
CMPT 120

How computers run programs

Summer 2012

Instructor: Hassan Khosravi

1.2

How Computers Represent

Information

 All information that is stored and manipulated with a computer is

represented in binary

 with zeros and ones.

 Why just zeros and ones?

 Computer’s memory is a whole bunch of tiny rechargeable

batteries (capacitors).

 discharged (0) or charged (1).

 It’s easy for the computer to look at one of these capacitors

and decide if it’s charged or not.

 This could be done to represent digits from 0 to 9

 difficult to distinguish ten different levels of charge in a

capacitor

 hard to make sure a capacitor doesn’t discharge a little to drop

from a 7 to a 6

1.3

How Computers Represent

Information

 A single piece of storage that can store a zero or one is called a bit.

 Bits are often grouped. It’s common to divide a computer’s memory into

eight-bit groups called bytes

 00100111 and 11110110

 Number of bits or bytes quickly becomes large

 For example, “12 megabytes” is

 12 × 220 bytes = 12,582,912 bytes = 12582912 × 8 bits = 100,663,296

bits

 Note that values are approximations

 Kilo is 1000 here it is 1024

1.4

Unsigned Integers

 Consider the number 157

 157 = (1 × 102) + (5 × 101) + (7 × 100).

 Applying the same logic, there is a counting system with bits, binary or

base 2 arithmetic

 The rightmost bit will be the number of 1s(20), the next will be the

number of 2s (21), then 4s (22), 8s (23), 16s (24), and so on.

 10012 = (1 × 23) + (0 × 22) + (0 × 21) + (1 × 20) = 8 + 1

 100111012 = (1 × 27) + (0 × 26) + (0 × 25) + (1 × 24) + (1 × 23) + (1 ×

22) + (0 × 21) + (1 × 20) = 128 + 16 + 8 + 4 + 1 = 15710.

1.5

1.6

 The computer can do operations like addition and subtraction on

binary integers the same way you do with decimal numbers

 Keep in mind that 1 + 1 = 210 = 102

1.7

Positive and Negative Integers

 One easy way to think of this is to have the left most bit as the sign

 (0 = positive, 1 = negative)

 With four bits

 0 111 would 7

 1111 would be -7

 Pros:

 Its easy for the human eye to understand

 It’s easy to tell if the value is negative: if the first bit is 1, it’s

negative.

 For positive numbers the values are the same as the unsigned

representation.

 Cons

 Addition and subtraction does not work as before

 The value 0 has two representations 1000 and 0000.

1.8

two’s complement notation

 To convert a positive value to a negative value in two’s complement,

you first flip all of the bits (convert 0s to 1s and 1s to 0s) and then add

one.

 For example to show -5

 Start with the positive version: 0101

 Flip all of the bits: 1010

 Add one: 1011

 With 4bits using two’s complement we can show -8, 7

1.9

Pros and cons of two’s complement

 Pros

 It’s easy to tell if the value is negative: if the first bit is 1, it’s

negative.

 For positive numbers the values are the same as the unsigned

representation.

 Addition and subtraction works the same unsigned method

 The value 0 now has 1 representations 0000

 Cons

 Not as easy for humans to see

1.10

Examples of two’s complement

 -6 +4 with 4 digits

 Start with 6  0110

 Complement  1001

 Add 1  1010

 What value is 1110?

 Take one away  1101

 Complement 0010  which is 2

1 0 1 0

0 1 0 0

1 1 1 0

+

1.11

Examples of two’s complement

 −3 + 5 = 2

 Start with 3  0011

 Complement  1100

 Add 1  1101

 We only have 4 bits of memory for values -8 to 7 so we ignore last

carried one

1 1 0 1

0 1 0 1

1 0 0 1 0

+

1.12

 3 – 4

 What is 1111

 Take one away  1110

 Complement  0001

1 0 0 1 1

 0 1 0 0

1 1 1 1

-

1.13

I-clicker

 A: I feel comfortable with binary values and mathematical operations

on them

 B: I was following the class and got the basics, I need to practice

some more to be comfortable with it

 I had difficulty in understanding binary values. I need to go over the

theory again.

 D: I didn’t understand binary values and operators on them at all

1.14

Characters

 A character is a single letter, digit or punctuation

 Storing characters is as easy as storing unsigned integers. For a

byte (8 bits) in the computer’s memory, there are 28 = 256

different unsigned numbers

 Assign each possible character a number and translate the

numbers to characters.

 The character set used by almost all modern computers, when

dealing with English and other western languages, is called ASCII

 T =84

 $= 36

 Number 4 as a string = 52

– Why not give numbers their own value?

1.15

ASCII code

1.16

Extended ASCII codes

1.17

Strings

 A string is a collection of several characters.

 Some strings are "Jasper", "742", and "bhay-gn-flay-vn".

 The particular character set that is used by almost all modern

computers, when dealing with English and other western

languages, is called ASCII

 The binary is the same as 18537 how does the computer know

whether this is “hi” or 18537?

 The programming language should take care of that.

1.18

Unicode

 With only one byte per character, we can only store 256 different

characters in our strings

 But gets quite hard with languages like Chinese and Japanese

 The Unicode character set was created to overcome this limitation.

Unicode can represent up to 2 32 characters.

 Read topic 2.6 from introduction to computing science and

programming

1.19

The Python programming language

 The programming language we will use in this course is Python.

 Python is an example of a high-level language;

 Other high-level languages are C, C++, Perl, and Java.

 Much easier to program

 Less time to read and write

 More likely to be correct

 Portable

 Low-level languages, sometimes referred to as “machine languages"

or “assembly languages”

 Only used for a few specialized applications.

 Computers can only execute programs written in low level . Programs

written in high level have to be processed before then can be run.

 Two kinds of programs process high-level languages into low-level

languages:

1.20

Interpreters

 An interpreter reads a high-level program and executes it,

 It processes the program a little at a time, alternately reading lines

and performing computations.

 Python is interpreted

1.21

Compiler

 A compiler reads the program and translates it completely before the

program starts running.

 In this case, the high-level program is called the source code, and the

translated program is called the object code or the executable

 Read chapter 1 from how to think like a computer scientist

