Knowledge Representation using First-Order Logic

CHAPTER 8 HASSAN KHOSRAVI SPRING2011

Outline

- What is First-Order Logic (FOL)?
 - Syntax and semantics
- Using FOL
- Wumpus world in FOL
- Knowledge engineering in FOL
- Required Reading:
 - All of Chapter 8

Pros and cons of propositional logic

© Propositional logic is declarative

-programming languages lack general mechanism for deriving facing from other facts Update to data structure is domain specific Knowledge and inference are separate

© Propositional logic allows partial/disjunctive/negated information

• unlike most programming languages and databases

© Propositional logic is **compositional**:

• meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$

© Meaning in propositional logic is **context-independent**

- o unlike natural language, where meaning depends on context
- Look, here comes superman.

$\ensuremath{\mathfrak{S}}$ Propositional logic has limited expressive power

- unlike natural language
- E.g., cannot say "pits cause breezes in adjacent squares"
 - × except by writing one sentence for each square

Wumpus World and propositional logic

- Find Pits in Wumpus world • $B_{x,y} \Leftrightarrow (P_{x,y+1} \lor P_{x,y-1} \lor P_{x+1,y} \lor P_{x-1,y})$ (Breeze next to Pit) 16 rules
- Find Wumpus • $S_{x,y} \Leftrightarrow (W_{x,y+1} \lor W_{x,y-1} \lor W_{x+1,y} \lor W_{x-1,y})$ (stench next to Wumpus) 16 rules
- At least one Wumpus in world • $W_{1,1} \lor W_{1,2} \lor \ldots \lor W_{4,4}$ (at least 1 Wumpus) 1 rule
- At most one Wumpus $\circ \neg W_{1,1} \lor \neg W_{1,2 (155 \text{ RULES})}$
- Keep track of location
 *L*_{x,y} ∧ *FacingRight* ∧ *Forward* ⇒ *L*_{x+1,y}

First-Order Logic

- Propositional logic assumes the world contains facts,
- First-order logic (like natural language) assumes the world contains
 - o Objects: people, houses, numbers, colors, baseball games, wars, ...
 - **Relations:** red, round, prime, brother of, bigger than, part of, comes between, ...
 - Functions: father of, best friend, one more than, plus, ...

Logics in General

• Ontological Commitment:

- What exists in the world TRUTH
- PL : facts hold or do not hold.
- FOL : objects with relations between them that hold or do not hold

Language	Ontological Commitment	Epistemological Commitment
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief $\in [0, 1]$
Fuzzy logic	degree of truth $\in [0, 1]$	known interval value

Syntax of FOL: Basic elements

• Constant Symbols:

- Stand for objects
- o e.g., KingJohn, 2, UCI,...

• Predicate Symbols

- Stand for relations
- E.g., Brother(Richard, John), greater_than(3,2)...

• Function Symbols

- Stand for functions
- E.g., Sqrt(3), LeftLegOf(John),...

Syntax of FOL: Basic elements

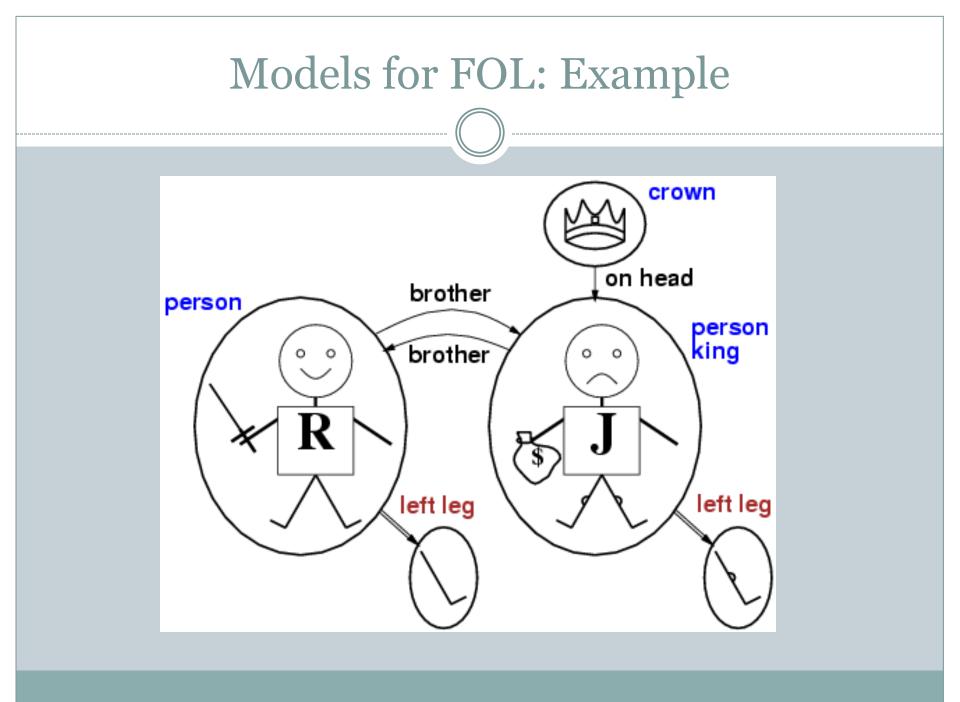
• Constants KingJohn, 2, UCI,...

- Predicates Brother, >,...
- Functions Sqrt, LeftLegOf,...
- Variables x, y, a, b,...
- Connectives $\neg, \Rightarrow, \land, \lor, \Leftrightarrow$
- Equality =
- Quantifiers \forall, \exists

Relations

 Some relations are properties: they state some fact about a single object: Round(ball), Prime(7).

- n-ary relations state facts about two or more objects: Married(John,Mary), LargerThan(3,2).
- Some relations are **functions**: their value is another object: Plus(2,3), Father(Dan).



Terms

• Term = logical expression that refers to an object.

• There are 2 kinds of terms:

- o constant symbols: Table, Computer
- o function symbols: LeftLeg(Pete), Sqrt(3), Plus(2,3) etc

Atomic Sentences

- Atomic sentences state facts using terms and predicate symbols
 P(x,y) interpreted as "x is P of y"
- Examples:

LargerThan(2,3) is false. Brother_of(Mary,Pete) is false. Married(Father(Richard), Mother(John)) could be true or false

- Note: Functions do not state facts and form no sentence:
 Brother(Pete) refers to John (his brother) and is neither true nor false.
- Brother_of(Pete,Brother(Pete)) is True.

Binary relation Function

Complex Sentences

• We make complex sentences with connectives (just like in propositional logic).

¬Brother(LeftLeg(Richard),John) \ (Democrat(Bush))

binary function relation

objects

connectives

More Examples

- Brother(Richard, John) ^ Brother(John, Richard)
- King(Richard) ∨ King(John)
- King(John) => ¬ King(Richard)
- LessThan(Plus(1,2),4) ∧ GreaterThan(1,2)

(Semantics are the same as in propositional logic)

Variables

 Person(John) is true or false because we give it a single argument 'John'

• We can be much more flexible if we allow variables which can take on values in a domain. e.g., all persons x, all integers i, etc.

• E.g., can state rules like Person(x) => HasHead(x) or Integer(i) => Integer(plus(i,1)

Universal Quantification \forall

- ∀ means "for all"
- Allows us to make statements about all objects that have certain properties
- Can now state general rules:
 - $\forall x \text{ King}(x) \Rightarrow \text{Person}(x)$
 - \forall x Person(x) => HasHead(x)
 - ∀ i Integer(i) => Integer(plus(i,1))

Note that
∀ x King(x) ∧ Person(x) is not correct!
This would imply that all objects x are Kings and are People

 $\forall x \text{ King}(x) => \text{Person}(x) \text{ is the correct way to say this}$

Existential Quantification 3

• \exists x means "there exists an x such that...." (at least one object x)

- Allows us to make statements about some object without naming it
- Examples:
 - $\exists x King(x)$
 - \exists x Lives_in(John, Castle(x))
 - \exists i Integer(i) \land GreaterThan(i,o)

Note that \land is the natural connective to use with \exists (And => is the natural connective to use with \forall)

More examples

 \checkmark For all real x, x>2 implies x>3.

$$\forall x[(x > 2) \Rightarrow (x > 3)] \quad x \in R \quad (false)$$

$$\exists x[(x^2 = -1)] \quad x \in R \quad (false)$$

There exists some real x whose square is minus 1.

Brothers are siblings

Brothers are siblings

 $\forall \, x,y \; Brother(x,y) \; \Rightarrow \; Sibling(x,y).$

"Sibling" is symmetric

Brothers are siblings

 $\forall \, x,y \; Brother(x,y) \; \Rightarrow \; Sibling(x,y).$

"Sibling" is symmetric

 $\forall x,y \ Sibling(x,y) \ \Leftrightarrow \ Sibling(y,x).$

One's mother is one's female parent

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

 $\forall x,y \ Sibling(x,y) \Leftrightarrow Sibling(y,x).$

One's mother is one's female parent

 $\forall \, x,y \;\; Mother(x,y) \; \Leftrightarrow \; (Female(x) \wedge Parent(x,y)).$

A first cousin is a child of a parent's sibling

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x).$

One's mother is one's female parent

 $\forall x,y \ Mother(x,y) \ \Leftrightarrow \ (Female(x) \land Parent(x,y)).$

A first cousin is a child of a parent's sibling

 $\begin{array}{lll} \forall x,y \ \ FirstCousin(x,y) \ \Leftrightarrow \ \exists \, p,ps \ \ Parent(p,x) \land Sibling(ps,p) \land \\ Parent(ps,y) \end{array}$

Combining Quantifiers

$\forall x \exists y Loves(x,y)$

• For everyone ("all x") there is someone ("y") who loves them

$\exists y \forall x Loves(x,y)$

- there is someone ("y") who loves everyone

Clearer with parentheses: $\exists y (\forall x Loves(x,y))$

Connections between Quantifiers

 Asserting that all x have property P is the same as asserting that does not exist any x that does't have the property P

 $\forall x \text{ Likes}(x, 271 \text{ class}) \Leftrightarrow \neg \exists x \neg \text{Likes}(x, 271 \text{ class})$

In effect:

- \forall is a conjunction over the universe of objects
- -∃ is a disjunction over the universe of objects Thus, DeMorgan's rules can be applied

De Morgan's Law for Quantifiers

De Morgan's Rule $P \land Q \equiv \neg(\neg P \lor \neg Q)$ $P \lor Q \equiv \neg(\neg P \land \neg Q)$ $\neg(P \land Q) \equiv \neg P \lor \neg Q$ $\neg(P \lor Q) \equiv \neg P \land \neg Q$ Generalized De Morgan's Rule $\forall x P \equiv \neg \exists x (\neg P)$ $\exists x P \equiv \neg \forall x (\neg P)$ $\neg \forall x P \equiv \exists x (\neg P)$ $\neg \exists x P \equiv \forall x (\neg P)$

Rule is simple: if you bring a negation inside a disjunction or a conjunction, always switch between them (or \rightarrow and, and \rightarrow or).

Using FOL

 We want to TELL things to the KB, e.g. TELL(KB, ∀x, King(x) ⇒ Person(x)) TELL(KB, King(John))

These sentences are assertions

 We also want to ASK things to the KB, ASK(KB, ∃x, Person(x))

these are queries or goals

The KB should Person(x) is true: {x/John,x/Richard,...}

FOL Version of Wumpus World

- Typical percept sentence: Percept([Stench,Breeze,Glitter,None,None],5)
- Actions: Turn(Right), Turn(Left), Forward, Shoot, Grab, Release, Climb
- To determine best action, construct query:

 d a BestAction(a,5)
- ASK solves this and returns {a/Grab}
 And TELL about the action.

Knowledge Base for Wumpus World

Perception

- \forall s,g,t Percept([s, Breeze,g],t) ⇒ Breeze(t)
- \forall s,b,t Percept([s,b,Glitter],t) \Rightarrow Glitter(t)

• Reflex

• \forall t Glitter(t) \Rightarrow BestAction(Grab,t)

• Reflex with internal state

• \forall t Glitter(t) $\land\neg$ Holding(Gold,t) \Rightarrow BestAction(Grab,t)

Holding(Gold,t) can not be observed: keep track of change.

Deducing hidden properties

Environment definition:

 $\forall x,y,a,b \ Adjacent([x,y],[a,b]) \Leftrightarrow \ [a,b] \in \{[x+1,y], [x-,y], [x,y+1], [x,y-1]\}$

Properties of locations: \forall s,t *At*(Agent,s,t) \land Breeze(t) \Rightarrow Breezy(s)

Location *s* and time *t*

Squares are breezy near a pit:

• Diagnostic rule---infer cause from effect $\forall s Breezy(s) \Leftrightarrow \exists r Adjacent(r,s) \land Pit(r)$

Causal rule---infer effect from cause (model based reasoning) $\forall r \operatorname{Pit}(r) \Rightarrow [\forall s \operatorname{Adjacent}(r,s) \Rightarrow \operatorname{Breezy}(s)]$

Set Theory in First-Order Logic

Can we define set theory using FOL? - individual sets, union, intersection, etc Answer is yes.

Basics:

- empty set = constant = { } and elements x, y ...
- unary predicate Set(S), true for sets
- binary predicates:

 $subset(s_1, s_2)$

member(x,s)

- $x \in S$ (true if x is a member of the set x)
- $S_1 \subseteq S_2$ (true if s1 is a subset of s2)

Set Theory in First-Order Logic

 binary functions: Intersect(s₁,s₂) Union(s₁,s₂) Adjoin(x,s)

 $\begin{array}{l} \mathbf{S_1} \cap \mathbf{S_2} \\ \mathbf{S_1} \cup \mathbf{S_2} \\ \text{adding x to set s } \{\mathbf{x} | \mathbf{s}\} \end{array}$

The only sets are the empty set and sets made by adjoining an element to a set $\forall s \operatorname{Set}(s) \Leftrightarrow (s = \{\}) \lor (\exists x, s_2 \operatorname{Set}(s_2) \land s = \operatorname{Adjoin}(x, s_2))$

The empty set has no elements adjoined to it $\neg \exists x, s Adjoin(x, s) = \{\}$

A Possible Set of FOL Axioms for Set Theory

Adjoining an element already in the set has no effect $\forall x,s \text{ member}(x,s) \Leftrightarrow s = \text{Adjoin}(x,s)$

A set is a subset of another set iff all the first set's members are members of the 2nd set $\forall s_1, s_2$ subset $(s_1, s_2) \Leftrightarrow (\forall x \text{ member}(x, s_1) \Rightarrow \text{member}(x, s_2)$

Two sets are equal iff each is a subset of the other $\forall s_1, s_2 \ (s_1 = s_2) \Leftrightarrow (subset(s_1, s_2) \land subset(s_2, s_1))$

A Possible Set of FOL Axioms for Set Theory

An object is in the intersection of 2 sets only if a member of both $\forall x,s_1,s_2 x \in intersect(s_1, s_2) \Leftrightarrow (member(x,s_1) \land member(x,s_2)$

An object is in the union of 2 sets only if a member of either $\forall x,s_1,s_2 x \in union(s_1,s_2) \Leftrightarrow (member(x,s_1) \lor member(x,s_2)$