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Inference in First-Order Logic



Outline

 Reducing first-order inference to propositional inference

 Unification

 Generalized Modus Ponens

 Forward chaining

 Backward chaining

 Resolution



Universal instantiation (UI)

 Notation:  Subst({v/g}, α) means the result of substituting g for v in sentence α

 Every instantiation of a universally quantified sentence is entailed by it:



v α

Subst({v/g}, α)

for any variable v and ground term g

 E.g., x King(x) Greedy(x) Evil(x) yields

King(John) Greedy(John) Evil(John), {x/John}

King(Richard) Greedy(Richard) Evil(Richard),     {x/Richard}

King(Father(John)) Greedy(Father(John)) Evil(Father(John)),      {x/Father(John)}    



Existential instantiation (EI)

 For any sentence α, variable v, and constant symbol k (that does not appear 
elsewhere in the knowledge base):

v α
Subst({v/k}, α)

 E.g., x Crown(x) OnHead(x,John)  yields:    Crown(C1) OnHead(C1,John)


where C1 is a new constant symbol, called a Skolem constant

 Existential and universal instantiation allows to “propositionalize” any FOL 
sentence or KB 
 EI produces one instantiation per EQ sentence
 UI produces a whole set of instantiated sentences per UQ sentence 




Reduction to propositional form

Suppose the KB contains the following:

x King(x) Greedy(x) Evil(x)

Father(x)

King(John)

Greedy(John)

Brother(Richard,John)

 Instantiating the universal sentence in all possible ways, we have:
King(John) Greedy(John) Evil(John)

King(Richard) Greedy(Richard) Evil(Richard)

King(John)

Greedy(John)

Brother(Richard,John)

 The new KB is propositionalized: propositional symbols are
 King(John), Greedy(John), Evil(John), King(Richard), etc



Reduction continued

 Every FOL KB can be propositionalized so as to preserve 
entailment
 A ground sentence is entailed by new KB iff entailed by original KB

 Idea for doing inference in FOL:
 propositionalize KB and query

 apply resolution-based inference

 return result

 Problem: with function symbols, there are infinitely many 
ground terms,
 e.g., Father(Father(Father(John))), etc



Reduction continued

Theorem: Herbrand (1930). If a sentence α is entailed by a FOL 

KB, it is entailed by a finite subset of the propositionalized KB

Idea: For n = 0 to ∞ do
create a propositional KB by instantiating with depth-$n$ terms
see if α is entailed by this KB

Example
x King(x) Greedy(x) Evil(x)

Father(x)
King(John)
Greedy(Richard)
Brother(Richard,John)

Query Evil(X)?



 Depth 0

Father(John)

Father(Richard)

King(John)

Greedy(Richard)

Brother(Richard , John)

King(John) Greedy(John) Evil(John)

King(Richard) Greedy(Richard) Evil(Richard)

King(Father(John)) Greedy(Father(John)) Evil(Father(John))

King(Father(Richard)) Greedy(Father(Richard)) Evil(Father(Richard))

 Depth 1

Depth 0 +

Father(Father(John))

Father(Father(John))

King(Father(Father(John))) Greedy(Father(Father(John))) Evil(Father(Father(John)))



Problems with Propositionalization

 Problem: works if α is entailed, loops if α is not entailed

 Propositionalization generates lots of irrelevant sentences
 So inference may be very inefficient

 e.g., from: 

x King(x) Greedy(x) Evil(x)
King(John)

y Greedy(y)
Brother(Richard,John)

 It seems obvious that Evil(John) is entailed, but propositionalization produces lots 

of facts such as Greedy(Richard) that are irrelevant 

 With p k-ary predicates and n constants, there are p·nk instantiations

 Lets see if we can do inference directly with FOL sentences



Unification

 Recall: Subst(θ, p) = result of substituting θ into sentence p

 Unify algorithm: takes 2 sentences p and q and returns a unifier if one exists

Unify(p,q) = θ where Subst(θ, p) = Subst(θ, q)

 Example:
p = Knows(John,x)
q = Knows(John, Jane)

Unify(p,q) = {x/Jane}



Unification examples

 simple example: query = Knows(John,x), i.e., who does John know?

p q θ
Knows(John,x) Knows(John,Jane) {x/Jane}

Knows(John,x) Knows(y,OJ) {x/OJ,y/John}

Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}

Knows(John,x) Knows(x,OJ) {fail}

 Last unification fails: only because x can’t take values John and OJ at the same time

 Problem is due to use of same variable x in both sentences

 Simple solution: Standardizing apart eliminates overlap of variables, e.g., Knows(z,OJ)




Unification

 To unify Knows(John,x) and Knows(y,z),


θ = {y/John, x/z } or θ = {y/John, x/John, z/John}

 The first unifier is more general than the second.


 There is a single most general unifier (MGU) that is unique up to renaming 
of variables.



MGU = { y/John, x/z }

 General algorithm in Figure 9.1 in the text



Recall our example…

x King(x) Greedy(x) Evil(x)

King(John)

y Greedy(y)

Brother(Richard,John)

And we would like to infer Evil(John) without propositionalization



Generalized Modus Ponens (GMP)

p1', p2', … , pn', ( p1 p2 … pn q)

Subst(θ,q)

Example:

King(John), Greedy(John) , x King(x) Greedy(x) Evil(x)

p1' is King(John)  p1 is King(x) 

p2' is Greedy(John)  p2 is Greedy(x) 

θ is {x/John} q is Evil(x) 

Subst(θ,q) is Evil(John)

where  we can unify pi„ and pi for all i

Evil(John)



Completeness and Soundness of GMP

 GMP is sound

 Only derives sentences that are logically entailed

 See proof on p276 in text

 GMP is complete for a KB consisting of Horn clauses

 Complete: derives all sentences that entailed



Horn Clauses

• Resolution in general can be exponential in space and time.

• If we can reduce all clauses to “Horn clauses” resolution is linear in space and time

A clause with at most 1 positive literal.
e.g. 

• Every Horn clause can be rewritten as an implication with
a conjunction of positive literals in the premises and a single
positive literal as a conclusion.

e.g.

• 1 positive literal: definite clause

• 0 positive literals: Fact or integrity constraint:
e.g.  

A B C

B C A

( ) ( )A B A B False



Soundness of GMP

 Need to show that 


p1', …, pn', (p1 … pn q) ╞ qθ

provided that pi'θ = piθ for all I

 Lemma: For any sentence p, we have p ╞ pθ by UI


1. (p1 … pn q) ╞ (p1 … pn q)θ = (p1θ … pnθ qθ)
2.

2. p1', \; …, \;pn' ╞ p1' … pn' ╞ p1'θ … pn'θ
3. From 1 and 2, qθ follows by ordinary Modus Ponens
4.



Storage and retrieval

 Storage(s): stores a sentence s into the knowledge base

 Fetch(q): returns all unifiers such that the query q unifies with some 
sentence. 

 Simple naïve method. Keep all facts in knowledge base in one long list and 
then call unify(q,s) for all sentences to do fetch.
 Inefficient but works

 Unification is only attempted on sentence with chance of unification. 
(knows(john, x) , brother(richard,john))
 Predicate indexing

 If many instances of the same predicate exist (tax authorities  employer(x,y))

 Also index arguments

 Keep latice p280



Inference appoaches in FOL

 Forward-chaining
 Uses GMP to add new atomic sentences  
 Useful for systems that make inferences as information streams in
 Requires KB to be in form of first-order definite clauses

 Backward-chaining
 Works backwards from a query to try to construct a proof
 Can suffer from repeated states and incompleteness
 Useful for query-driven inference

 Resolution-based inference (FOL)
 Refutation-complete for general KB

 Can be used to confirm or refute a sentence p (but not to generate all entailed 
sentences)

 Requires FOL KB to be reduced to CNF
 Uses generalized version of propositional inference rule

 Note that all of these methods are generalizations of their 
propositional equivalents



Knowledge Base in FOL

 The law says that it is a crime for an American to sell weapons to hostile nations.  The country 
Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel 
West, who is American.





Knowledge Base in FOL

 The law says that it is a crime for an American to sell weapons to hostile nations.  The country Nono, an 
enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is 
American.

... it is a crime for an American to sell weapons to hostile nations:
American(x) Weapon(y) Sells(x,y,z) Hostile(z) Criminal(x)

Nono … has some missiles, i.e., x Owns(Nono,x) Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) Owns(Nono,x) Sells(West,x,Nono)

Missiles are weapons:

Missile(x) Weapon(x)

An enemy of America counts as "hostile“:
Enemy(x,America) Hostile(x)

West, who is American …
American(West)

The country Nono, an enemy of America …
Enemy(Nono,America)



Forward chaining algorithm

 Definite clauses  disjunctions of literals of which 

exactly one is positive.

 P1 , p2, p3  q

Is suitable for using GMP



Forward chaining proof



Forward chaining proof



Forward chaining proof



Properties of forward chaining

 Sound and complete for first-order definite clauses



 Datalog = first-order definite clauses + no functions

 FC terminates for Datalog in finite number of iterations

 May not terminate in general if α is not entailed



Efficiency of forward chaining

Incremental forward chaining: no need to match a rule on 
iteration k if a premise wasn't added on iteration k-1

match each rule whose premise contains a newly added positive 
literal

Matching itself can be expensive:

Database indexing allows O(1) retrieval of known facts

 e.g., query Missile(x) retrieves Missile(M1)



Forward chaining is widely used in deductive databases



Hard matching example

 Colorable() is inferred iff the CSP has a solution

 CSPs include 3SAT as a special case, hence matching is NP-hard



Diff(wa,nt) Diff(wa,sa) Diff(nt,q) 
Diff(nt,sa) Diff(q,nsw) Diff(q,sa) 
Diff(nsw,v) Diff(nsw,sa) Diff(v,sa) 

Colorable()

Diff(Red,Blue) Diff (Red,Green) 
Diff(Green,Red)  Diff(Green,Blue) 
Diff(Blue,Red) Diff(Blue,Green)



Backward chaining algorithm



Backward chaining example



Backward chaining example



Backward chaining example



Backward chaining example



Backward chaining example



Backward chaining example



Backward chaining example



Backward chaining example



Properties of backward chaining

 Depth-first recursive proof search: space is linear in size of 
proof

 Incomplete due to infinite loops

 fix by checking current goal against every goal on stack



 Inefficient due to repeated subgoals (both success and failure)
 fix using caching of previous results (extra space)

 Widely used for logic programming



Logic programming: Prolog

 Program = set of clauses = head :- literal1, … literaln.

criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

Missile(m1).

Owns(nono,m1). 

Sells(west,X,nono):- Missile(X) Owns(nono,X).

weapon(X):- missile(X).

hostile(X) :- enemy(X,america).

american(west)

Query : criminial(west)?

Query: criminial(X)?



 membership
 member(X,[X|_]). 

 member(X,[_|T]):- member(X,T).

 ?-member(2,[3,4,5,2,1])

 ?-member(2,[3,4,5,1])

 subset
 subset([],L). 

 subset([X|T],L):- member(X,L),subset(T,L).

 ?- subset([a,b],[a,c,d,b]). 

 Nth element of list
 nth(0,[X|_],X).

 nth(N,[_|T],R):- nth(N-1,T,R).

 ?nth(2,[3,4,5,2,1],X) 



Prolog

 Appending two lists to produce a third:
 append([],Y,Y).                         

 append([X|L],Y,[X|Z]) :- append(L,Y,Z). 

 query:   append([1,2],[3],Z) ?

 query:   append(A,B,[1,2]) ?

 answers: A=[]    B=[1,2]

A=[1]   B=[2]

A=[1,2] B=[]

 Path between two nodes in a graph

 path(X,Z): link(X,Z)

 path(X,Z): link(Y,Z), path(X,Y)

What happens if?

path(X,Z): path(X,Y), link(X,Z)

path(X,Z): link(X,Z)



Searching in a Maze

 Searching for a telephone in a building:

 How do you search without getting lost?

 How do you know that you have searched the whole building?

 What is the shortest path to the telephone?



Searching in a Maze

 go(X,Y,T): Succeeds if one can go from room X to room Y. T contains the 
list of rooms visited so far.

 Facts in the knowledge base
 Door(b,c)

 hasphone(g):

 go(X,X,_).

go(X,Y,T) :- door(X,Z), not(member(Z,T)), go(Z,Y,[Z|T]).

 go(X,Y,T) :- door(Z,X), not(member(Z,T)), go(Z,Y,[Z|T]).

 go(a,X,[]),hasphone(X) inefficient.

 hasphone(X),go(a,X,[])



Recall: Propositional Resolution-based Inference

We first rewrite                  into conjunctive normal form (CNF).

|

:

KB

equivalent to KB unsatifiable

We want to prove:

KB

A “conjunction of disjunctions”

(A B) (B C D)

ClauseClause

literals

• Any KB can be converted into CNF
• k-CNF: exactly k literals per clause



Resolution Examples (Propositional)

( )

( )

( )

A B C

A

B C

( )

( )

( )

A B C

A D E

B C D E



• The resolution algorithm tries to prove:

• Generate all new sentences from KB and the query.
• One of two things can happen:

1. We find                 which is unsatisfiable,
i.e. we can entail the query.

2.  We find no contradiction: there is a model that satisfies the 
Sentence (non-trivial) and hence we cannot entail the query.

Resolution Algorithm

|KB equivalent to

KB unsatisfiable

P P

KB



Resolution example

 KB = (B1,1 (P1,2 P2,1)) B1,1 

 α = P1,2

KB

False in
all worlds

True



Resolution in FOL

 Full first-order version:

l1 ··· lk,          m1 ··· mn

Subst(θ , l1 ··· li-1 li+1 ··· lk m1 ··· mj-1 mj+1 ··· mn)

where Unify(li, mj) = θ.

 The two clauses are assumed to be standardized apart so that they share no variables.

 For example,

Rich(x) Unhappy(x)    Rich(Ken)

Unhappy(Ken)

with θ = {x/Ken}

 Apply resolution steps to CNF(KB α); complete for FOL



Converting FOL sentences to CNF

Original sentence:
Anyone who likes all animals is loved by someone:

x [ y Animal(y) Likes(x,y)] [ y Loves(y,x)]

1. Eliminate biconditionals and implications

x [ y Animal(y) Likess(x,y)] [ y Loves(y,x)]

2. Move inwards: 
Recall: x p ≡ x p,  x p ≡ x p

x [ y ( Animal(y) Likes(x,y))] [ y Loves(y,x)] 

x [ y Animal(y) Likes(x,y)] [ y Loves(y,x)] 

x [ y Animal(y) Likes(x,y)] [ y Loves(y,x)] 

Either there is some animal that x doesn’t like if that is not the case then someone loves x



Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different one
x [ y Animal(y) Likes(x,y)] [ z Loves(z,x)]

4. Skolemize: 
x [Animal(A) Likes(x,A)] Loves(B,x)

Everybody fails to love a particular animal A or is loved by a particular person B
Animal(cat)
Likes(,arry, cat)
Loves(john, marry)
Likes(cathy, cat)
Loves(Tom, cathy)

a more general form of existential instantiation.
Each existential variable is replaced by a Skolem function of the enclosing 

universally quantified variables:

x [Animal(F(x)) Loves(x,F(x))] Loves(G(x),x)

(reason: animal y could be a different animal for each x.)



Conversion to CNF contd.

5. Drop universal quantifiers:

[Animal(F(x)) Loves(x,F(x))]  Loves(G(x),x)

(all remaining variables assumed to be universally quantified)

6. Distribute over :
7.

[Animal(F(x)) Loves(G(x),x)] [ Loves(x,F(x)) Loves(G(x),x)]

Original sentence is now in CNF form – can apply same ideas to all 
sentences in KB to convert into CNF

Also need to include negated query Then use resolution to 
attempt to  derive the empty clause  which show that the query is 
entailed by the KB



Recall: Example Knowledge Base in FOL

... it is a crime for an American to sell weapons to hostile nations:
American(x) Weapon(y) Sells(x,y,z) Hostile(z) Criminal(x)

Nono … has some missiles, i.e., x Owns(Nono,x) Missile(x):

Owns(Nono,M1) and Missile(M1)
… all of its missiles were sold to it by Colonel West

Missile(x) Owns(Nono,x) Sells(West,x,Nono)
Missiles are weapons:

Missile(x) Weapon(x)
An enemy of America counts as "hostile“:

Enemy(x,America) Hostile(x)
West, who is American …

American(West)
The country Nono, an enemy of America …

Enemy(Nono,America)

Can be converted to CNF

Query: Criminal(West)?



Resolution proof



Second Example

KB:

Everyone who loves all animals is loved by someone Anyone 
who kills animals is loved by no-one Jack loves all 
animals. Either Curiosity or Jack killed the cat, who is 
named Tuna

Query: Did Curiousity kill the cat?

Inference Procedure:

Express sentences in FOL

Convert to CNF form and negated query







Resolution-based Inference



Summary

 Inference in FOL
 Simple approach: reduce all sentences to PL and apply propositional inference 

techniques

 Generally inefficient

 FOL inference techniques
 Unification

 Generalized Modus Ponens

 Forward-chaining: complete with definite clauses

 Resolution-based inference

 Refutation-complete

 Read Chapter 9
 Many other aspects of FOL inference we did not discuss in class

 Homework 4 due on Tuesday


