CMPT 120 Introduction To Computing Science And Programming I

Summer 2012 Instructor: Hassan Khosravi

Admin

See website <u>http://www.cs.sfu.ca/~hkhosrav/personal/py/120-</u> 2012.html

- Introduction to Computing Science and Programming I by Greg Baker
 - One page per sheet
 - Two page per sheet
 - Four page sheet
- How to Think Like a Computer Scientist -- Learning with Python
 - PDF format
 - HTML format
 - HTML zip format
- Lecture slides

- Reference Books
 - Learn Python The Hard Way, Zed Shaw
 - by downloading it or buying it from its home site

Course Grading

- Lab assignments/quizzes 13%
- Assignments 25%
 - 4 assignments
- Midterm 29th of June in class (20%)
- AEP 2%
- Final (40%)
 - You must be able to attend the final exam to pass the course!

Teaching Style

- Motivate the students. I feel it is the duty of the instructor to present the subject in a motivating and engaging manner.
 - Ask a lot of questions
 - Get the students involved.
 - Use I-clickers
- Go Over Many Examples
- Set clear and realistic goals. Students respond best to goals that are both challenging and achievable.
- I would like all of you to be successful
 - You are all competing with yourselves to do your personal best and I am here to help you with that
- **Final grade:** Normal distribution
- Always respect the students.

Questions and policies

http://www.cs.sfu.ca/~hkhosrav/personal/py/120-2012.html

I-clickers

<u>http://www.iclicker.com/</u>

- Enter your last name, first name, student ID (your
- email ID), and the clicker ID and click "submit."

How do you vote?

- Turn on the clicker by pressing the "On/Off" button.
- A blue "Power" light will appear at the top of the remote.
- When I ask a question in class (and start the timer), select A, B, C, D, or E as your vote.
- Check your "Vote Status" Light:
- Green light = your vote was sent AND received.
- Red flashing light = you need to vote again.
 - **Not sure you saw the light? Just vote again.
 - **Want to change your vote? You can vote again as long as the timer is still going.

You are

- A: First year student
- B:second year student
- C:Third year student
- D: fourth year student
- E: Other

- What is your major?
- A: Computer Science
- B: math or statistics
- C: Physics or Chemistry
- D: Business or engineering
- E: Other

- Which of the following best describes your experience with computers?
- A: I have seen computers and know how to turn them on
- B: I mostly use them for browsing internet and Google is my best friend. I have no programming experience.
- C: I have done some programming before, but not much.
- D: I think I'm a decent programmer.

- Which of the following best describes your expectations from the course
- A: I'm here to get the credits
- B: I'm here to see how I like programming. I may consider programming as a future career
- C:I want to learn programming professionally. I know that programming is my future career.
- D: I am all set to become the next Bill gates or Steve jobs

Content of CMPT 120

- Course Website is <u>http://www.cs.sfu.ca/~hkhosrav/personal/py/120-</u> 2012.html
- About CMPT 120
 - Computer Science and Pseudocode
 - Programming Basics
 - Data types, User inputs
 - Control Structures
 - If statements, loops
 - Problem Solving
 - Data structures
 - Lists, strings, references
 - Algorithms
 - Searching, sorting, recursion
 - Working with Files
 - File input, file outputs

- The concept of an "algorithm" is fundamental to all of computing science and programming
- An algorithm is a set of instructions that can be used to solve a problem.

An everyday algorithm

- A baking recipe
- 1. Combine the room-temperature butter and the sugar. Mix until light and fluffy.
- 2. Add the eggs to the creamed butter and mix to combine.
- 3. In another bowl, combine the liquid ingredients and mix to combine.
- 4. Sift together the flour and other dry ingredients.
- 5. Alternately add the dry and liquid ingredients to the butter-egg mixture.
- 6. Mix just enough to combine.

- We are more interested in the kinds of algorithms that can be completed by computers.
- An algorithm definition accepted by most Computer Scientists
 - "An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of time"

- "An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of time"
- Unambiguous: When you read an algorithm, there should be no question about what should be done.
- 1. Combine the **room-temperature** butter and the sugar. Mix until **light** and **fluffy**.
- 2. Add the eggs to the creamed butter and mix to **combine**.
- 3. In another **bowl**, combine the liquid ingredients and mix to **combine**.
- 4. Sift together the flour and other dry ingredients.
- 5. Alternately add the dry and liquid ingredients to the butter-egg mixture.
- 6. Mix just enough to combine.

- "An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of time"
- Solving a Problem: An algorithm should always present a solution to a particular problem.
 - Our example: Using these ingredients, make muffins."
- Legitimate input:
 - An algorithm might need some kind of input to do its job.
 - In addition to having the inputs, they have to be "legitimate"
 - 1 can of baby corn, 1 cup orange juice; 1 telephone. We aren't going to get very far.
 - "legitimate" ingredients include sugar, eggs, flour and butter.

- "An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of time"
- Finite amount of time: The algorithm should finish eventually
 - A recipe that leaves us in the kitchen until the end of time isn't much good.
 - Stir with a fork until the mixture turns into Beef Wellington.

Data Structures

- A data structure describes how a program stores the data it's working with
 - To carry on with the cooking example
 - Most people have their recipes in cookbooks on a shelf
 - Recipes on index cards in a box (you might have to shuffle through the whole pile to find the one you want)
 - If pile is in some kind of order, e.g. alphabetical by the name of the dish it makes, you might be able to find the recipe much faster.
 - The way you choose to store information can have a big effect on the algorithm you need to work with it

What is Computing Science?

- Computing science is often defined as the study of algorithms, including
 - 1. Their formal and mathematical properties.
 - 2. Their hardware realizations.
 - 3. Their linguistic realizations.
 - 4. Their applications.

What is Computing Science?

- Their formal and mathematical properties:
 - What problems can be solved with algorithms
 - For what problems can we find solutions in a reasonable amount of time
 - Is it possible to build computers with different properties that would be able to solve more problems?"
- Their hardware realizations:
 - One of the goals when building computers is to make them fast.
 - Able to execute algorithms specified by the programmer quickly.
 - Make good use of their memory and be able to access other systems (disks, networks, printers, and so on).

What is Computing Science?

- Their linguistic realizations:
 - There are many ways to express algorithms so a computer can understand them.
 - Finding languages that are written by people and followed by computers.
 - Some "language" that can be understood by both people and computers.
- Their applications:
 - what actual useful things can be done algorithmically.
 - Is it possible for a computer to understand a conversation?
 - Can it drive a car?
 - Can the small computers in cell phones be made more useful?