CMPT 120
How computers run programs

Summer 2012
Instructor: Hassan Khosravi

How Computers Represent
Information

m All information that is stored and manipulated with a computer is
represented in binary

with zeros and ones.

m Why just zeros and ones?

Computer’'s memory is a whole bunch of tiny rechargeable
batteries (capacitors).

discharged (0) or charged (1).

It's easy for the computer to look at one of these capacitors
and decide if it's charged or not.

This could be done to represent digits from O to 9

difficult to distinguish ten different levels of charge in a
capacitor

hard to make sure a capacitor doesn'’t discharge a little to drop
froma7toab

1.2

How Computers Represent
Information

A single piece of storage that can store a zero or one is called a bit.

Bits are often grouped. It's common to divide a computer’'s memory into
eight-bit groups called bytes

00100111 and 11110110

Number of bits or bytes quickly becomes large

Prefix Symbol Factor
(no prefix) M=1
kilo- k 219 = 1024 =~ 10°
mega- M 270 = 1048576 = 10"
giga- G 230 = 1073741824 = 1(0°
tera- T 210 = 1099511627776 = 10"

For example, “12 megabytes” is

12 x 220 pytes = 12,582,912 bytes = 12582912 x 8 bits = 100,663,296
bits

Note that values are approximations
Kilo is 1000 here it is 1024

13

Unsigned Integers

Consider the number 157
157 = (1 x 102) + (5 x 10Y) + (7 x 109).

Applying the same logic, there is a counting system with bits, binary or
base 2 arithmetic

The rightmost bit will be the number of 1s(2°), the next will be the
number of 2s (21), then 4s (22), 8s (23), 16s (24), and so on.

1001, =(1x2%)+(0%x29)+(0x2)+(1x29=8+1

10011101, =(1 x27)+ (0 x 25+ (0% 2°) + (L x 24) + (1 x 23) + (1 %
22)+ (0x2) + (1 x29=128+16+8 +4 +1 =157,,.

14

binary decimal binary decimal

1111 15 0111 7
1110 14 0110 6
1101 13 0101 51
1100 12 (0100 4
1011 11 0011 3
1010 10 0010 2
1001 0 0001 1
1000 5 0000 ()

15

® The computer can do operations like addition and subtraction on
binary integers the same way you do with decimal numbers

Keep in mindthat1 +1 =2,,=10,

1 1 1

1010 1011 1101
= 0100 + 0010 + 0101
1110 1101 10010

1.6

Positive and Negative Integers

® One easy way to think of this is to have the left most bit as the sign
(0 = positive, 1 = negative)
With four bits
0111 would 7
1111 would be -7
® Pros:
Its easy for the human eye to understand

It's easy to tell if the value is negative: if the first bit is 1, it's
negative.

For positive numbers the values are the same as the unsigned
representation.

m Cons
Addition and subtraction does not work as before
The value 0 has two representations 1000 and 0000.

1.7

two’s complement notation

To convert a positive value to a negative value in two’s complement,
you first flip all of the bits (convert Os to 1s and 1s to 0s) and then add
one.

For example to show -5
Start with the positive version: 0101
Flip all of the bits: 1010
Add one: 1011

binary decimal binary decimal
1111 -1 0111 7
1110 -2 0110 6
1101 -3 0101]
1100 -1 0100 1
1011 - Ooll 3
1010 -6 0010 2
1001 =T 001 1
1000 -5 OO0 0

With 4bits using two’s complement we can show -8, 7

1.8

Pros and cons of two’s complement

®m Pros

It's easy to tell if the value is negative: if the first bitis 1, it's
negative.

For positive numbers the values are the same as the unsigned
representation.

Addition and subtraction works the same unsigned method
The value 0 now has 1 representations 0000

m Cons
Not as easy for humans to see

1.9

Examples of two’s complement

® -6 +4 with 4 digits
Startwith 6 - 0110
Complement - 1001
Add 1 - 1010

® What value is 11107
Take one away - 1101
Complement 0010 - which is 2

1.10

Examples of two’s complement

m -3+5=2
Start with 3 2 0011
Complement - 1100
Add 1 > 1101

We only have 4 bits of memory for values -8 to 7 so we ignore last
carried one

111

®m Whatis 1111
Take one away - 1110
Complement - 0001

1.12

I-clicker

A: | feel comfortable with binary values and mathematical operations
on them

B: | was following the class and got the basics, | need to practice
some more to be comfortable with it

| had difficulty in understanding binary values. | need to go over the
theory again.

D: | didn’t understand binary values and operators on them at all

1.13

Characters

®m A character is a single letter, digit or punctuation

Storing characters is as easy as storing unsigned integers. For a
byte (8 bits) in the computer's memory, there are 28 = 256
different unsigned numbers

Assign each possible character a number and translate the
numbers to characters.

The character set used by almost all modern computers, when
dealing with English and other western languages, is called ASCI|I

T =84
$= 36
Number 4 as a string = 52
Why not give numbers their own value?

1.14

ASCII code

Dec HxOet Char Dec Hx Ot Hitnl Chr |Dec Hx Qct Himl Che| Dec Hx Qct Hitnl Chr
0 0 000 HOL frmll) 32 Z0 040 3pace| g4 40 100 d; @ 95 60 140 `
1l 1 001 50H (start of heading) 33 21 041 =#33; ! 65 41 101 A 4 a7 6l 141 =#97; a
2 2 002 5TX [(start of text) 34 22 04z " 7 66 42 10Z «#06; b 95 62 142 &=#93; b
3 2 003 ETH (end of text) 35 23 043 # # 67 43 103 «#67; C | 99 g3 143 c C
4 4 004 EOT {end of transmission) 36 Z4 044 $7 3 65 44 104 «#658; D |100 64 144 &#l00; d
5 5 005 ENQ {endquiry) 57 25 045 % % 69 45 105 «#69; E |10l 65 145 &#l0l1; &
6 & 006 ACE [acknowledge) 33 26 046 «#387 & 70 45 106 «#70; F |102 66 146 &#l02; €
7 7 007 BEL (bell) 39 27 047 ' ' 71 47 107 G G (103 &7 147 g O
& 8§ 010 ES (backspace) 40 25 050 (| 72 48 110 H H (104 63 150 h h
9 9 011 TAE {(horizontal tahb) 41 29 051 =#41:) 75 49 111 «#73; I |105 69 151 i 1
10 & 012 LF (NL line feed, new line)| 42 24 052 &#d2; % 74 44 112 «#74; 7 |106 64 152 &#l06;7]
11 B 013 VT (wertical tah] 43 ZE 053 «#43; + 75 4B 113 «#75; K |107 6B 153 &#l07; k
12 C 014 FF (NP form feed, new page)| 44 2ZC 054 ,d: , 76 4C 114 L: L |108 6C 154 &#l05; 1
13 D 015 CE (carriage return) 45 Z0L 055 &«#45; - 77 4D 115 M M (109 6D 155 m m
14 E 016 30 (shift out] dg ZE 056 #4677 . 78 4F 116 «#73; N |110 gE 156 n n
15 F 017 3I (shift in) 47 ZF 057 «#47: 79 4F 117 O 0 (111 &F 157 o:; 0
le 10 020 DLE (data link escape) 45 30 060 &«#45: 0 80 50 120 «#30:; P |112 70 l1le0 &#ll2:; p
17 11 021 DC1 (dewice control 1) 49 31 061 1 1 81 51 121 «#&1l: 0 |113 71 16l q 9
18 12 022 DCZ (device control 2] 50 3z 062 «#50; 2 82 52 1z22 «#3Z; R |114 72 laz &#l1l4; ¢
19 13 023 DC3 (device control 3 Bl 33 063 &«#51l; 3 83 53 123 «#583; 3 (115 73 163 &#lls: =
20 14 024 DC4 (dewice control 4) 52 34 064 4r 4 g4 54 124 ##34; T |11a 74 1lgd &#ll6; ©
21 15 025 NAE (negatiwe acknowledoe) B3 35 065 5 5 85 55 125 7 T (117 75 165 u 1
22 16 026 3TN (synchronous idle) 54 35 066 «#54; 6 g6 56 lz6 «#36; V |118 7o lao q:; v
23 17 027 ETE (end of trans. block] B5 37 087 7 7 87 57 127 ɋ W (119 77 167 w:; W
24 18 030 CAN [cancel) BB 38 070 &«#56; 8§ 88 58 130 # X |120 78 170 &#lZ0; =
25 19 031 EM (end of medium) E7 39 071 «#57: 9 89 59 131 ':; ¥ |1z1 79 171 =#1Z1: ¥
26 1li 032 SUE (substitute] 83 34 072 #5587 ¢ 90 54 132 «#90; I |122 T4 172 &#l22; E
27 1B 033 EZC [(eazcape) 59 3B 073 ; ; 91 5B 133 [[|123 7B 175 &#l23; 4
28 1C 034 F& [(file separator) 60 3C 074 &«#60; < 92 5C 134 «#92; [124 7C 174 =#l24:
29 1D 035 G3 [group Separator) 6l 3D 075 l; = 93 5D 135]] [125 7D 175 &#l25;)
30 1E 036 RS (record separator) 62 3E 076 94 SE 136 «#94; ~ (126 TE 176 &#lZ6; ~
31 1F 037 U3 {unit separator) 63 3F 077 ? 7 95 EF 137 «#95; _ |127 7F 177 DEL

Source: www.LookupTables.com

1.15

Extended ASCII codes

128 ¢ 144 E 140 4 76 5 192 L o208 L 334 o 240 =
129 o 145 = 1 ¢ 177 & 193 L 2w - 25 B 24l %
130 ¢ 146 E 162 & 172 B 194 20 I T 242 :
131 & 147 & 1635 u 179 | 195 21 L 27 oq 243 <
132 4 148 & 164 & 130 196 — 212 L @ oz 244 [
133 &4 149 & 165 0 131 197 4+ 213 19 5 245)
134 & 150 & 16 183 198 k214 230 o 246 =
135 ¢ 18 0 187 = 183 4 198 b 215 4 231 ¢ 247 =
13 & 152 ¥ 188 ;134 5 o0 L6 £ 13 0H e e
137 & 153 O 169 ~ 185 0 o217 33 @ 249

132 & 154 U 170 - 1 | 02 L 28 o 234 o 250 .
139 i 135« 171 % 187 j w03 o 29 @ 5 & 251 A
140 i 15 & 172 % 138 4 04 | 220 g 0 2 w252 o
141 i 157 ¥ 173 ;139 L w5 = 12 | 37 4 253 F
142 A 152 g 174 « 190 4 6 & 222 238 ¢ 254 W
43 A 18 5 175 » 181 4 07 L zm W™ 739 .~ 255

Source: www. LoolupTables .com

1.16

Strings

m A string is a collection of several characters.
Some strings are "Jasper", "742", and "bhay-gn-flay-vn".

The particular character set that is used by almost all modern
computers, when dealing with English and other western
languages, is called ASCII

H i

l l (ASCII chart lookup)

72 105
l l (conversion to binary)

01001000 01101001

The binary is the same as 18537 how does the computer know
whether this is “hi” or 185377

The programming language should take care of that.

1.17

Unicode

® With only one byte per character, we can only store 256 different
characters in our strings

But gets quite hard with languages like Chinese and Japanese

B The Unicode character set was created to overcome this limitation.
Unicode can represent up to 2 32 characters.

® Read topic 2.6 from introduction to computing science and
programming

1.18

The Python programming language

The programming language we will use in this course is Python.
Python is an example of a high-level language;
Other high-level languages are C, C++, Perl, and Java.
Much easier to program
Less time to read and write
More likely to be correct
Portable

Low-level languages, sometimes referred to as “machine languages"
or “assembly languages”

Only used for a few specialized applications.

Computers can only execute programs written in low level . Programs
written in high level have to be processed before then can be run.

Two kinds of programs process high-level languages into low-level
languages:

1.19

Interpreters

An interpreter reads a high-level program and executes it,

It processes the program a little at a time, alternately reading lines
and performing computations.

—|
SOURCE INTERPRETER OUTPUT
CODE j .

————

Python is interpreted

1.20

Compiler

m A compiler reads the program and translates it completely before the
program starts running.

®m In this case, the high-level program is called the source code, and the

translated program is called the object code or the executable

SOURCE COMPILER OBJECT ;E EXECUTOR OUTPUT
CODE :]a CODE | -

C————

® Read chapter 1 from how to think like a computer scientist

1.21

