
C H A P T E R 8

H A S S A N K H O S R A V I

S P R I N G 2 0 1 1

Knowledge Representation
using First-Order Logic

Outline

 What is First-Order Logic (FOL)?

 Syntax and semantics

 Using FOL

 Wumpus world in FOL

 Knowledge engineering in FOL

 Required Reading:

 All of Chapter 8

Pros and cons of propositional logic

 Propositional logic is declarative
-programming languages lack general mechanism for deriving facing from other facts

Update to data structure is domain specific

Knowledge and inference are separate

 Propositional logic allows partial/disjunctive/negated information
 unlike most programming languages and databases

 Propositional logic is compositional:
 meaning of B1,1 P1,2 is derived from meaning of B1,1 and of P1,2

Meaning in propositional logic is context-independent
 unlike natural language, where meaning depends on context

 Look, here comes superman.

 Propositional logic has limited expressive power
 unlike natural language

 E.g., cannot say "pits cause breezes in adjacent squares“

 except by writing one sentence for each square

Wumpus World and propositional logic

 Find Pits in Wumpus world
 Bx,y (Px,y+1 Px,y-1 Px+1,y Px-1,y) (Breeze next to Pit) 16 rules

 Find Wumpus
 Sx,y (Wx,y+1 Wx,y-1 Wx+1,y Wx-1,y) (stench next to Wumpus) 16 rules

 At least one Wumpus in world
 W1,1 W1,2 … W4,4 (at least 1 Wumpus) 1 rule

 At most one Wumpus
 W1,1 W1,2 (155 RULES)

 Keep track of location
 Lx,y FacingRight Forward Lx+1,y

First-Order Logic

 Propositional logic assumes the world contains facts,

 First-order logic (like natural language) assumes the
world contains

 Objects: people, houses, numbers, colors, baseball games, wars, …

 Relations: red, round, prime, brother of, bigger than, part of, comes
between, …

 Functions: father of, best friend, one more than, plus, …

Logics in General

 Ontological Commitment:

 What exists in the world — TRUTH

 PL : facts hold or do not hold.

 FOL : objects with relations between them that hold or do not
hold

 Epistemological Commitment:

 What an agent believes about facts — BELIEF

Syntax of FOL: Basic elements

 Constant Symbols:
 Stand for objects

 e.g., KingJohn, 2, UCI,...

 Predicate Symbols
 Stand for relations

 E.g., Brother(Richard, John), greater_than(3,2)...

 Function Symbols
 Stand for functions

 E.g., Sqrt(3), LeftLegOf(John),...

Syntax of FOL: Basic elements

 Constants KingJohn, 2, UCI,...

 Predicates Brother, >,...

 Functions Sqrt, LeftLegOf,...

 Variables x, y, a, b,...

 Connectives , , , ,

 Equality =

 Quantifiers ,

Relations

 Some relations are properties: they state

some fact about a single object: Round(ball),
Prime(7).

 n-ary relations state facts about two or more objects:
Married(John,Mary), LargerThan(3,2).

 Some relations are functions: their value is another
object: Plus(2,3), Father(Dan).

Models for FOL: Example

Terms

 Term = logical expression that refers to an object.

 There are 2 kinds of terms:

 constant symbols: Table, Computer

 function symbols: LeftLeg(Pete), Sqrt(3), Plus(2,3) etc

Atomic Sentences

 Atomic sentences state facts using terms and predicate symbols

 P(x,y) interpreted as “x is P of y”

 Examples:

LargerThan(2,3) is false.

Brother_of(Mary,Pete) is false.

Married(Father(Richard), Mother(John)) could be true or false

 Note: Functions do not state facts and form no sentence:

 Brother(Pete) refers to John (his brother) and is neither true nor false.

 Brother_of(Pete,Brother(Pete)) is True.

Binary relation Function

Complex Sentences

 We make complex sentences with connectives (just
like in propositional logic).

((),) (())Brother LeftLeg Richard John Democrat Bush

binary
relation

function

property

objects

connectives

More Examples

 Brother(Richard, John) Brother(John, Richard)

 King(Richard) King(John)

 King(John) => King(Richard)

 LessThan(Plus(1,2) ,4) GreaterThan(1,2)

(Semantics are the same as in propositional logic)

Variables

 Person(John) is true or false because we give it a
single argument „John‟

 We can be much more flexible if we allow variables
which can take on values in a domain. e.g., all
persons x, all integers i, etc.

 E.g., can state rules like Person(x) => HasHead(x)

or Integer(i) => Integer(plus(i,1)

Universal Quantification

 means “for all”

 Allows us to make statements about all objects that have certain properties

 Can now state general rules:

x King(x) => Person(x)

x Person(x) => HasHead(x)

i Integer(i) => Integer(plus(i,1))

Note that

x King(x) Person(x) is not correct!

This would imply that all objects x are Kings and are People

x King(x) => Person(x) is the correct way to say this

Existential Quantification

 x means “there exists an x such that….” (at least one object x)

 Allows us to make statements about some object without naming it

 Examples:

x King(x)

x Lives_in(John, Castle(x))

i Integer(i) GreaterThan(i,0)

Note that is the natural connective to use with

(And => is the natural connective to use with)

More examples

2

[(2) (3)] ()

[(1)] ()

x x x x R false

x x x R false

For all real x, x>2 implies x>3.

There exists some real x whose square is minus 1.

Combining Quantifiers

x y Loves(x,y)
 For everyone (“all x”) there is someone (“y”) who loves them

y x Loves(x,y)

- there is someone (“y”) who loves everyone

Clearer with parentheses: y (x Loves(x,y))

Connections between Quantifiers

 Asserting that all x have property P is the same as
asserting that does not exist any x that does‟t have the
property P

x Likes(x, 271 class)  x Likes(x, 271 class)

In effect:

- is a conjunction over the universe of objects

- is a disjunction over the universe of objects

Thus, DeMorgan‟s rules can be applied

De Morgan‟s Law for Quantifiers

()

()

()

()

x P x P

x P x P

x P x P

x P x P

()

()

()

()

P Q P Q

P Q P Q

P Q P Q

P Q P Q

De Morgan‟s Rule Generalized De Morgan‟s Rule

Rule is simple: if you bring a negation inside a disjunction or a conjunction,
always switch between them (or and, and  or).

Using FOL

 We want to TELL things to the KB, e.g.
TELL(KB,)
TELL(KB, King(John))

These sentences are assertions

 We also want to ASK things to the KB,
ASK(KB,)

these are queries or goals

The KB should Person(x) is true: {x/John,x/Richard,...}

, () ()x King x Person x

, ()x Person x

FOL Version of Wumpus World

 Typical percept sentence:
Percept([Stench,Breeze,Glitter,None,None],5)

 Actions:
Turn(Right), Turn(Left), Forward, Shoot, Grab, Release, Climb

 To determine best action, construct query:
a BestAction(a,5)

 ASK solves this and returns {a/Grab}
 And TELL about the action.

Knowledge Base for Wumpus World

 Perception
 s,g,t Percept([s, Breeze,g],t) Breeze(t)

 s,b,t Percept([s,b,Glitter],t) Glitter(t)

 Reflex
 t Glitter(t) BestAction(Grab,t)

 Reflex with internal state
 t Glitter(t) Holding(Gold,t) BestAction(Grab,t)

Holding(Gold,t) can not be observed: keep track of change.

Deducing hidden properties

Environment definition:
x,y,a,b Adjacent([x,y],[a,b]) [a,b] {[x+1,y], [x-,y],[x,y+1],[x,y-1]}

Properties of locations:

s,t At(Agent,s,t) Breeze(t) Breezy(s)

Location s and time t

Squares are breezy near a pit:
 Diagnostic rule---infer cause from effect

s Breezy(s) r Adjacent(r,s) Pit(r)

 Causal rule---infer effect from cause (model based reasoning)

r Pit(r) [s Adjacent(r,s) Breezy(s)]

Set Theory in First-Order Logic

Can we define set theory using FOL?

- individual sets, union, intersection, etc

Answer is yes.

Basics:

- empty set = constant = { } and elements x, y …

- unary predicate Set(S), true for sets

- binary predicates:

member(x,s) x s (true if x is a member of the set x)

subset(s1,s2) s1 s2 (true if s1 is a subset of s2)

Set Theory in First-Order Logic

- binary functions:

Intersect(s1,s2) s1 s2

Union(s1,s2) s1 s2

Adjoin(x,s) adding x to set s {x|s}

The only sets are the empty set and sets made by adjoining an element to
a set

s Set(s) (s = {}) (x,s2 Set(s2) s = Adjoin(x, s2))

The empty set has no elements adjoined to it

x,s Adjoin(x, s) = {}

A Possible Set of FOL Axioms for Set Theory

Adjoining an element already in the set has no effect

x,s member(x,s) s = Adjoin(x, s)

A set is a subset of another set iff all the first set‟s members are members
of the 2nd set

s1,s2 subset(s1,s2) (x member(x ,s1) member(x , s2)

Two sets are equal iff each is a subset of the other

s1,s2 (s1 = s2) (subset(s1,s2) subset(s2 , s1))

A Possible Set of FOL Axioms for Set Theory

An object is in the intersection of 2 sets only if a member of
both

x,s1,s2 x intersect(s1 , s2) (member(x ,s1) member(x ,s2)

An object is in the union of 2 sets only if a member of either

x,s1,s2 x union(s1 , s2) (member(x ,s1) member(x ,s2)

