CMPT 120
Functions and Decomposition

Summer 2012
Instructor: Hassan Khosravi

Defining Functions

We have already seen how several functions work in Python
raw_input,
range,
int, and str

A function must be given arguments.

These are the values in parentheses that come after the name of
the function.

int("321"), the string "321" is the argument.
Functions can have no arguments, or they can take several.

Functions that return values can be used as part of an expression.

X = 3*int("10") + 2
. the variable x will contain the number 32.

1.2

Defining your own functions

B Functions are defined with a def block
def linespace():
print

print "Hello"

linespace()
print "My name is Hassan"

13

Example

Read 10 numbers and return their squares using function

def square(num):
num = nuM*num
return num

for i in range(10):
input = int(raw_input("enter number: "))
Input_squared = square(input)
print input_squared

14

Perfect numbers

Find all perfect numbers between 1 to 100

m def perfect(number):
sum_divisor =0
for i in range(number-1):
if number%(i+1) == O:

|
|
|
| sum_divisor = sum_divisor + i+1
| if number == sum_divisor:

| return True

u else:

|

return False
m forjinrange (1,101):

n if perfect(j) == True:
u print j, "is perfect"

15

Defining your own functions

Write a read_integer function
m def read_integer(prompt):
] flag = True

] while flag == True:

] iInput = raw_input(prompt)
] if input.isdigit() == True:
Il flag = False

] return int(input)

num = read_integer("Type a number: ")
print "One more is", num+1
num = read_integer("Type another: ")

print "One less is", num-1

1.6

I-clicker question

def middle_value(a, b, c¢):
fa<=b<=cora>=b>=c:
return b
elifb<=a<=corb>=a>=c:
return a
else:
return c

print middle_value(8,2,6) / 2

A:3
B:2
C.6
D:5
E:4

1.7

What happens when computer runs this
code

® half mid = middle value(8,2,6) / 2

® The expression on the right of the variable assignment must be evaluated
before the variable can be assigned

It evaluates the expression middle_value(4,2,6) / 2.
® The sub-expressions on either side of the division operator must be evaluated.
Evaluate middle value(4,2,6)
Now, this statement is put on hold while the function does its thing
The function middle_value is called.

The arguments that are given in the calling code (4,2,6) are assigned to the
local variables given in the argument list (a,b,c).

a=4 , b=2, c=6
c=6 is returned by the function
The calling code gets the return value, 6. The expressions is now 6/2.
The integer 3 is assigned to the variable half _mid.

1.8

Why Use Functions?

® Functions can be used to break your program into logical sections.
Easier to build and debug
Makes the program easier to read

Functions are also quite useful to prevent duplication of similar
code.

YOU SHOULD NEVER COPY PASTE CODE
What happens when you want to update code?
You need to haunt for that code everywhere to fix it
maintaining it is much easier.
Easier to distribute the work

1.9

® You are throwing a party
Among other things you need to
Greet friends coming in
Handle food
Handle Alcohol

®m Instead of doing all that yourself you decide to get help from friends
Greeting friends - Jack
Food - James
Alcohol - Jim

1.10

Variable Scope

Variables used inside a function are only available inside that function.
It is local inside that function

def square(num):
numM = num*num
return num

for i in range(10):
input = int(raw_input("enter number: "))
iInput_squared = square(input)
print input_squared

111

®m This is actually a very good thing. It means that when you write a
function, you can use a variable like num without worrying that some
other part of the program is already using it.

Alcohol 2 Jim

Mike
Greeting friends - Jack
Food - James

Jim

1.12

Use of variable i

def perfect(number):
sum_divisor =0
for i in range(number-1):
if number%¢(i+1) == O:
sum_divisor = sum_divisor + i+1

if number == sum_divisor:

return True
else:

return False

foriin range (1,101):

if perfect(i) == True:
print i, "is perfect"

1.13

If that was not the case

It becomes very hard to write large programs.

Imagine trying to write some code and having to check 20 different
functions every time you introduce a new variable to make sure you're
not using the same name over again.

The code has very limited interaction with the rest of the program. This
makes it much easier to debug programs that are separated with
functions.

Greeting friends - Jack

Food - James

Alcohol -2 Jim

Each use ten of their friends to help them.

1.14

Assignment 1

What sort of functions may be helpful for the assignment?

1.15

Python Modules

In most programming languages, you aren’t expected to do everything
from scratch.

Some prepackaged functions come with the language
These are usually called libraries

In python they are called modules
There are many available modules in Python.

Module time (you should check the documentation for a module to
see how to work with it)

The time module has a function strftime that can be used to
output the current date and time in a particular format.

Modules need to be imported before being used

they can be used. There are so many modules that if they were all
imported automatically, programs would take a long time to startup

1.16

http://docs.python.org/library/time.html

Import time
print "Today is " + time.strftime("%B %d, %Y") + ".*

®m If you import a function like import time

then you can use methods like time.strftime("%B %d, %Y")
m If you import a function like From time import *

stritime("%B %d, %Y")

1.17

Objects

®m Objects are collections of properties and methods.

Obijects are only touched on in this course and are usually
covered in details in higher level courses.

m Real life objects:

A DVD player is an example of an object
Buttons correspond to various actions the player can do

® Objects in programming language
Are very similar to real objects

1.18

Properties and methods

®m Properties works like variables. It holds some information about the
object.

The current position in the movie might be a property. (you can
change the value)

In python you can set properties like variables

® A method works like a function. It performs some operation on the
object.

For the DVD player, a method might be something like “play this
DVD”.

A method might change some of the method'’s properties
like set the counter to 0:00:00

1.19

Class and instances

m A particular kind of object is called a class
there is a class called “DVD Player”.

® When you create (buy) an object in the class it’s called an instance.
B An instance behaves a lot like any other variable, except

it contains methods and properties.

So, objects are really variables that contain variables and
functions of their own.

1.20

Objects in Python

m Classes in Python can be created by the programmer or can come
from modules.

We won'’t be creating our own classes in this course, just using
classes provided by modules.

B To instantiate an object, its constructor is used. This is a function that
builds the object and returns it.

Buying your DVD player for you and setting it up

Import datetime
newyr = datetime.date(2005, 01, 01) # constructor

print newyr.year # the year property
print newyr.strftime("%B %d, %Y") # the strftime method

print newyr

1.21

® The ways you can use an object depend on how the class has been
defined.

The things you can do with you DVD player depends on the DVD
player.

m For example date class does not know how to add in the date object
Import datetime
first = datetime.date(1989, 12, 17)
print first
print first+7

TypeError: unsupported operand type(s) for +: 'datetime.date’
and 'int’

m So, Python doesn’t know how to add the integer 7

1.22

m But, it does know how to subtract dates:
import datetime
first = datetime.date(1989, 12, 17)
second = datetime.date(1990, 1, 14)
print second- first
print type(second-first)
Stores the time between two events

print second + first
still doesn’t work

1.23

Handling Errors

m_str = raw_input("Enter your height (in metres): ")
metres = float(m_str)

feet = 39.37 * metres / 12

print "You are " + str(feet) + " feet tall.”

Traceback (most recent call last): File "C:/Documents and
Settings/abozorgk/Desktop/sum.py”, line 2, in <module> metres
= float(m_str) ValueError: could not convert string to float:

This isn’t very helpful for the user as it terminates the whole program

Errors that happen while the program is running are called exceptions

1.24

®m Python lets you catch any kind of error,

m_str = raw_input("Enter your height (in metres): ")
try:

metres = float(m_str)

feet = 39.37 * metres / 12

print "You are " + str(feet) + " feet tall."
except:

print "That wasn't a number."

®m The try/except block lets the program handle exceptions when they
happen.

m [f any exceptions happen while the try part is running, the except code
IS executed. It is ignored otherwise.

1.25

got_height = False
while not got_height:
m_str = raw_input("Enter your height (in metres): ")
try:
metres = float(m_str)
got_height = True # if we're here, it was converted.
except:
print "Please enter a number."
feet = 39.37 * metres / 12
print "You are " + str(feet) + " feet tall."

1.26

Catching Different Types of Errors

got_height = False
while not got_height:
m_str = raw_input("Enter your height (in metres): ")
try:
b= 10/0
metres = float(m_str)
got_height = True # if we're here, it was converted.
except:
print "Please enter a number."
feet = 39.37 * metres / 12
print "You are " + str(feet) + " feet tall."

1.27

m Type of errors
10/0
ZeroDivisionError
Float(“asd”)
ValueError

got_height = False
while not got_height:
m_str = raw_input("Enter your height (in metres):)
try:
metres = float(m_str)
got_height = True # if we're here, it was converted.
except ValueError:
print "Please enter a number."
feet = 39.37 * metres / 12
print "You are " + str(feet) + " feet tall."

1.28

got_height = False
while not got_height:
m_str = raw_input("Enter your height (in metres): ")
try:
metres = float(m_str)
10/ metres
got_height = True # if we're here, it was converted.
except ZeroDivisionError:
print "division by zero"
except ValueError:
print "please enter integer"
feet = 39.37 * metres / 12
print "You are " + str(feet) + " feet tall."

1.29

Example

m Write a program that finds the average of three numbers.

If the remainder of average divided by four is O then ask for the
first name name and surname of

If the remainder of average divided by four is 1 then calculate and
print (average)?® - (average)?

If the remainder of average divided by four is 2 then ask for a new
number n and calculate and print average/n

If the remainder of average divided by four is 3 then print all
positive even numbers smaller than 15

1.30

Main

Example

Y

average = avgThreeNum() €<—

If average %4 ==
firstname,secondname=getname

If average %4 ==
result = calc(average)

If average %4 == \

resultDiv = division(avg)

If average %4 ==

printeven(k

printeven
Input: nothing

Return nothing

1.31

avgThreeNum
Input: nothing

Get numl,num2,num3
Handle: make sure numbers

return average

getName
Input: nothing

Get fname, sname

Handle: make sure not empty

Return fname,sname

calc
Input: avg
Handle: Avg is number

Return value

division
Input: avg
Get numl
Handle division by zero, avg is number

Return value

printeven
Input: nothing

Return nothing

m def printeven():
] foriin range(0,15,2):
O print i

1.32

division
Input: avg
Get numl

Return value

Handle division by zero, avg is number

def division(avg):

numl = read_integer("please enter a
number")

try:
value = avg/numl

except ZeroDivisionError:
print "you had division by zero"
return O

except TypekError:
print "avg is not a number"
return O

return value

1.33

def read_integer(prompt):
flag = True
while flag == True:
input = raw_input(prompt)
if input.isdigit() == True:
flag = False
return int(input)

calc
Input: avg
Handle: Avg is number

Return value

def calc(avg):

try:
avg = float(avg)

except ValueError:
print "avg in calc is not a number"
return O

value = avg*avg*avg - avg**2

return value

1.34

getName
Input: nothing

Get fname, sname

Handle: make sure not empty

Return fname,sname

m def getName():
fname = raw_input("What is your first name? ")
while fname=="".

fname = raw_input("Please enter your name: ")

while sname==""";

return fname, sname

1.35

sname = raw_input("What is your surname name? ")

sname = raw_input("Please enter your surname: ")

avgThreeNum
Input: nothing

Get numl,num2,num3
Handle: make sure numbers

return average

def avgThreeNum():
numl = read_integer("please enter first number")
num2 = read_integer("please enter second number")
num3 = read_integer("please enter third number")
avg = (numl +num2 + num3)/3
return avg

1.36

avg = avgThreeNum()
print avg
if avg % 4 == 0:

Main
average = avgThreeNum()
If average %4 ==
firstname,secondname=getname(
If average %4 ==
result = calc(average)
If average %4 ==
resultDiv = division(avg)
If average %4 ==
printeven()

firstname, secondname = getName()

print firstname, secondname

elifavg % 4 == 1.
results = calc(avg)
print results

elifavg % 4 == 2:
results = division(avg)
print results

else:
printeven()

1.37

