
C H A P T E R 8

H A S S A N K H O S R A V I

S P R I N G 2 0 1 1

Knowledge Representation
using First-Order Logic

Outline

 What is First-Order Logic (FOL)?

 Syntax and semantics

 Using FOL

 Wumpus world in FOL

 Knowledge engineering in FOL

 Required Reading:

 All of Chapter 8

Pros and cons of propositional logic

 Propositional logic is declarative
-programming languages lack general mechanism for deriving facing from other facts

Update to data structure is domain specific

Knowledge and inference are separate

 Propositional logic allows partial/disjunctive/negated information
 unlike most programming languages and databases

 Propositional logic is compositional:
 meaning of B1,1 P1,2 is derived from meaning of B1,1 and of P1,2

Meaning in propositional logic is context-independent
 unlike natural language, where meaning depends on context

 Look, here comes superman.

 Propositional logic has limited expressive power
 unlike natural language

 E.g., cannot say "pits cause breezes in adjacent squares“

 except by writing one sentence for each square

Wumpus World and propositional logic

 Find Pits in Wumpus world
 Bx,y (Px,y+1 Px,y-1 Px+1,y Px-1,y) (Breeze next to Pit) 16 rules

 Find Wumpus
 Sx,y (Wx,y+1 Wx,y-1 Wx+1,y Wx-1,y) (stench next to Wumpus) 16 rules

 At least one Wumpus in world
 W1,1 W1,2 … W4,4 (at least 1 Wumpus) 1 rule

 At most one Wumpus
 W1,1 W1,2 (155 RULES)

 Keep track of location
 Lx,y FacingRight Forward Lx+1,y

First-Order Logic

 Propositional logic assumes the world contains facts,

 First-order logic (like natural language) assumes the
world contains

 Objects: people, houses, numbers, colors, baseball games, wars, …

 Relations: red, round, prime, brother of, bigger than, part of, comes
between, …

 Functions: father of, best friend, one more than, plus, …

Logics in General

 Ontological Commitment:

 What exists in the world — TRUTH

 PL : facts hold or do not hold.

 FOL : objects with relations between them that hold or do not
hold

 Epistemological Commitment:

 What an agent believes about facts — BELIEF

Syntax of FOL: Basic elements

 Constant Symbols:
 Stand for objects

 e.g., KingJohn, 2, UCI,...

 Predicate Symbols
 Stand for relations

 E.g., Brother(Richard, John), greater_than(3,2)...

 Function Symbols
 Stand for functions

 E.g., Sqrt(3), LeftLegOf(John),...

Syntax of FOL: Basic elements

 Constants KingJohn, 2, UCI,...

 Predicates Brother, >,...

 Functions Sqrt, LeftLegOf,...

 Variables x, y, a, b,...

 Connectives , , , ,

 Equality =

 Quantifiers ,

Relations

 Some relations are properties: they state

some fact about a single object: Round(ball),
Prime(7).

 n-ary relations state facts about two or more objects:
Married(John,Mary), LargerThan(3,2).

 Some relations are functions: their value is another
object: Plus(2,3), Father(Dan).

Models for FOL: Example

Terms

 Term = logical expression that refers to an object.

 There are 2 kinds of terms:

 constant symbols: Table, Computer

 function symbols: LeftLeg(Pete), Sqrt(3), Plus(2,3) etc

Atomic Sentences

 Atomic sentences state facts using terms and predicate symbols

 P(x,y) interpreted as “x is P of y”

 Examples:

LargerThan(2,3) is false.

Brother_of(Mary,Pete) is false.

Married(Father(Richard), Mother(John)) could be true or false

 Note: Functions do not state facts and form no sentence:

 Brother(Pete) refers to John (his brother) and is neither true nor false.

 Brother_of(Pete,Brother(Pete)) is True.

Binary relation Function

Complex Sentences

 We make complex sentences with connectives (just
like in propositional logic).

((),) (())Brother LeftLeg Richard John Democrat Bush

binary
relation

function

property

objects

connectives

More Examples

 Brother(Richard, John) Brother(John, Richard)

 King(Richard) King(John)

 King(John) => King(Richard)

 LessThan(Plus(1,2) ,4) GreaterThan(1,2)

(Semantics are the same as in propositional logic)

Variables

 Person(John) is true or false because we give it a
single argument „John‟

 We can be much more flexible if we allow variables
which can take on values in a domain. e.g., all
persons x, all integers i, etc.

 E.g., can state rules like Person(x) => HasHead(x)

or Integer(i) => Integer(plus(i,1)

Universal Quantification

 means “for all”

 Allows us to make statements about all objects that have certain properties

 Can now state general rules:

x King(x) => Person(x)

x Person(x) => HasHead(x)

i Integer(i) => Integer(plus(i,1))

Note that

x King(x) Person(x) is not correct!

This would imply that all objects x are Kings and are People

x King(x) => Person(x) is the correct way to say this

Existential Quantification

 x means “there exists an x such that….” (at least one object x)

 Allows us to make statements about some object without naming it

 Examples:

x King(x)

x Lives_in(John, Castle(x))

i Integer(i) GreaterThan(i,0)

Note that is the natural connective to use with

(And => is the natural connective to use with)

More examples

2

[(2) (3)] ()

[(1)] ()

x x x x R false

x x x R false

For all real x, x>2 implies x>3.

There exists some real x whose square is minus 1.

Combining Quantifiers

x y Loves(x,y)
 For everyone (“all x”) there is someone (“y”) who loves them

y x Loves(x,y)

- there is someone (“y”) who loves everyone

Clearer with parentheses: y (x Loves(x,y))

Connections between Quantifiers

 Asserting that all x have property P is the same as
asserting that does not exist any x that does‟t have the
property P

x Likes(x, 271 class) x Likes(x, 271 class)

In effect:

- is a conjunction over the universe of objects

- is a disjunction over the universe of objects

Thus, DeMorgan‟s rules can be applied

De Morgan‟s Law for Quantifiers

()

()

()

()

x P x P

x P x P

x P x P

x P x P

()

()

()

()

P Q P Q

P Q P Q

P Q P Q

P Q P Q

De Morgan‟s Rule Generalized De Morgan‟s Rule

Rule is simple: if you bring a negation inside a disjunction or a conjunction,
always switch between them (or and, and or).

Using FOL

 We want to TELL things to the KB, e.g.
TELL(KB,)
TELL(KB, King(John))

These sentences are assertions

 We also want to ASK things to the KB,
ASK(KB,)

these are queries or goals

The KB should Person(x) is true: {x/John,x/Richard,...}

, () ()x King x Person x

, ()x Person x

FOL Version of Wumpus World

 Typical percept sentence:
Percept([Stench,Breeze,Glitter,None,None],5)

 Actions:
Turn(Right), Turn(Left), Forward, Shoot, Grab, Release, Climb

 To determine best action, construct query:
a BestAction(a,5)

 ASK solves this and returns {a/Grab}
 And TELL about the action.

Knowledge Base for Wumpus World

 Perception
 s,g,t Percept([s, Breeze,g],t) Breeze(t)

 s,b,t Percept([s,b,Glitter],t) Glitter(t)

 Reflex
 t Glitter(t) BestAction(Grab,t)

 Reflex with internal state
 t Glitter(t) Holding(Gold,t) BestAction(Grab,t)

Holding(Gold,t) can not be observed: keep track of change.

Deducing hidden properties

Environment definition:
x,y,a,b Adjacent([x,y],[a,b]) [a,b] {[x+1,y], [x-,y],[x,y+1],[x,y-1]}

Properties of locations:

s,t At(Agent,s,t) Breeze(t) Breezy(s)

Location s and time t

Squares are breezy near a pit:
 Diagnostic rule---infer cause from effect

s Breezy(s) r Adjacent(r,s) Pit(r)

 Causal rule---infer effect from cause (model based reasoning)

r Pit(r) [s Adjacent(r,s) Breezy(s)]

Set Theory in First-Order Logic

Can we define set theory using FOL?

- individual sets, union, intersection, etc

Answer is yes.

Basics:

- empty set = constant = { } and elements x, y …

- unary predicate Set(S), true for sets

- binary predicates:

member(x,s) x s (true if x is a member of the set x)

subset(s1,s2) s1 s2 (true if s1 is a subset of s2)

Set Theory in First-Order Logic

- binary functions:

Intersect(s1,s2) s1 s2

Union(s1,s2) s1 s2

Adjoin(x,s) adding x to set s {x|s}

The only sets are the empty set and sets made by adjoining an element to
a set

s Set(s) (s = {}) (x,s2 Set(s2) s = Adjoin(x, s2))

The empty set has no elements adjoined to it

x,s Adjoin(x, s) = {}

A Possible Set of FOL Axioms for Set Theory

Adjoining an element already in the set has no effect

x,s member(x,s) s = Adjoin(x, s)

A set is a subset of another set iff all the first set‟s members are members
of the 2nd set

s1,s2 subset(s1,s2) (x member(x ,s1) member(x , s2)

Two sets are equal iff each is a subset of the other

s1,s2 (s1 = s2) (subset(s1,s2) subset(s2 , s1))

A Possible Set of FOL Axioms for Set Theory

An object is in the intersection of 2 sets only if a member of
both

x,s1,s2 x intersect(s1 , s2) (member(x ,s1) member(x ,s2)

An object is in the union of 2 sets only if a member of either

x,s1,s2 x union(s1 , s2) (member(x ,s1) member(x ,s2)

