Bayes Nets for combining logical and probabilistic structure

Oliver Schulte
Computer Science Dept.
Simon Fraser University

oschulte @cs.sfu.ca

Abstract

We outline a new approach to using Bayes nets
for a probabilistic extension of a logical structure
or schema. Many real-world data are maintained
in relational format, with different tables storing
information about entities and their links or rela-
tionships. The structure (schema) of the database is
essentially that of a logical language, with variables
ranging over individual entities and predicates for
relationships and attributes. Our work combines
the graphical structure of Bayes nets with the
logical structure of relational databases to achieve
knowledge discovery for relational structures.
Another reason why relational structures are
important is that they can represent other types of
structures. We introduce a new type of Bayes nets
for representing and learning class-level dependen-
cies between attributes from the same table and
from different tables. Because relational databases
contain multiple tables, we cannot apply Bayes net
learning algorithms as is. We outline novel learning
algorithms that achieve efficiency by treating the
database tables as a factored representation of the
statistical information in the data.

1 Introduction

Many real-world applications store data in relational format,
with different tables for entities and their links. Standard
machine learning techniques are applied to data stored in a
single table, that is, in nonrelational, propositional or “flat”
format. The field of statistical-relational learning (SRL) aims
to extend machine learning algorithms to relational data [3].
In the SRL setting, the goal is often to represent dependencies
between attributes of different individuals that are related or
linked to each other (e.g., between the intelligence of a stu-
dent and the difficulty of a course given that the student is reg-
istered in the course). Many SRL models represent such de-
pendencies on two different levels, a class dependency model
and an instance dependency model. A class-level model is
instantiated with the specific entities, their attributes and
their relationships in a given database to obtain an instance
dependency model. Our work applies Bayes nets (BNs) to
model class-level dependencies between variables that appear
in separate tables. Our class-level Bayes nets contain nodes
that correspond to the descriptive attributes of the database
tables, plus Boolean nodes that indicate the presence of a
relationship; we refer to these as Join Bayes nets (JBNs). The
focus on class-level dependencies brings advantages in terms

Hassan Khosravi
Computer Science Dept.
Simon Fraser University

hkhosrav@cs.sfu.ca

Bahareh Bina
Computer Science Dept.

Simon Fraser University
bbal8@cs.sfu.ca

of the simplicity of the model and the tractability of inference
and learning, while it involves some loss of expressive
power, because our BN model cannot answer queries about
individual entities. We have developed efficient algorithms
for structure and parameter learning in JBNs. Our parameter
learning procedure is a dynamic program that addresses the
problem of estimating frequencies conditional on the absence
of a relationship. Our structure learning scheme upgrades a
single-table Bayes net learner to a relational learner through
a learn-and-merge approach where the learner is applied to
single tables and then to join tables, and the results of learn-
ing on smaller tables constrain learning on bigger tables. Due
to the construction of our Bayes nets, class-level queries can
be answered using standard BN inference algorithms as is.

2 Preliminaries: Bayes Nets, Logic, Notation

A Bayes net structure is a directed acyclic graph (DAG) G,
whose nodes comprise a set of random variables denoted by
V. A Bayes net (BN) is a pair (G, 6c) where 0 is a set of
parameter values that specify the probability distributions of
children conditional on instantiations of their parents, i.e. all
conditional probabilities of the form P(X = z|pa§).

We assume a standard relational schema containing a set
of tables, each with key fields, descriptive attributes, and pos-
sibly foreign key pointers. A database instance specifies the
tuples contained in the tables of a given database schema. We
assume that tables in the relational schema are divided into
entity tables and relationship tables. The symbol E refers to
entity tables, and the symbol R refers to relationship tables.
Table 1 shows a relational schema for a university domain.

It is well known that the structure of a relational schema
can be represened in the logical structure of a formal
first-order vocabulary. By translating the data structure into
logical structure, we can use logic as a formal foundation for
specifying the syntax and semantics of our Bayes net models
for the database. One standard way to translate a relational
schema into logic is by representing descriptive attributes as
functions of entities and entity tuples. Formally, we define
the following logical language L for a given database schema
D. [5] generalizes this definition for relationships with arity
greater than 2 and types with more than one variable.

1. A finite list of constants cq, cs, ..., which includes the
special constants 7', F', L. The first two stand for truth
values, and _L denotes “undefined”.

2. A finite list of unary and binary function symbols fi, fo.
Each function f has as its range a finite set of constants,
denoted by range(f). A function whose range equals
{T, F} is a predicate. We use uppercase Roman letters

Student(student_id, intelligence, ranking)
Course(course_id, difficulty, rating)

Professor (professor_id, teaching_ability, popularity)
Registered (student_id, Course_id, grade, satis faction)

Table 1: A relational schema for a university domain. Key
fields are underlined. An instance for this schema is given in
Figure 1.

like E, R and variants to distinguish predicates from other
function symbols.

3. A unary predicate E is also called an (entity) type. For
each type I/, we have one variable X of type E. A term
of type E is either the variable X or a constant that
satisfies E(c) = T. We write € for a generic term and use
the vector notation @ for a list of terms. The domain of
XE, denoted as dom (X g), comprises the set of constants
of type E.

4. Each unary function f that is not a predicate is associated
with an argument type FE; intuitively the arguments of
f must be of type E. In this case we say that f is a
descriptive attribute of type E. Each binary function,
including predicates, is similarly associated with an
argument type pair (Ey, Es).

5. A binary predicate R is also called a relationship. Each
binary function symbol g is associated with a relationship
R such that the function is defined for arguments of
the appropriate type if and only if they are related by
R. That is, the function ¢ satisfies the constraint that
g(01,62) = L if and only if R(6;,602) = F. In that case
we say that g is a descriptive attribute of R.

6. An atomic assignment is a statement of the form
f(@) = a where the terms @ are of the right type for
f and a is in the range of f. An assignment F is a
finite conjunction of assignments, written Prolog-style as
J1(61) = a1, f2(02) = aq,

7. A substitution F'[X/a] is the result of replacing all oc-
currences of variable X in I’ by a constant a of the same
type as X. A ground assignment contains no variables.
A grounding of F' is a simultaneous substitution of
values for all variables in F'. A given database instance
D determines for each ground assignment whether all
assignments in the clause are true in D. We denote by
|F'|p the number of groundings of an assignment F’ that
result in a conjunction that is true in D.

Example. Consider the logical language for the database
instance D shown in Figure 1. Let S be a variable of type
Student and C' a variable of type Course. An example as-
signment is

ranking(S) = 1, difficulty(C) = 2, Registered(S,C) = F.

With the grounding S/Jack, C'/101, the assignment is false
in D because difficulty(101) = 1 in D. With the grounding
S/Jack,C/103, the assignment is true in D.

Join Bayes Nets One of the main aims of a Join Bayes net
is to model correlations between attributes of related objects
at the class-level. In our logical language, a class-level model
is based on variables rather than constants. Define a variable
function term, or function term for short, to be a term of the
form f(X) or f(X1, X2) where the variable(s) is (are) of the
appropriate argument type for f.

Definition 1 A Join Bayes Net (JBN) structure for a
database schema with associated logic L is a DAG whose

nodes are exactly the variable function terms in L. The
domain of values of a node f(0) is the range of f.

A given database instance D defines a natural probability
for a given assignment F': the ratio of groundings which
make F' true in D over the number of possible groundings
given the type constraints on F'. Formally, let X, ..., X be
the list of variables that occur in F'. The quantity |dom (X)]
is the size of the domain of X, that is, the number of
constants of the same type as X. The probability of a joint
assignment is then given by:

_ Flp
|dom(X1)| X |dom(X3)| x -+ x |dom(X})|

Pp(F)

From a statistical point of view, this formula defines a joint
data distribution over the variables in the JBN. The remainder
of the paper considers learning JBN models from this distri-
bution.

Student Course
siid | Intelligence [Ranking (c)m Prof Rating Difficulty |T-a-prof | P-prof
(@) [Jack 3 1 101] Oliver 3 1 1
Kim 2 1 102| David 2 2 1
Paul 1 3 103| Oliver 3 2 1
Registration /R"“(S’c’ Intelligence(s)
s-id | Cid |Grade| Satisfaction)/ \ / \
Jack| 101 | A 1 Grate(s.) \ /
Jack| 102 | B 2 7
(b) Kim| 102 | A 1 \\\ ’/
Kim| 103 | A 1 ! Rank(s)
Difiic)
paul| 101 | B 1 (d) —
paul| 102 | 2 |
t-a-prof(Cy '.I
£
P prof{C) H\
Rating(C}
Figure 1: Database Table Instances: (a) Student, (b)

Registered (c) Course. To simplify, we added the informa-
tion about professors to the courses that they teach. (d) A
Join Bayes Net for the university schema variables.

3 Learning Join Bayes Nets

In principle, learning tasks for a JBN can be performed
by first constructing a large table enumerating all possible
groundings of the variables in the relational language, and
then applying a regular propositional BN learning algorithm
to this table. But since this approach is not computationally
feasible, the challenge is to develop learning algorithms that
treat the tables in the database as a factored representation of
the database distribution.

Structure Learning We outline a general schema for up-
grading a standard single-table propositional BN learner to a
statistical relational learner that performed well in our exper-
iments. The propositional learner is used as a function call in
the body of our algorithm. We require that the propositional
learner takes as input, in addition to a single table of cases,
also a set of edge constraints that specify required and for-
bidden directed edges. The output of the algorithm is a DAG
G for a database D with variables as specified in Definition
1. Our approach is to “learn and merge™: we apply the BN
learner to single tables and combine the results successively
into larger graphs corresponding to larger table joins. First,

we apply the BN learner to single tables. Next, we form larger
tables by joining each relationship table R with the entity ta-
bles that are linked to R by foreign key constraints. The BN
learner is applied to these join tables with the constraint that if
two variables already appear in a single table, the BN learner
should introduce an edge between them in the join table
search if and only if the BN learner introduced one previously
in the single table search. In the final phase, we form larger
tables by joining two of the previous join tables. The BN
learner is applied to each 2nd-order join, again with the con-
straint that edges betweens pairs of variables previously con-
sidered must agree with the BN learned for the 1st-order join.

Parameter Estimation Parameter estimation is chiefly the
problem of computing conditional frequencies in the database
distribution. The main problem is computing probabilities
conditional on the absence of a relationship [2] without mate-
rializing the set of tuples that are not related. Our basic princi-
ple is to use a 1 minus trick: We recursively apply the laws of
probability to derive the probability of an event conditional on
a relationship not holding from (1) the probability conditional
on the relationship holding, and (2) the unconditional proba-
bility with the relationship status unspecified. A full descrip-
tion of the algorithm with pseudocode may be found in [5].

Evaluation We carried out several experiments to eval-
uate the correctness and feasibility of our algorithms. All
experiments were done on a QUAD CPU Q6700 with a
2.66GHz CPU and 8GB of RAM. For single table BN
search we used GES [1] with the BDeu score (structure prior
uniform, ESS=8). We analyzed three datasets: a synthetic
one for the University domain, the Financial Database from
the PKDD 1999 cup, and the MovieLens Database from
the UC Irvine machine learning repository. Due to space
constraints, we show the JBN only for the MovieLens
dataset, which contains two entity tables: User with 941
tuples and Item with 1,682 tuples, and one relationship table
Rated with 40,000 ratings. The User table has 3 descriptive
attributes age; gender; occupation. The table Item represents
information about the genre of a given movie. The learned
graph is shown in Figure 2, and runtimes in Table 2.

horror{item} Rated{L,l}
/ actioniitemn)
dramaiitem}) \i

rating{U,l} Age(lser)

A F o

Occupation{User)

T

Gender{User)

Figure 2: The JBN structures learned by our merge learning
algorithmfor the MovieLens Data set.

unemploy95(C)

AN

unemploy9s(C) = regioniC)

P o

no_cri) = nho_cri]
/ f ka\lg salaryC)
ype.C) frequency{A) i = i
\ } K d(A,C;
uisp(ﬂ/:)* birthday(C) cartiny SIS
/ % } / no_enterpreneursiC)

status(h)

gender{C) > /
card_type(A,Cy \ ;\amuum((ﬁ)

date{C)

Figure 3: The JBN structures learned by our merge structure
learning algorithmfor the Financial Data set.

Data set PL SLin JBN | SL in MLN
University 0.495 | 0.64 2291

Movie Lens | 2,018 | 135 Terminated w/o Result
Financial 2,472 1 574 Terminated w/o Result

Table 2: The run times—in seconds—for structure learning
(SL) and parameter learning (PL) on our three data sets.
MLN inference was carried out with Alchemy.

References

[1] David Maxwell Chickering and Christopher Meek.
Finding optimal bayesian networks. In UAI, pages
94-102, 2002.

[2] Lise Getoor, Nir Friedman, Daphne Koller, Avi Pfeffer,
and Benjamin Taskar. Probabilistic relational models. In
Introduction to Statistical Relational Learning [4].

[3] Lise Getoor and Ben Taskar. Introduction. In Getoor and
Taskar [4], pages 1-8.

[4] Lise Getoor and Ben Tasker. Introduction to statistical
relational learning. MIT Press, 2007.

[5] Oliver Schulte, Hassan Khosravi, Flavia Moser, and
Martin Ester. Join bayes nets: A new type of bayes
net for relational data. CS-Learning Preprint Archive,
http://arxiv.org/abs/0811.4458, 2008.

