Inference in First-Order Logic

O

Reducing first-order inference to propositional inference
Unification

Generalized Modus Ponens

Forward chaining

Backward chaining

Resolution

Universal instantiation (UI)

O

» Notation: Subst({v/g}, a) means the result of substituting g for v in sentence a

» Every instantiation of a universally quantified sentence is entailed by it:

Yva
Subst({v/g}, @)

for any variable v and ground term g

* E.g., Vx King(x) A Greedy(x) = Evil(x) yields

King(John) A Greedy(John) = Evil(John), {x/John}

King(Richard) A Greedy(Richard) = Evil(Richard), {x/Richard}

King(Father(John)) A Greedy(Father(John)) = Evil(Father(John)), {x/Father(John)}

For any sentence a, variable v, and constant symbol k (that does not appear
elsewh)ére In the know[e%%e base): y (PP

v a
Subst({v/k}, a)

E.g., 3x Crown(x) A OnHead(x,John) yields: Crown(C;) A OnHead(C,,John)

where C, is a new constant symbol, called a

Existential and universal instantiation allows to “propositionalize” any FOL
sentence or KB

El produces one instantiation per EQ sentence

Ul produces a whole set of instantiated sentences per UQ sentence

Reduction to propositional form

9,

» Every FOL KB can be propositionalized so as to preserve
entailment
A ground sentence is entailed by new KB iff entailed by original KB

» ldea for doing inference in FOL.:
propositionalize KB and query
apply resolution-based inference
return result

» Problem: with function symbols, there are infinitely many
ground terms,
e.g., Father(Father(Father(John))), etc

Theorem: Herbrand (1930). If a sentence a Is entailed by a FOL
KB, it is entailed by a finite subset of the propositionalized KB

ldea: For n =0 to oo do

create a propositional KB by instantiating with depth-n terms
see if a Is entailed by this KB

Example
VX King(x) A Greedy(x) = Evil(x)
Father(Xx)
King(John)
Greedy(Richard)
Brother(Richard,John)

Query Evil(X)?

Problem: works if a is entailed, loops if a is not entailed

Propositionalization generates lots of irrelevant sentences
So inference may be very inefficient

e.g., from:

vx King(x) A Greedy(x) = Evil(x)
King(John)

vy Greedy(y)
Brother(Richard,John)

It seems obvious that Evil(John) is entailed, but propositionalization produces lots
of facts such as Greedy(Richard) that are irrelevant

With p k-ary predicates and n constants, there are p-n instantiations
Lets see if we can do inference directly with FOL sentences

Recall: Subst(6, p) = result of substituting 6 into sentence p

Unify algorithm: takes 2 sentences p and g and returns a unifier if one exists

Unify(p,q) =6 where Subst(6, p) = Subst(6, q)

Example:
p = Knows(John,x)
q = Knows(John, Jane)

Unify(p,q) = {x/Jane}

simple example: query = Knows(John,x), i.e., who does John know?

p q 6
Knows(John,x) Knows(John,Jane) {x/Jane}
Knows(John,x) Knows(y,0J) {x/0J,y/John}
Knows(John,x) Knows(y,Mother(y)) {y/Johnx/Mother(John)}
Knows(John,x) Knows(x,0J) {fail}

Last unification fails: only because x can’t take values John and OJ at the same time
Problem is due to use of same variable x in both sentences

Simple solution: Standardizing apart eliminates overlap of variables, e.g., Knows(z,0J)

To unify Knows(John,x) and Knows(y,z),

0 = {y/John, x/z } or 6 = {y/John, x/John, z/John}

The first unifier is than the second.
There iIs a single (MGU) that Is unique up to renaming
of variables.

MGU = { y/John, x/z }

General algorithm in Figure 9.1 in the text

Recall our example...

9,

Py P2y -5 PRy (PL AP A Lo AP, =0)

Subst(6,q) . _
where we can unify p;" and p; for all i

Example:

King(John), Greedy(John) , VX King(x) A Greedy(x) = Evil(x)

Evil(John)

p," is King(John) p, is King(x)
p,' is Greedy(John) p,is Greedy(x)
0 is {x/John} q is Evil(x)
Subst(0,q) is Evil(John)

Completeness and Soundness of GMP

9,

Horn Clauses

O

« Resolution in general can be exponential in space and time.

« If we can reduce all clauses to “Horn clauses” resolution is linear in space and time

A clause with at most 1 positive literal.
e'g' A V —|B V —|C

« Every Horn clause can be rewritten as an implication with
a conjunction of positive literals in the premises and a single
positive literal as a conclusion.

€8 BAC=A

« 1 positive literal: definite clause

« 0 positive literals: Fact or integrity constraint:
e.g. (—wAv—-B)=(AnrB= False)

Need to show that
P, s Py (DL A o APy =) F b
provided that p;'0 = p;0 for all |

Lemma: For any sentence p, we have p F p0 by Ul

PIA - AP=Q) FPLA ... AP, = Q)0 = (PO A ... AP0 =)

P55\ L NP, Pl AL AR, |=_p1'9/\ ... AP0
From 1 and 2, g6 follows by ordinary Modus Ponens

Storage(s): stores a sentence s into the knowledge base

Fetch(q): returns all unifiers such that the query q unifies with some
sentence.

Simple naive method. Keep all facts in knowledge base in one long list and
then call unify(q,s) for all sentences to do fetch.
Inefficient but works

Unification is only attempted on sentence with chance of unification.
(knows(john, x) , brother(richard,john))
Predicate indexing
If many instances of the same predicate exist (tax authorities employer(x,y))
Also index arguments
Keep latice p280

Inference appoaches in FOL

Forward-chaining

Uses GMP to add new atomic sentences _ _
Useful for systems that make inferences as information streams in
Requires KB to be in form of first-order definite clauses

Backward-chaining
Works backwards from a query to try to construct a proof
Can suffer from repeated states and incompleteness
Useful for query-driven inference

Resolution-based inference (FOL)
Refutation-complete for general KB

Can be used to confirm or refute a sentence p (but not to generate all entailed
sentences

Requires FOL KB to be reduced to CNF
Uses generalized version of propositional inference rule

Note that all of these methods are generalizations of their
propositional equivalents

Knowledge Base in FOL

9,

The law says that it is a crime for an American to.sell we_zigons to hOféile nations. The count%hlono, an
,%[]r?g]mgn merica, has some missiles, and all of its missiles were sold to it by Colonel West, who Is

.. it is a crime for an American to sell weapons to hostile nations:
American(x) A Weapon(y) A Sells(x,y,z) A Hostile(z) = Criminal(x)

Nono ... has some missiles, i.e., 3x Owns(Nono,x) A Missile(x):
Owns(Nono,M;) and Missile(M,)

... all of its missiles were sold to it by Colonel West
Missile(x) A Owns(Nono,x) = Sells(West,x,Nono)

Missiles are weapons:
Missile(x) = Weapon(x)

An enemy of America counts as "hostile*:
Enemy(x,America) = Hostile(x)

West, who 1s American ...
American(West)

The country Nono, an enemy of America ...
Enemy(Nono,America)

» Definite clauses = disjunctions of literals of which
exactly one is positive.

function FOL-FC-ASK(KB, a) returns a substitution or false

| repeat until new is empty
new < { }
for each sentence rin KB do
(py AN ... A pp = ¢q)4 STANDARDIZE-APART(r)
for each @ such that (py A ... A p,)8 = (p; A ... A p,)0
for some pi,....p, in KB
q' + SuBsT(6, q)
if ¢’ is not a renaming of a sentence already in KB or new then do
add ¢’ to new
¢+ UNIFY(q', &)
if ¢ is not fail then return ¢
add new to KB
return false

Forward chaining proof

Americani West)

MissileiM 1)

9,

Enemw Nono America)

Forward chaining proof

Americani West)

9,

Sells(West, M1, Nena)

_ <

MissileiM 1)

Hasrile{ Nano)

Enemw Nono America)

Forward chaining proof

Americani West)

9,

Criminal{ West)

Sells(West, M1, Nena)

_ <

MissileiM 1)

Hasrile{ Nano)

Enemw Nono America)

Properties of forward chaining

9,

Incremental forward chaining: no need to match a rule on
Iteration K If a premise wasn't added on iteration k-1

— match each rule whose premise contains a newly added positive
literal

Matching itself can be expensive:
allows O(1) retrieval of known facts

e.g., query Missile(x) retrieves Missile(M,)

Forward chaining is widely used in

Diff(wa,nt) A Diff(wa,sa) A Diff(nt,q) »
@ Diff(nt,sa) A Diff(q,nsw) A Diff(q,sa) ~
'o Diff(nsw,v) A Diff(nsw,sa) A Diff(v,sa)

@‘ ‘ = Colorable()
(s4)

(1)
‘o Diff(Red,Blue) Diff (Red,Green)
Diff(Green,Red) Diff(Green,Blue)
@ Diff(Blue,Red) Diff(Blue,Green)

Colorable() is inferred iff the CSP has a solution
CSPs include 3SAT as a special case, hence matching is NP-hard

Backward chaining algorithm

O

function FOL-BC-ASK(KB, goals, #) returns a set of substitutions
inputs: KB, a knowledge base
goals, a list of conjuncts forming a query
6, the current substitution, initially the empty substitution { }
local variables: ans, a set of substitutions, initially empty

if goals is empty then return {6}
q' < SuBsT(#, FIRST(goals))
for each rin KB where STANDARDIZE-APART(7) = (p1 A ... A p, = q)
and #' < UNIFY(g, ¢') succeeds
ans < FOL-BC-Ask(KB, [py, ..., p,|REST(g0als)], COMPOSE(f, #')) U ans

return ans

Backward chaining example

Backward chaining example

Criminalf West)

Backward chaining example

Criminalf West)

American West)

[

Backward chaining example

Criminalf West)

American West)

[

Missile(v)

Backward chaining example

9,

Criminalf West)

/?\

American West)

[

Missile(v)
[wMi}

Backward chaining example

9,

Criminall West) {x/West, wMI, z/Nono]

American West)

[

Sells{West, M1,z)

{EN;K\

Missile(v)

MissileiM 1) Cwrisi Moo, M1)

ey

Backward chaining example

9,

Criminall West) {x/West, wMI, z/Nono]

American West) SellsfWest M1.z) Hostilei Noro)

L) {aﬂ;a{&\

Missile(v) MissileiM 1) Owns{ Nono, M1) | | Enemw Nono, America)

[ymi] [Ll L)

Backward chaining example

9,

Criminall West) {x/West, wMI, z/Nono]

American West) SellsfWest M1.z) Hostilei Noro)

L) {aﬂ;a{&\

Missile(v) MissileiM 1) Owns{ Nono, M1) | | Enemw Nono, America)

[ymi] [Ll L)

Depth-first recursive proof search: space Is linear in size of
proof

Incomplete due to infinite loops

= fix by checking current goal against every goal on stack

Inefficient due to repeated subgoals (both success and failure)
= fix using caching of previous results (extra space)

Widely used for

Logic programming: Prolog

O

Searching for a telephone in a building:

How do you search without getting lost?
How do you know that you have searched the whole building?
What Is the shortest path to the telephone?

go(X,Y,T): Succeeds if one can go from room X to room Y. T contains the
list of rooms visited so far.

Facts in the knowledge base
Door(b,c)
hasphone(qg):

go(X,X,).
go(X,Y,T) :- door(X,Z), not(member(Z,T)), go(Z,Y,[Z|T]).
go(X,Y,T) :- door(Z,X), not(member(Z,T)), go(Z,Y,[Z|T]).

go(a,X,[]),hasphone(X) inefficient.
hasphone(X),go(a,X,[])

Recall: Propositional Resolution-based Inference

@,

We want to prove: | k8 |= «

equivalent to : KB A —a unsatifiable

We first rewrite K8 A — ¢ into conjunctive normal form (CNF).

literals

A “conjunction of dW

(Av-B)A(Bv-Cv-=D)
H_J - ~ J
Clause Clause

« Any KB can be converted into CNF
« k-CNF: exactly k literals per clause

Resolution Examples (Propositional)

9,

Resolution Algorithm

The resolution algorithm tries to prove:k8 |= « eqguivalent to
KB A —a unsatisfiable

Generate all new sentences from KB and the query.
One of two things can happen:

1. Wefind P A —P which is unsatisfiable,
i.e. we can entail the query.

2. We find no contradiction: there is a model that satisfies the
Sentence (non-trivial) and hence we cannot entail the query.

KB A -«

Resolution example

Full first-order version:
Q\/...\/ll‘(, ml\/...\/nrln

Subst(0, 4 v v by v by VoV m oy MV Mg VoV)

where Uni fy(f, —m) = 0.

The two clauses are assumed to be standardized apart so that they share no variables.

For example,
—Rich(x) v Unhappy(x) Rich(Ken)

|||||

Unhappy(Ken)

with 6 = {Xx/Ken}

Apply resolution steps to CNF(KB A —a); complete for FOL

Converting FOL sentences to CNF

Original sentence:

Anyone who likes all animals is loved by someone:
vx [Vy Animal(y) = Likes(x,y)] = [3y Loves(y,x)]

1. Eliminate biconditionals and implications
VX [-Vy —Animal(y) v Likess(x,y)] v [3y Loves(y,x)]

2. Move — inwards:
Recall: =Vxp=3dX—p, —Ixp=VX—P

VX [3y —(—Animal(y) v Likes(x,y))] v [3y Loves(y,x)]
VX [dy =—Animal(y) A —Likes(x,y)] v [3y Loves(y,x)]
VX [3y Animal(y) A —Likes(x,y)] v [Ty Loves(y,x)]

Either there is some animal that x doesn’t like if that is not the case then someone loves x

Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different one
VX [3y Animal(y) A —Likes(x,y)] v [3z Loves(z,x)]

4. Skolemize:
VX [Animal(A) A —Likes(x,A)] v Loves(B,x)

Everybody fails to love a particular animal A or is loved by a particular person B
Animal(cat)

Likes(,arry, cat)
Loves(john, marry)
Likes(cathy, cat)
Loves(Tom, cathy)

a more general form of existential instantiation.

Each existentiﬁl variabl?_is replaced by a
universally quantified variables:

of the enclosing
VX [Animal(F(x)) A —Loves(x,F(x))] v Loves(G(x),x)

(reason: animal y could be a different animal for each x.)

Conversion to CNF contd.

O

5. Drop universal quantifiers:

[Animal(F(x)) A —Loves(x,F(x))] v Loves(G(x),x)

(all remaining variables assumed to be universally quantified)

6. Distribute v over A :

1.
[Animal(F(x)) v Loves(G(x),x)] A [—Loves(x,F(x)) v Loves(G(x),x)]

Original sentence Is now in CNF form — can apply same ideas to all
sentences in KB to convert into CNF

Also need t inclu?]e negated ﬂiuerg/ Then use rescHuti nto .
atten]gttg erive the empty clause which show that the query is
entailed by the KB

Recall: Example Knowledge Base in FOL

O

..1t1s a crime for an American to sell weapons to hostile nations:
American(x) » Weapon(y) Sells(x,y,z) » Hostile(z) = Criminal(x)
Nono ... has some missiles, i.e., IX Owns(Nono,x) A Missile(x):

Owns(Nono,M,) and Missile(M,)
.. all of its missiles were sold to it by Colonel West
Missile(x) A~ Owns(Nono,x) = Sells(West,x,Nono)
Missiles are weapons:

Missile(x) = Weapon(x)

An enemy of America counts as "hostile*:
Enemy(x,America) = Hostlle(x)

West, who is American .

American(\West)
The country Nono, an enemy of America ...

Enemy(Nono,America)

Can be converted to CNF
Query: Criminal(West)?

Resolution proot

O

- American(x) v - Weapon(y) v - Sellsix,v,z) v — Hostile{z) v Criminal(x) = Criminali West)
_’-’—’.’-rfr
American Wesr) | ‘ -V American{ West) v 1 Weapon{y) v 1 Sells{Westy,z) v 1 Hosrile(z)
— Missile(x) v Weapaonix) — Weapon(y) v 1 Sells{West,v,z) v — Hostilelz)
_______________‘___—-‘___
Missilef M1) - Missile(v) v - Sells{ West,y,z) v - Hostile(z)
- Missifeix) v — OwnsiNomo,x) v Sellsi Wesr,x Nomo) | — Sellsi Wesr M iIz) v - Hosrilelz)

/

Missife/M 1) | - MissifeiM1) v — OwnsiNono M) v — Hostilei Nono) |

Owrs{ Noro M 1) - Owas(Noro M) v — Hostile{Noro)

-1 Eremwx,America) v Hostileix) =1 Hosriled Momo)

Enemv Nono, America) | Enemy Nono America)

KB:

Everyone who loves all animals is loved by someone Anyone
who kills animals is loved by no-one Jack loves all
animals. Either Curiosity or Jack killed the cat, who Is
named Tuna

Query: Did Curiousity kill the cat?
Inference Procedure:

Express sentences in FOL
Convert to CNF form and negated query

O

vx [Vy Animal(y) = Loves(x, y)] = [3y Loves(y, X)]
vx [Ty Animal(y) A Kills(x,y)] = [Vz —Loves(z,x)]
vx Animal(x) = Loves(Jack, x)

Kills(Jack, Tuna) v Kills(Curiosity, Tuna)

Cat(Tuna)

v Xx Cat(x) = Animal(x)
—.G —Kills(Curiosity. Tuna)

nTmo o w >

O

. Animal(F(x)) v Loves(G(x), x)

. —Loves(x, F(x)) v Loves(G(x), x)
—Animal(y) v =Kills(x,y) v =Loves(z,x)]
—Animal(x) v Loves(Jack, x)

Kills(Jack, Tuna) v Kills(Curiosity, Tuna)
Cat(Tuna)

F. —=Cat(x) v Animal(x)
—G.—Kills(Curiosity, Tuna)

mo O W > >
NG

Resolution-based Inference

9,

Cat{Tuna) | | ~Cat(x) v Animal(x) | |Eills(Jack, Tuna) v Kills{Curiosity, Tuna)| | ~Kills{Curiosity, Tuna)

Animal{Tuna) | |—Loves(y, x) v —dnimal(z) v —EKills(x, z)| | Kills{Jack, Tuna) | [~Loves{x,F(x)) v Loves(Gi{x), x)| | —Animal(x) v Loves{Jack, x)

S =

—Loves(y, x) v —Kills{x, Tuna) —Animal(F{Jack)) v Loves|G{Jack), Jack)| |[Animal{Fi{x)) v Loves(G(x), x)

\

—Loves(y, Jack) Loves(Gi(Jack), Jack)

Summary

* Inference in FOL

o Simple approach: reduce all sentences to PL and apply propositional inference
techniques

o Generally inefficient

» FOL inference technigues
o Unification
o Generalized Modus Ponens
~ Forward-chaining: complete with definite clauses
o Resolution-based inference
~ Refutation-complete

» Read Chapter 9
o Many other aspects of FOL inference we did not discuss in class

» Homework 4 due on Tuesday

