The time module has a function strftime that can be used to

output the current date and time in a particular format.

 Modules need to be imported before being used

 they can be used. There are so many modules that if they were all

imported automatically, programs would take a long time to startup

http://docs.python.org/library/time.html

1.17

 import time

 print "Today is " + time.strftime("%B %d, %Y") + ".“

 If you import a function like import time

 then you can use methods like time.strftime("%B %d, %Y")

 If you import a function like From time import *

 strftime("%B %d, %Y")

1.18

Objects

 Objects are collections of properties and methods.

 Objects are only touched on in this course and are usually

covered in details in higher level courses.

 Real life objects:

 A DVD player is an example of an object

 Buttons correspond to various actions the player can do

 Objects in programming language

 Are very similar to real objects

1.19

Properties and methods

 Properties works like variables. It holds some information about the

object.

 The current position in the movie might be a property. (you can

change the value)

 In python you can set properties like variables

 A method works like a function. It performs some operation on the

object.

 For the DVD player, a method might be something like “play this

DVD”.

 A method might change some of the method’s properties

– like set the counter to 0:00:00

1.20

Class and instances

 A particular kind of object is called a class

 there is a class called “DVD Player”.

 When you create (buy) an object in the class it’s called an instance.

 An instance behaves a lot like any other variable, except

 it contains methods and properties.

 So, objects are really variables that contain variables and

functions of their own.

1.21

Objects in Python

 Classes in Python can be created by the programmer or can come

from modules.

 We won’t be creating our own classes in this course, just using

classes provided by modules.

 To instantiate an object, its constructor is used. This is a function that

builds the object and returns it.

 Buying your DVD player for you and setting it up

 import datetime

 newyr = datetime.date(2005, 01, 01) # constructor

 print newyr.year # the year property

 print newyr.strftime("%B %d, %Y") # the strftime method

 print newyr

1.22

 The ways you can use an object depend on how the class has been

defined.

 The things you can do with you DVD player depends on the DVD

player.

 For example date class does not know how to add in the date object

 import datetime

 first = datetime.date(1989, 12, 17)

 print first

 print first+7

 TypeError: unsupported operand type(s) for +: ’datetime.date’

and ’int’

 So, Python doesn’t know how to add the integer 7

1.23

 But, it does know how to subtract dates:

 import datetime

 first = datetime.date(1989, 12, 17)

 second = datetime.date(1990, 1, 14)

 print second- first

 print type(second-first)

 Stores the time between two events

 print second + first

 still doesn’t work

1.24

Handling Errors

 m_str = raw_input("Enter your height (in metres): ")

 metres = float(m_str)

 feet = 39.37 * metres / 12

 print "You are " + str(feet) + " feet tall.“

 Traceback (most recent call last): File "C:/Documents and

Settings/abozorgk/Desktop/sum.py", line 2, in <module> metres

= float(m_str) ValueError: could not convert string to float:

 This isn’t very helpful for the user as it terminates the whole program

 Errors that happen while the program is running are called exceptions

1.25

 Python lets you catch any kind of error,

 m_str = raw_input("Enter your height (in metres): ")

 try:

 metres = float(m_str)

 feet = 39.37 * metres / 12

 print "You are " + str(feet) + " feet tall."

 except:

 print "That wasn't a number."

 The try/except block lets the program handle exceptions when they

happen.

 If any exceptions happen while the try part is running, the except code

is executed. It is ignored otherwise.

1.26

 got_height = False

 while not got_height:

 m_str = raw_input("Enter your height (in metres): ")

 try:

 metres = float(m_str)

 got_height = True # if we're here, it was converted.

 except:

 print "Please enter a number."

 feet = 39.37 * metres / 12

 print "You are " + str(feet) + " feet tall."

1.27

Catching Different Types of Errors

 got_height = False

 while not got_height:

 m_str = raw_input("Enter your height (in metres): ")

 try:

 b= 10/0

 metres = float(m_str)

 got_height = True # if we're here, it was converted.

 except:

 print "Please enter a number."

 feet = 39.37 * metres / 12

 print "You are " + str(feet) + " feet tall."

1.28

 Type of errors

 10/0

 ZeroDivisionError

 Float(“asd”)

 ValueError

 got_height = False

 while not got_height:

 m_str = raw_input("Enter your height (in metres): ")

 try:

 metres = float(m_str)

 got_height = True # if we're here, it was converted.

 except ValueError:

 print "Please enter a number."

 feet = 39.37 * metres / 12

 print "You are " + str(feet) + " feet tall."

1.29

 got_height = False

 while not got_height:

 m_str = raw_input("Enter your height (in metres): ")

 try:

 metres = float(m_str)

 10/ metres

 got_height = True # if we're here, it was converted.

 except ZeroDivisionError:

 print "division by zero"

 except ValueError:

 print "please enter integer"

 feet = 39.37 * metres / 12

 print "You are " + str(feet) + " feet tall."

1.30

Example
 Write a program that finds the average of three numbers.

 If the remainder of average divided by four is 0 then ask for the

first name name and surname of

 If the remainder of average divided by four is 1 then calculate and

print (average)3 - (average)2

 If the remainder of average divided by four is 2 then ask for a new

number n and calculate and print average/n

 If the remainder of average divided by four is 3 then print all

positive even numbers smaller than 15

1.31

Main

average = avgThreeNum()

If average %4 ==0

 firstname,secondname=getname()

If average %4 ==1

 result = calc(average)

If average %4 ==2

 resultDiv = division(avg)

If average %4 ==3

 printeven()

Example

division

Input: avg

Get num1

Handle division by zero, avg is number

Return value

getName

Input: nothing

Get fname, sname

Handle: make sure not empty

Return fname,sname

avgThreeNum

Input: nothing

Get num1,num2,num3

Handle: make sure numbers

return average

calc

Input: avg

Handle: Avg is number

Return value

printeven

Input: nothing

Return nothing

1.32

 def printeven():

 for i in range(0,15,2):

 print i

printeven

Input: nothing

Return nothing

1.33

 def division(avg):

 num1 = read_integer("please enter a

number")

 try:

 value = avg/num1

 except ZeroDivisionError:

 print "you had division by zero"

 return 0

 except TypeError:

 print "avg is not a number"

 return 0

 return value

division

Input: avg

Get num1

Handle division by zero, avg is number

Return value

 def read_integer(prompt):

 flag = True

 while flag == True:

 input = raw_input(prompt)

 if input.isdigit() == True:

 flag = False

 return int(input)

1.34

 def calc(avg):

 try:

 avg = float(avg)

 except ValueError:

 print "avg in calc is not a number"

 return 0

 value = avg*avg*avg - avg**2

 return value

calc

Input: avg

Handle: Avg is number

Return value

1.35

 def getName():

 fname = raw_input("What is your first name? ")

 while fname=="":

 fname = raw_input("Please enter your name: ")

 sname = raw_input("What is your surname name? ")

 while sname=="":

 sname = raw_input("Please enter your surname: ")

 return fname, sname

getName

Input: nothing

Get fname, sname

Handle: make sure not empty

Return fname,sname

1.36

 def avgThreeNum():

 num1 = read_integer("please enter first number")

 num2 = read_integer("please enter second number")

 num3 = read_integer("please enter third number")

 avg = (num1 +num2 + num3)/3

 return avg

avgThreeNum

Input: nothing

Get num1,num2,num3

Handle: make sure numbers

return average

1.37

 avg = avgThreeNum()

 print avg

 if avg % 4 == 0:

 firstname, secondname = getName()

 print firstname, secondname

 elif avg % 4 == 1:

 results = calc(avg)

 print results

 elif avg % 4 == 2:

 results = division(avg)

 print results

 else:

 printeven()

Main

average = avgThreeNum()

If average %4 ==0

 firstname,secondname=getname()

If average %4 ==1

 result = calc(average)

If average %4 ==2

 resultDiv = division(avg)

If average %4 ==3

 printeven()

