
CMPT 120

How computers run programs

Summer 2012

Instructor: Hassan Khosravi

1.2

How Computers Represent

Information

 All information that is stored and manipulated with a computer is

represented in binary

 with zeros and ones.

 Why just zeros and ones?

 Computer’s memory is a whole bunch of tiny rechargeable

batteries (capacitors).

 discharged (0) or charged (1).

 It’s easy for the computer to look at one of these capacitors

and decide if it’s charged or not.

 This could be done to represent digits from 0 to 9

 difficult to distinguish ten different levels of charge in a

capacitor

 hard to make sure a capacitor doesn’t discharge a little to drop

from a 7 to a 6

1.3

How Computers Represent

Information

 A single piece of storage that can store a zero or one is called a bit.

 Bits are often grouped. It’s common to divide a computer’s memory into

eight-bit groups called bytes

 00100111 and 11110110

 Number of bits or bytes quickly becomes large

 For example, “12 megabytes” is

 12 × 220 bytes = 12,582,912 bytes = 12582912 × 8 bits = 100,663,296

bits

 Note that values are approximations

 Kilo is 1000 here it is 1024

1.4

Unsigned Integers

 Consider the number 157

 157 = (1 × 102) + (5 × 101) + (7 × 100).

 Applying the same logic, there is a counting system with bits, binary or

base 2 arithmetic

 The rightmost bit will be the number of 1s(20), the next will be the

number of 2s (21), then 4s (22), 8s (23), 16s (24), and so on.

 10012 = (1 × 23) + (0 × 22) + (0 × 21) + (1 × 20) = 8 + 1

 100111012 = (1 × 27) + (0 × 26) + (0 × 25) + (1 × 24) + (1 × 23) + (1 ×

22) + (0 × 21) + (1 × 20) = 128 + 16 + 8 + 4 + 1 = 15710.

1.5

1.6

 The computer can do operations like addition and subtraction on

binary integers the same way you do with decimal numbers

 Keep in mind that 1 + 1 = 210 = 102

1.7

Positive and Negative Integers

 One easy way to think of this is to have the left most bit as the sign

 (0 = positive, 1 = negative)

 With four bits

 0 111 would 7

 1111 would be -7

 Pros:

 Its easy for the human eye to understand

 It’s easy to tell if the value is negative: if the first bit is 1, it’s

negative.

 For positive numbers the values are the same as the unsigned

representation.

 Cons

 Addition and subtraction does not work as before

 The value 0 has two representations 1000 and 0000.

1.8

two’s complement notation

 To convert a positive value to a negative value in two’s complement,

you first flip all of the bits (convert 0s to 1s and 1s to 0s) and then add

one.

 For example to show -5

 Start with the positive version: 0101

 Flip all of the bits: 1010

 Add one: 1011

 With 4bits using two’s complement we can show -8, 7

1.9

Pros and cons of two’s complement

 Pros

 It’s easy to tell if the value is negative: if the first bit is 1, it’s

negative.

 For positive numbers the values are the same as the unsigned

representation.

 Addition and subtraction works the same unsigned method

 The value 0 now has 1 representations 0000

 Cons

 Not as easy for humans to see

1.10

Examples of two’s complement

 -6 +4 with 4 digits

 Start with 6 0110

 Complement 1001

 Add 1 1010

 What value is 1110?

 Take one away 1101

 Complement 0010 which is 2

1 0 1 0

0 1 0 0

1 1 1 0

+

1.11

Examples of two’s complement

 −3 + 5 = 2

 Start with 3 0011

 Complement 1100

 Add 1 1101

 We only have 4 bits of memory for values -8 to 7 so we ignore last

carried one

1 1 0 1

0 1 0 1

1 0 0 1 0

+

1.12

 3 – 4

 What is 1111

 Take one away 1110

 Complement 0001

1 0 0 1 1

 0 1 0 0

1 1 1 1

-

1.13

I-clicker

 A: I feel comfortable with binary values and mathematical operations

on them

 B: I was following the class and got the basics, I need to practice

some more to be comfortable with it

 I had difficulty in understanding binary values. I need to go over the

theory again.

 D: I didn’t understand binary values and operators on them at all

1.14

Characters

 A character is a single letter, digit or punctuation

 Storing characters is as easy as storing unsigned integers. For a

byte (8 bits) in the computer’s memory, there are 28 = 256

different unsigned numbers

 Assign each possible character a number and translate the

numbers to characters.

 The character set used by almost all modern computers, when

dealing with English and other western languages, is called ASCII

 T =84

 $= 36

 Number 4 as a string = 52

– Why not give numbers their own value?

1.15

ASCII code

1.16

Extended ASCII codes

1.17

Strings

 A string is a collection of several characters.

 Some strings are "Jasper", "742", and "bhay-gn-flay-vn".

 The particular character set that is used by almost all modern

computers, when dealing with English and other western

languages, is called ASCII

 The binary is the same as 18537 how does the computer know

whether this is “hi” or 18537?

 The programming language should take care of that.

1.18

Unicode

 With only one byte per character, we can only store 256 different

characters in our strings

 But gets quite hard with languages like Chinese and Japanese

 The Unicode character set was created to overcome this limitation.

Unicode can represent up to 2 32 characters.

 Read topic 2.6 from introduction to computing science and

programming

1.19

The Python programming language

 The programming language we will use in this course is Python.

 Python is an example of a high-level language;

 Other high-level languages are C, C++, Perl, and Java.

 Much easier to program

 Less time to read and write

 More likely to be correct

 Portable

 Low-level languages, sometimes referred to as “machine languages"

or “assembly languages”

 Only used for a few specialized applications.

 Computers can only execute programs written in low level . Programs

written in high level have to be processed before then can be run.

 Two kinds of programs process high-level languages into low-level

languages:

1.20

Interpreters

 An interpreter reads a high-level program and executes it,

 It processes the program a little at a time, alternately reading lines

and performing computations.

 Python is interpreted

1.21

Compiler

 A compiler reads the program and translates it completely before the

program starts running.

 In this case, the high-level program is called the source code, and the

translated program is called the object code or the executable

 Read chapter 1 from how to think like a computer scientist

