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Knowledge Representation 
using First-Order Logic



Outline

 What is First-Order Logic (FOL)?

 Syntax and semantics  

 Using FOL

 Wumpus world in FOL

 Knowledge engineering in FOL

 Required Reading:

 All of Chapter 8



Pros and cons of propositional logic

 Propositional logic is declarative
-programming languages lack general mechanism for deriving facing from other facts

Update to data structure is domain specific

Knowledge and inference are separate

 Propositional logic allows partial/disjunctive/negated information
 unlike most programming languages and databases

 Propositional logic is compositional:
 meaning of B1,1 P1,2 is derived from meaning of B1,1 and of P1,2

Meaning in propositional logic is context-independent
 unlike natural language, where meaning depends on context

 Look, here comes superman. 

 Propositional logic has limited expressive power
 unlike natural language

 E.g., cannot say "pits cause breezes in adjacent squares“

 except by writing one sentence for each square



Wumpus World and propositional logic

 Find Pits in Wumpus world
 Bx,y (Px,y+1 Px,y-1 Px+1,y Px-1,y) (Breeze next to Pit)  16 rules

 Find Wumpus
 Sx,y (Wx,y+1 Wx,y-1 Wx+1,y Wx-1,y) (stench next to Wumpus) 16 rules

 At least one Wumpus in world
 W1,1 W1,2 … W4,4 (at least 1 Wumpus) 1 rule

 At most one Wumpus
 W1,1 W1,2  (155 RULES)

 Keep track of location
 Lx,y FacingRight Forward Lx+1,y



First-Order Logic

 Propositional logic assumes the world contains facts,

 First-order logic (like natural language) assumes the 
world contains

 Objects: people, houses, numbers, colors, baseball games, wars, …

 Relations: red, round, prime, brother of, bigger than, part of, comes 
between, …

 Functions: father of, best friend, one more than, plus, …



Logics in General

 Ontological Commitment: 

 What exists in the world — TRUTH

 PL : facts hold or do not hold.

 FOL : objects with relations between them that hold or do not 
hold

 Epistemological Commitment: 

 What an agent believes about facts — BELIEF



Syntax of FOL: Basic elements

 Constant Symbols:
 Stand for objects

 e.g., KingJohn, 2, UCI,... 

 Predicate Symbols
 Stand for relations

 E.g., Brother(Richard, John), greater_than(3,2)...

 Function Symbols
 Stand for functions

 E.g., Sqrt(3), LeftLegOf(John),...



Syntax of FOL: Basic elements

 Constants KingJohn, 2, UCI,... 

 Predicates Brother, >,...

 Functions Sqrt, LeftLegOf,...

 Variables x, y, a, b,...

 Connectives , , , , 

 Equality = 

 Quantifiers  , 



Relations

 Some relations are properties: they state 

some fact about a single object: Round(ball),  
Prime(7).

 n-ary relations state facts about two or more objects: 
Married(John,Mary), LargerThan(3,2).

 Some relations are functions: their value is another 
object: Plus(2,3), Father(Dan).



Models for FOL: Example



Terms

 Term = logical expression that refers to an object.

 There are 2 kinds of terms:

 constant symbols: Table, Computer

 function symbols: LeftLeg(Pete), Sqrt(3), Plus(2,3) etc



Atomic Sentences

 Atomic sentences state facts using terms and predicate symbols

 P(x,y) interpreted as “x is P of y”

 Examples:

LargerThan(2,3) is false.

Brother_of(Mary,Pete) is false.

Married(Father(Richard), Mother(John)) could be true or false

 Note: Functions do not state facts and form no sentence: 

 Brother(Pete) refers to John (his brother) and is neither true nor false.

 Brother_of(Pete,Brother(Pete)) is True.

Binary relation Function



Complex Sentences

 We make complex sentences with connectives (just 
like in propositional logic).

( ( ), ) ( ( ))Brother LeftLeg Richard John Democrat Bush

binary 
relation

function

property

objects

connectives



More Examples

 Brother(Richard, John) Brother(John, Richard)

 King(Richard) King(John)

 King(John)  => King(Richard)

 LessThan(Plus(1,2) ,4) GreaterThan(1,2)

(Semantics are the same as in propositional logic)



Variables

 Person(John) is true or false because we give it a 
single argument „John‟

 We can be much more flexible if we allow variables 
which can take on values in a domain. e.g., all 
persons x, all integers i,   etc.

 E.g., can state rules like Person(x) => HasHead(x)

or Integer(i) => Integer(plus(i,1)



Universal Quantification 

 means “for all”

 Allows us to make statements about all objects that have certain properties

 Can now state general rules:

x  King(x) => Person(x)

x  Person(x) => HasHead(x)

i  Integer(i) => Integer(plus(i,1))

Note that 

x  King(x) Person(x)   is not correct!  

This would imply that all objects x are Kings and are People

x  King(x) => Person(x) is the correct way to say this



Existential Quantification 

 x means “there exists an x such that….”  (at least one object x)

 Allows us to make statements about some object without naming it

 Examples:

x   King(x) 

x   Lives_in(John, Castle(x))

i Integer(i) GreaterThan(i,0)

Note that is the natural connective to use with 

(And => is the natural connective to use with )



More examples

2

[( 2) ( 3)] ( )

[( 1)] ( )

x x x x R false

x x x R false

For all real x, x>2 implies x>3.

There exists some real x whose square is minus 1.













Combining Quantifiers

x y  Loves(x,y)   
 For everyone (“all x”) there is someone (“y”) who loves them

y x Loves(x,y)

- there is someone (“y”) who loves everyone

Clearer with parentheses:  y ( x Loves(x,y) )



Connections between Quantifiers

 Asserting that all x have property P is the same as 
asserting that does not exist any x that does‟t have the 
property P

x  Likes(x, 271 class)   x  Likes(x, 271 class) 

In effect:

- is a conjunction over the universe of objects

- is a disjunction over the universe of objects

Thus, DeMorgan‟s rules can be applied



De Morgan‟s Law for Quantifiers

( )

( )

( )

( )

x P x P

x P x P

x P x P

x P x P

( )

( )

( )

( )

P Q P Q

P Q P Q

P Q P Q

P Q P Q

De Morgan‟s Rule Generalized De Morgan‟s Rule

Rule is simple: if you bring a negation inside a disjunction or a conjunction,
always switch between them (or and, and  or).



Using FOL

 We want to TELL things to the KB, e.g.
TELL(KB,                                                   )
TELL(KB, King(John) )

These sentences are assertions

 We also want to ASK things to the KB,
ASK(KB,          ) 

these are queries or goals

The KB should  Person(x) is true: {x/John,x/Richard,...}

, ( ) ( )x King x Person x

, ( )x Person x



FOL Version of Wumpus World

 Typical percept sentence:
Percept([Stench,Breeze,Glitter,None,None],5)

 Actions:
Turn(Right), Turn(Left), Forward, Shoot, Grab, Release, Climb

 To determine best action, construct query:
a BestAction( a,5)

 ASK solves this and returns {a/Grab}
 And TELL about the action.



Knowledge Base for Wumpus World

 Perception
 s,g,t Percept([s, Breeze,g],t) Breeze(t) 

 s,b,t Percept([s,b,Glitter],t) Glitter(t)

 Reflex
 t Glitter(t) BestAction(Grab,t)

 Reflex with internal state
 t Glitter(t) Holding(Gold,t) BestAction(Grab,t)

Holding(Gold,t) can not be observed: keep track of change.



Deducing hidden properties

Environment definition:
x,y,a,b Adjacent([x,y],[a,b]) [a,b] {[x+1,y], [x-,y],[x,y+1],[x,y-1]} 

Properties of locations:

s,t At(Agent,s,t) Breeze(t) Breezy(s)

Location s and time t

Squares are breezy near a pit:
 Diagnostic rule---infer cause from effect

s Breezy(s) r Adjacent(r,s) Pit(r)

 Causal rule---infer effect from cause (model based reasoning)

r Pit(r) [ s Adjacent(r,s) Breezy(s)]



Set Theory in First-Order Logic

Can we define set theory using FOL?

- individual sets, union, intersection, etc

Answer is yes.

Basics:

- empty set = constant = { } and elements x, y …

- unary predicate Set(S), true for sets

- binary predicates:

member(x,s)                           x s    (true if x is a member of the set x)

subset(s1,s2)                           s1 s2    (true if s1 is a subset of s2)



Set Theory in First-Order Logic

- binary functions:

Intersect(s1,s2) s1 s2

Union(s1,s2) s1 s2 

Adjoin(x,s) adding x to set s {x|s}

The only sets are the empty set and sets made by adjoining an element to 
a set

s Set(s) (s = {} ) ( x,s2 Set(s2) s = Adjoin(x, s2))

The empty set has no elements adjoined to it

x,s Adjoin(x, s) = {}



A Possible Set of FOL Axioms for Set Theory  

Adjoining an element already in the set has no effect

x,s member(x,s) s = Adjoin(x, s) 

A set is a subset of another set iff all the first set‟s members are members 
of the 2nd set

s1,s2 subset(s1,s2) ( x member(x ,s1 ) member(x , s2 )

Two sets are equal iff each is a subset of the other

s1,s2 (s1 = s2) (subset(s1,s2) subset(s2 , s1))



A Possible Set of FOL Axioms for Set Theory  

An object is in the intersection of 2 sets only if a member of 
both

x,s1,s2 x intersect(s1 , s2) (member(x ,s1 ) member(x ,s2 ) 

An object is in the union of 2 sets only if a member of either

x,s1,s2 x union(s1 , s2) (member(x ,s1 ) member(x ,s2 )


