Algebraic and Logical Query Languages

Spring 2011 Instructor: Hassan Khosravi

Relational Operations on Bags

Extended Operators of Relational Algebra

Relational Algebra on Bags

- A **bag** is like a set, but an element may appear more than once.
 - Multiset is another name for "bag."
- Example:
 - {1,2,1,3} is a bag.
 - {1,2,3} is also a bag that happens to be a set.
- Bags also resemble lists, but order in a bag is unimportant.
 - Example:
 - $\{1,2,1\} = \{1,1,2\}$ as bags, but
 - [1,2,1] != [1,1,2] as lists.

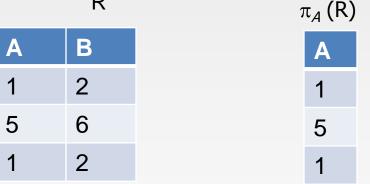
Why bags?

- SQL is actually a bag language.
- eliminate duplicates, but usually only if you ask it to do so explicitly.
- SQL will
- Some operations, like projection or union, are much more efficient on bags than sets.
 - Why?
 - Union of two relations in bags: copy one relation and add the other to it
 - Projection: in sets you need to compare all the rows in the new relation to make sure they are unique. In bags, you don't need to do anything extra

Operations on Bags

• Selection applies to each tuple, so its effect on bags is like its effect on sets.

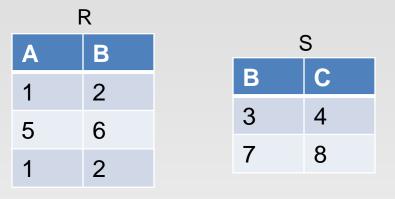
Projection also applies to each tuple, but as a bag operator, we do not eliminate duplicates.



Bag projection yields always the same number of tuples as the original relation.

Operations on Bags

• **Products** and **joins** are done on each pair of tuples, so duplicates in bags have no effect on how we operate.



- Each copy of the tuple (1,2) of R is being paired with each tuple of S.
 - So, the duplicates do not have an effect on the way we compute the product.

Α	R.B	S.B	С
1	2	3	4
1	2	7	8
5	6	3	4
5	6	7	8
1	2	3	4
1	2	7	8

Bag Union, Intersection, Difference

- Union, intersection, and difference need new definitions for bags.
- An element appears in the union of two bags the sum of the number of times it appears in each bag.
 - Example:

 $\{1,2,1\} \cup \{1,1,2,3,1\} = \{1,1,1,1,1,2,2,3\}$

- An element appears in the intersection of two bags the minimum of the number of times it appears in either.
 - Example:

 $\{1,2,1\} \cap \{1,2,3\} = \{1,2\}.$

- An element appears in difference A B of bags as many times as it appears in A, minus the number of times it appears in B.
 - But never less than 0 times.
 - Example:

 $\{1,2,1\} - \{1,2,3\} = \{1\}.$

Beware: Bag Laws != Set Laws

Not all algebraic laws that hold for sets also hold for bags.

Example

• Set union is *idempotent*, meaning that

 $S \cup S = S$.

- However, for bags, if **x** appears **n** times in **S**, then it appears 2n times in $S \cup S$.
- Thus $S \cup S = S$ in general.

The Extended Algebra

- **1.** δ : eliminate duplicates from bags.
- 2. Aggregation operators such as sum and average
- γ: grouping of tuples according to their value in some attributes
- 4. Extended projection: arithmetic, duplication of columns.
- 5. τ : sort tuples according to one or more attributes.
- OUTERJOIN: avoids "dangling tuples" = tuples that do not join with anything.

Example: Duplicate Elimination

- R_1 consists of one copy of each tuple that appears in R_2 one or more times.
 - $R_1 := \delta(R_2)$

Aggregation Operators

- They apply to entire columns of a table and produce a single result.
- The most important examples:
 - SUM
 - AVG
 - COUNT
 - MIN
 - MAX

Aggregation Operators

	Sum(B) = 2 +4+2+2 =10	Α	В
•	AVG(A) = (1+3+1+1) / 4 = 1.5	1	2
	MIN(A) = 1	3	4
-	MAX(A)=4	1	2
	COUNT(A)=4	1	2

Grouping Operator

Sometimes we like to use the aggregate functions over a group of tuples and not all of them.

For example we want to compute the total number of minutes of movies produced by each studio.

Sum of Lengths
12345
54321

 $\mathsf{R}_{1}\mathrel{\mathop:}=\gamma_{L}\left(\mathsf{R}_{2}\right)$

L is a list of elements that are either:

- 1. Individual (*grouping*) attributes.
- 2. AGG(A), where AGG is one of the aggregation operators and A is an attribute.

$\gamma_L(R)$ - Formally

Group R according to all the grouping attributes on list L.

- That is, form one group for each distinct list of values for those attributes in *R*.
- Within each group, compute AGG(A) for each aggregation on list L.
- Result has grouping attributes and aggregations as attributes.
- One tuple for each list of values for the grouping attributes and their group's aggregations.

Example: Grouping/Aggregation

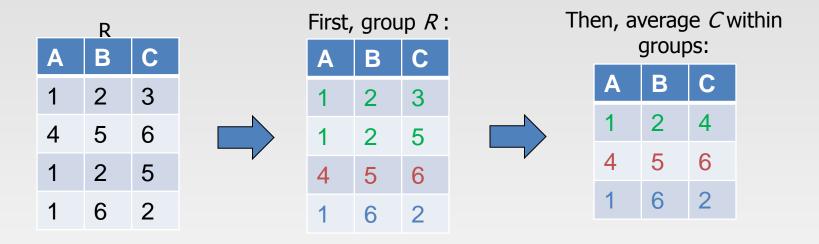
StarsIn(title, year, starName)

- For each star who has appeared in at least three movies give the earliest year in which he or she appeared.
 - First we group, using *starName* as a grouping attribute.
 - Then, we compute the MIN(*year*) for each group.
 - Also, we need to compute the COUNT(*title*) aggregate for each group, for filtering out those stars with less than three movies.

• $\pi_{\text{starName,minYear}}(\sigma_{\text{ctTitle}\geq3}(\gamma_{\text{starName,MIN(year}}) \rightarrow \min_{\text{Year,COUNT(title)}} (\text{StarsIn})))$

Example: Grouping/Aggregation

 $\gamma_{A,B,AVG(C)}(R) = ??$



Example: Extended Projection

- In extended projection operator, lists can have the following kind of elements
 - A Single attribute of R
 - An expression x→y, where x and y are names for attributes. Take attribute x of R and rename it to y.
 - An expression E→z, where E is an expression involving attributes of R, constants, arithmetic operators, and string operators, and z is a new name.

R		π _{A, A+B→X} (R)	
Α	B	Α	X
1	2	1	3
5	6	5	11
1	2	1	3

Sorting

- $\mathsf{R}_1 := \tau_{\boldsymbol{L}} (\mathsf{R}_2).$
 - *L* is a list of some of the attributes of R_2 .
- R₁ is the list of tuples of R₂ sorted first on the value of the first attribute on L, then on the second attribute of L, and so on.
- τ is the only operator whose result is neither a set nor a bag.

Outerjoin

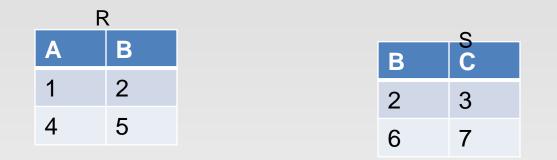
Motivation

- Suppose we join $R \bowtie S$.
- A tuple of R which doesn't join with any tuple of S is said to be dangling.
 - Similarly for a tuple of S.
 - Problem: We loose dangling tuples.

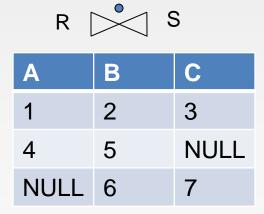
Outerjoin

Preserves dangling tuples by padding them with a special NULL symbol in the result.

Example: Outerjoin



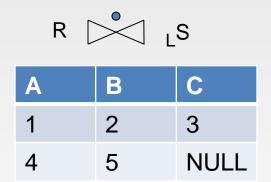
(1,2) joins with (2,3), but the other two tuples are dangling.



Example: Left Outerjoin



(The left Outerjoin: Only pad dangling tuples from the left table

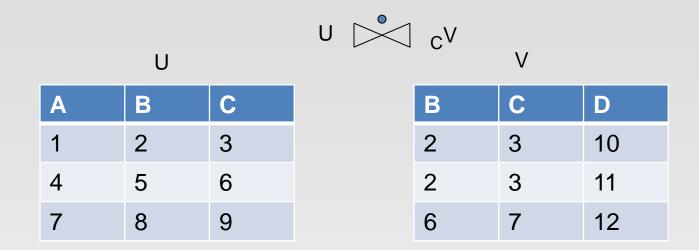


Example: RightOuterjoin



(The left Outerjoin: Only pad dangling tuples from the left table

Theta Outerjoin



U A>V.C V					
Α	U.B	U.C	V.B	V.C	D
4	5	6	2	3	10
4	5	6	2	3	11
7	8	9	2	3	10
7	8	9	2	3	11
1	2	3	NULL	NULL	NULL
NULL	NULL	NULL	6	7	12