
C H A P T E R 6

C M P T 3 1 0 : S P R I N G 2 0 1 1

H A S S A N K H O S R A V I

Adversarial Search and Game-
Playing

Adversarial Search

 Examine the problems that arise when we try to
plan ahead in a world where other agents are
planning against us.

 A good example is in games.

Search versus Games

 Search – no adversary

 Solution is (heuristic) method for finding goal

 Heuristics and CSP techniques can find optimal solution

 Evaluation function: estimate of cost from start to goal through given node

 Examples: path planning, scheduling activities

 Games – adversary

 Solution is strategy (strategy specifies move for every possible opponent
reply).

 Time limits force an approximate solution

 Evaluation function: evaluate “goodness” of game position

 Examples: chess, checkers, Othello, backgammon

Types of Games

Prisoner’s Dilemma

Confess Don’t Confess
prisoner1

Prisoner2

Confess

Don’t Confess

(-8, -8)

(-15, 0)

(0, -15)

(-1, -1)

Prisoner’s Dilemma

Confess Don’t Confess
prisoner1

Prisoner2

Confess

Don’t Confess

(-8, -8)

(-15, 0)

(0, -15)

(-1, -1)

Prisoner’s Dilemma

Confess Don’t Confess
prisoner1

Prisoner2

Confess

Don’t Confess

(-8, -8)

(-15, 0)

(0, -15)

(-1, -1)

Prisoner’s Dilemma

Conclusion:

The prisoner1 will confess And Prisoner2?

Prisoner’s Dilemma

Confess Don’t Confess
prisoner1

Prisoner2

Confess

Don’t Confess

(-8, -8)

(-15, 0)

(0, -15)

(-1, -1)

Prisoner’s Dilemma

Confess Don’t Confess
prisoner1

Prisoner2

Confess

Don’t Confess

(-8, -8)

(-15, 0)

(0, -15)

(-1, -1)

Prisoner’s Dilemma

Conclusion:

Prisoner2 confesses also

Both get 8 years, even though if they cooperated,
they could get off with one year each

For both, confession is a dominant strategy: a
strategy that yields a better outcome regardless of
the opponent’s choice

Game Setup

 Two players: MAX and MIN

 MAX moves first and they take turns until the game is over

 Winner gets award, loser gets penalty.

 Games as search:

 Initial state: e.g. board configuration of chess

 Successor function: list of (move,state) pairs specifying legal moves.

 Terminal test: Is the game finished?

 Utility function: Gives numerical value of terminal states. E.g. win (+1), lose
(-1) and draw (0) in tic-tac-toe or chess

 MAX uses search tree to determine next move.

Size of search trees

 b = branching factor

 d = number of moves by both players

 Search tree is O(bd)

 Chess
 b ~ 35
 D ~100

- search tree is ~ 10 154 (!!)
- completely impractical to search this

 Game-playing emphasizes being able to make optimal decisions in a finite amount of time
 Somewhat realistic as a model of a real-world agent
 Even if games themselves are artificial

Partial Game Tree for Tic-Tac-Toe

Game tree (2-player, deterministic, turns)

How do we search this tree to find the optimal move?

Minimax strategy

 Find the optimal strategy for MAX assuming an
infallible MIN opponent

 Need to compute this all the down the tree

 Assumption: Both players play optimally!

 Given a game tree, the optimal strategy can be
determined by using the minimax value of each
node:

Two-Ply Game Tree

Two-Ply Game Tree

Two-Ply Game Tree

Two-Ply Game Tree

The minimax decision

Minimax maximizes the utility for the worst-case outcome for max

What if MIN does not play optimally?

 Definition of optimal play for MAX assumes MIN plays optimally:

 maximizes worst-case outcome for MAX

 But if MIN does not play optimally, MAX will do even better

 Can prove this (Problem 6.2)

Minimax Algorithm

 Complete depth-first exploration of the game tree

 Assumptions:

 Max depth = d, b legal moves at each point

 E.g., Chess: d ~ 100, b ~35
Criterion Minimax

Time O(bd)

Space O(bd)




Pseudocode for Minimax Algorithm

function MINIMAX-DECISION(state) returns an action

inputs: state, current state in game

v MAX-VALUE(state)

return the action in SUCCESSORS(state) with value v

function MIN-VALUE(state) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(state)

v ∞

for a,s in SUCCESSORS(state) do

v MIN(v,MAX-VALUE(s))

return v

function MAX-VALUE(state) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(state)

v -∞

for a,s in SUCCESSORS(state) do

v MAX(v,MIN-VALUE(s))

return v

Example

MAX to move

Multiplayer games

 Games allow more than two players

 Single minimax values become vectors

Example

A and B make simultaneous moves, illustratesminimax solutions.
Can they do better than minimax?
Can we make the space less complex?
Pure strategy vs mix strategies

Zero sum games: zero-sum describes a situation in which a participant's
gain or loss is exactly balanced by the losses or gains of the other participant(s).
If the total gains of the participants are added up, and the total losses are
subtracted, they will sum to zero

Aspects of multiplayer games

 Previous slide (standard minimax analysis) assumes
that each player operates to maximize only their own
utility

 In practice, players make alliances
 E.g, C strong, A and B both weak

 May be best for A and B to attack C rather than each other

 If game is not zero-sum (i.e., utility(A) = - utility(B)
then alliances can be useful even with 2 players
 e.g., both cooperate to maximum the sum of the utilities

Practical problem with minimax search

 Number of game states is exponential in the number of moves.

 Solution: Do not examine every node

=> pruning

 Remove branches that do not influence final decision

 Revisit example …

Alpha-Beta Example

[-∞, +∞]

[-∞,+∞]

Range of possible values

Do DF-search until first leaf

Alpha-Beta Example (continued)

[-∞,3]

[-∞,+∞]

Alpha-Beta Example (continued)

[-∞,3]

[-∞,+∞]

Alpha-Beta Example (continued)

[3,+∞]

[3,3]

Alpha-Beta Example (continued)

[-∞,2]

[3,+∞]

[3,3]

This node is worse

for MAX

Alpha-Beta Example (continued)

[-∞,2]

[3,14]

[3,3] [-∞,14]

,

Alpha-Beta Example (continued)

[−∞,2]

[3,5]

[3,3] [-∞,5]

,

Alpha-Beta Example (continued)

[2,2][−∞,2]

[3,3]

[3,3]

Alpha-Beta Example (continued)

[2,2][-∞,2]

[3,3]

[3,3]

Alpha-beta Algorithm

 Depth first search – only considers nodes along a single
path at any time

= highest-value choice we have found at any choice
point along the path for MAX

= lowest-value choice we have found at any choice point
along the path for MIN

 update values of and during search and prunes
remaining branches as soon as the value is known to be
worse than the current or value for MAX or MIN

Effectiveness of Alpha-Beta Search

 Worst-Case

 branches are ordered so that no pruning takes place. In this case alpha-beta
gives no improvement over exhaustive search

 Best-Case

 each player’s best move is the left-most alternative (i.e., evaluated first)

 in practice, performance is closer to best rather than worst-case

 In practice often get O(b(d/2)) rather than O(bd)

 this is the same as having a branching factor of sqrt(b),

 since (sqrt(b))d = b(d/2)

 i.e., we have effectively gone from b to square root of b

 e.g., in chess go from b ~ 35 to b ~ 6

 this permits much deeper search in the same amount of time

Final Comments about Alpha-Beta Pruning

 Pruning does not affect final results

 Entire subtrees can be pruned.

 Good move ordering improves effectiveness of
pruning

 Repeated states are again possible.

 Store them in memory = transposition table

Example

3 4 1 2 7 8 5 6

-which nodes can be pruned?

Practical Implementation

How do we make these ideas practical in real game trees?

Standard approach:

 cutoff test: (where do we stop descending the tree)

 depth limit

 better: iterative deepening

 cutoff only when no big changes are expected to occur next (quiescence search).

 evaluation function

 When the search is cut off, we evaluate the current state

by estimating its utility. This estimate if captured by the

evaluation function.

Static (Heuristic) Evaluation Functions

 An Evaluation Function:

 estimates how good the current board configuration is for a player.

 Typically, one figures how good it is for the player, and how good it is for the
opponent, and subtracts the opponents score from the players

 Othello: Number of white pieces - Number of black pieces

 Chess: Value of all white pieces - Value of all black pieces

 Typical values from -infinity (loss) to +infinity (win) or [-1, +1].

 If the board evaluation is X for a player, it’s -X for the opponent

 Example:

 Evaluating chess boards,

 Checkers

 Tic-tac-toe

Iterative (Progressive) Deepening

 In real games, there is usually a time limit T on making a
move

 How do we take this into account?

 using alpha-beta we cannot use “partial” results with any confidence
unless the full breadth of the tree has been searched

 So, we could be conservative and set a conservative depth-limit
which guarantees that we will find a move in time < T

 disadvantage is that we may finish early, could do more search

 In practice, iterative deepening search (IDS) is used

 IDS runs depth-first search with an increasing depth-limit

 when the clock runs out we use the solution found at the previous
depth limit

Heuristics and Game Tree Search

 The Horizon Effect

 sometimes there’s a major “effect” (such as a piece being
captured) which is just “below” the depth to which the tree has
been expanded the computer cannot see that this major event
could happen it has a “limited horizon”

The State of Play

 Checkers:
 Chinook ended 40-year-reign of human world champion

Marion Tinsley in 1994.

 Chess:
 Deep Blue defeated human world champion Garry Kasparov in

a six-game match in 1997.

 Othello:
 human champions refuse to compete against computers: they

are too good.

 Go:
 human champions refuse to compete against computers: they

are too bad b > 300 (!)

 See (e.g.) http://www.cs.ualberta.ca/~games/ for more information

http://www.cs.ualberta.ca/~games/

Deep Blue

 1957: Herbert Simon

 “within 10 years a computer will beat the world chess champion”

 1997: Deep Blue beats Kasparov

 Parallel machine with 30 processors for “software” and 480
VLSI processors for “hardware search”

 Searched 126 million nodes per second on average

 Generated up to 30 billion positions per move

 Reached depth 14 routinely

 Uses iterative-deepening alpha-beta search with
transpositioning

 Can explore beyond depth-limit for interesting moves

Chance Games.

Backgammon

your element of
chance

Expected Minimax

() Minimax()

3 0.5 4 0.5 2
chance nodes

v P n n

Interleave chance nodes
with min/max nodes

Again, the tree is constructed
bottom-up

Summary

 Game playing can be effectively modeled as a search problem

 Game trees represent alternate computer/opponent moves

 Evaluation functions estimate the quality of a given board configuration
for the Max player.

 Minimax is a procedure which chooses moves by assuming that the
opponent will always choose the move which is best for them

 Alpha-Beta is a procedure which can prune large parts of the search tree
and allow search to go deeper

 For many well-known games, computer algorithms based on heuristic
search match or out-perform human world experts.

 Reading:R&N Chapter 6.

