Constraint Satisfaction
Problems

O

¢ CSP examples

¢ Backtracking search for CSPs

¢ Problem structure and problem decomposition
¢ Local search for CSPs

Constraint satisfaction problems (CSPs)

O
» CSP:

o state is defined by variables X. with values from domain D,

o goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

» Allows useful general-purpose algorithms with more
power than standard search algorithms

Example: Map-Coloring

O

Northern
Territory

Western Queensland
Australia

South
Australia

New South Wales

Victoria

i Tas@

Variables W A, NT', (), NSW , V, SA, T

Domains D; = {red, green, blue}

Constraints: adjacent regions must have different colors
e.g., WA £ NT (if the language allows this), or
(WA, NT) € {(red, green), (red, blue), (green, red), (green, blue), . . .

CSPs (continued)

O

Example: Map-Coloring contd.

Solutions are assignments satisfying all constraints, e.g.,

{(WA=red, NT' =green,Q=red, NSW = green, V =red, SA=blue, T'= green}

Binary CSP: each constraint relates at most two
variables

Constraint graph: nodes are variables, arcs show
constraints () o
P
@é@
(v

@

General-purpose CSP algorithms use the graph
structure

to speed up search. E.g., Tasmania is an independent
subproblem!

Unary constraints involve a single variable,
e.g., SA 6= green

Binary constraints involve pairs of variables,
e.g., SA <> WA

Higher-order constraints involve 3 or more variables

Preferences (soft constraints), e.g., red is better than
green

often representable by a cost for each variable
assignment

— constrained optimization problems

Consider the constraint graph on the right.

The domain for every variable is [1,2,3,4].
There are 2 unary constraints: \
- variable “a” cannot take values 3 and 4.

- variable “b” cannot take value 4.

There are 8 binary constraints stating that variables
connected by an edge cannot have the same value.

Example: 4-Queens Problem

O

X1 - X2
1 2 3 4 {1121314} {1121314}
X3 X4

{1,2,3,4} {1,2,3,4}

» Let’s start with the straightforward, dumb approach,
then fix it

» States are defined by the values assigned so far
¢ Initial state: the empty assignment, { }

¢ Successor function: assign a value to an unassigned
variablethat does not conflict with current assignment.

= fail if no legal assignments (not fixable!)
¢ Goal test: the current assignment is complete

» This is the same for all CSPs!

Standard search formulation (incremental)

O

» Can we use breadth first search?

Branching factor at top level?

nd any of the d values can be assigned to any variable
Next level?

(n-1)d

We generate n!.d" leaves even though there are d* complete
assignments. Why?

Commutatively

If the order of applications on any given set of actions has no
effect on the outcome.

Variable assignments are commutative, i.e.,
[WA=red then NT =green] same as [NT =green thenWA=red]

Only need to consider assignments to a single variable at
each node

=b=d and there are d» leaves

Depth-first search for CSPs with single-variable
assignments is called backtracking search

Is this uninformed or informed?
Backtracking search is the basic uninformed algorithm for CSPs

O

function BACKTRACKING-SEARCH(csp) returns solution /failure
return RECURSIVE-BACKTRACKING({ }, csp)

function RECURSIVE-BACKTRACKING(assignment, esp) returns soln/failure

if assignment is complete then return assignment

var+«— SELECT-UNASSIGNED-VARIABLE(VARIABLES|¢sp|, assignment, csp)

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment given CONSTRAINTS[csp] then

add {wvar = value} to assignment
result — RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result

remove {var = value} from assignment
return failure

Improving backtracking efficiency

CS 3243 - Constraint Satisfaction 4 Feb 2004

Backtracking example

CS 3243 - Constraint Satisfaction 4 Feb 2004

Backtracking example

CS 3243 - Constraint Satisfaction 4 Feb 2004

Backtracking example

CS 3243 - Constraint Satisfaction 4 Feb 2004

Backtracking example

CS 3243 - Constraint Satisfaction 4 Feb 2004

Most constrained variable

CS 3243 - Constraint Satisfaction 4 Feb 2004

» How to choose between the variable with the fewest
legal values?

SV Sl el

"~ =

» Tie-breaker among most constrained variables

choose the variable with the most constraints on remaining
variables

Given a variable, choose the least constraining value:

the one that rules out the fewest values in the
remaining variables

Allows 1 value for SA

A -

Combining these heuristics makes 1000 queens
feasible

Forward checking

CS 3243 - Constraint Satisfaction 4 Feb 2004

Forward checking

CS 3243 - Constraint Satisfaction 4 Feb 2004

Forward checking

¢ Idea:

o Keep track of remaining legal values for unassigned variables

o Terminate search when any variable has no legal values

O

CS 3243 - Constraint Satisfaction 4 Feb 2004

Fo—#o—48

WA NT Q NSW v SA T

ENEENE ENE
B "EfEfEEfEEYE] BB DE
[mjT N EETE 1L Bl

Forward checking

¢ Idea:

o Keep track of remaining legal values for unassigned variables

o Terminate search when any variable has no legal values

O

CS 3243 - Constraint Satisfaction 4 Feb 2004

e

WA NT Q NSW v SA T

ENEEFEENFEIEFEIEEIDETEIETE
B "EEFEEfEET"E] "EIETE
] HETT N EETE 11 N |
] | Q| I Y |

Forward checkin

ro
unassigned Variaﬁllés, E

failures:

WA

agates information from assigned to
ut doesn't provide early detection for all

SSEA S S

NT

Q

NSW

v

SA

NT and SA cannot both be blue!

repeatedly enforces constraints locally.

Has to be faster than searching

Example: 4-Queens Problem

O

X1 - X2
1 2 3 4 {1121314} {1121314}
X3 X4

{1,2,3,4} {1,2,3,4}

Example: 4-Queens Problem

O

X1 - X2
1 2 3 4 {1121314} {1121314}
X3 X4

{1,2,3,4} {1,2,3,4}

Example: 4-Queens Problem

O

X1 X2
{1121314} { 4 1314}
X3 X4

{ I2I I4} { I213I }

Example: 4-Queens Problem

O

X1 X2
{1121314} { 4 1314}
X3 X4

{ I2I I4} { I213I }

Example: 4-Queens Problem

O

X1 X2
{1121314} { 4 1314}
X3 X4

{,,,} {, .3)

Example: 4-Queens Problem

O

X1 X2
{1121314} { I 7 I4}
X3 X4

{ I2I I4} { I213I }

Example: 4-Queens Problem

O

X1 X2
{1121314} { I 7 I4}
X3 X4

{ I2I I4} { I213I }

Example: 4-Queens Problem

O

X1 X2
{1121314} { I 7 I4}
X3 X4

{,2,} {, .3)

Example: 4-Queens Problem

O

X1 X2
{1121314} { I 7 I4}
X3 X4

{,2,,} {, .3)

Example: 4-Queens Problem

O

X1 X2
{1121314} { 4 1314}
X3 X4

{,2,,} L,)

Techniques like CP and FC are in effect eliminating
parts of the search space
Somewhat complementary to search

Constraint propagation goes further than FC by
repeatedly enforcing constraints locally
Needs to be faster than actually searching to be effective

Arc-consistency (AC) is a systematic procedure for
Constraint propagation

Arc consistency

O

WA NT Q HSW v 58 T

"\..___é__.-""

()

e AnArc X —» Yis consistent if @
for every value x of X there is some value y consistent with x
(note that this is a directed property)

» Consider state of search after WA and QQ are assigned:

SA — NSW is consistent if
SA=blue and NSW=red

Arc consistency

| —O
oy

"'\.___é____,.-‘""

* X —Yis consistent if
for every value x of X there is some value y consistent with x

o NSW — SA is consistent if
NSW=red and SA=blue
NSW=blue and SA=???

Arc consistency

@
®

» Can enforce arc-consistency:
Arc can be made consistent by removing blue from NSW

» Continue to propagate constraints....

o Check V—> NSW
o Not consistent for V = red
o Remove red from V

Arc consistency

» Continue to propagate constraints....

e SA — NTis not consistent

o and cannot be made consistent

» Arc consistency detects failure earlier than FC

Arc consistency checking

O

Can be run as a preprocessor or after each assignment
Or as preprocessing before search starts

AC must be run repeatedly until no inconsistency remains

Trade-off

Requ%lres some overhead to do, but generally more effective than direct
searc

In effect it can eliminate large (inconsistent) parts of the state space
more effectively than search can

Need a systematic method for arc-checking
If X loses a value, neighbors of X need to be rechecked:

This is a propagation algorithm. It’s like sending messages to neighbors on the graph.
How do we schedule these messages?

Every time a domain changes, all incoming messages need to be re-sent. Repeat until
convergence - no message will change any domains.

Since we only remove values from domains when they can never be part of a solution, an
empty domain means no solution possible at all 2 back out of that branch.

Forward checking is simply sending messages into a variable that just got its value
assigned. First step of arc-consistency.

Arc consistency checking

O

function AC-3(¢sp) returns the CSP. possibly with reduced domains
inputs: csp. a binary CSP with variables { X, Xo, ..., X,;}
local variables: queue. a queue of arcs. initially all the arcs in csp

while queue 1s not empty do
(X;, X;)+ REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES (X, X ;) then
for each X in NEIGHBORS[.X;] do
add (Xi, X;) to queue

function REMOVE-INCONSISTENT-VALUES(.X;. X ;) returns true iff we remove a value
removed — false
for each = in DOMAIN[X;] do
if no value y in DOMAIN[.X ;] allows (z.y) to satisfy the constraint between X; and X ;
then delete = from DOMAIN[X;]. removed — true
return removed

Arc consistency does not detect all inconsistencies:
Partial assignment {WA=red, NSW=red} is inconsistent.

Stronger forms of propagation can be defined using the notion of k-consistency.

A CSP is k-consistent if for any set of k-1 variables and for any consistent
assignment to those variables, a consistent value can always be assigned to any
kth variable.

E.g. 1-consistency = node-consistency
E.g. 2-consistency = arc-consistency
E.g. 3-consistency = path-consistency

Strongly k-consistent:
k-consistent for all values {k, k-1, ...2, 1}

Trade-ofts

O

Back-tracking or back-jumping?

L.ocal search for CSPs

O

o Initial state = all variables assigned values

» Use complete-state representation

o Successor states = change 1 (or more) values

» For CSPs
o allow states with unsatisfied constraints (unlike backtracking)
O operators reassign variable values
O hill-climbing with n-queens is an example

» Variable selection: randomly select any conflicted variable

» Value selection: min-conflicts heuristic

o Select new value that results in a minimum number of conflicts with the
other variables

function MIN-CONFLICTS(csp, max_steps) return solution or failure
inputs: csp, a constraint satisfaction problem
max_steps, the number of steps allowed before giving up

current <~ an initial complete assignment for csp
for i = 1 to max_steps do
if current is a solution for csp then return current
var < arandomly chosen, conflicted variable from VARIABLES[csp]

value <« the value v for var that minimize
CONFLICTS(var,v,current,csp)

set var = value in current
return failure

Min-conflicts example 1

Use of min-conflicts heuristic in hill-climbing.

Min-conflicts example 2

» A two-step solution for an 8-queens problem using min-conflicts heuristic
» At each stage a queen is chosen for reassignment in its column

» The algorithm moves the queen to the min-conflict square breaking ties
randomly.

Local search can be particularly useful in an online setting
Airline schedule example
E.g., mechanical problems require than 1 plane is taken out of service
Can locally search for another “close” solution in state-space
Much better (and faster) in practice than finding an entirely new schedule

The runtime of min-conflicts is roughly independent of problem size.
Can solve the millions-queen problem in roughly 50 steps.

Why?
n-queens is easy for local search because of the relatively high density of solutions in
state-space

Graph structure and problem complexity

» Solving disconnected subproblems
o Suppose each subproblem has c variables out of a total of n. @

o Worst case solution cost is O(n/c d°), i.e. linear in n
= Instead of O(d ™), exponential in n

 E.g.n= 80, c= 20, d=2
o 280 =4 billion years at 1 million nodes/sec.
O 4 *220= 4 second at 1 million nodes/sec

Tree-structured CSPs

UG

G ia) G

e Theorem:

o if a constraint graph has no loops then the CSP can be solved in O(nd 2)
time
o linear in the number of variables!

» Compare difference with general CSP, where worst case is O(d)

Algorithm for Solving Tree-structured CSPs

o Choose some variable as root, or;er variables from root to leaves such
that every node’s parent precedes it in the ordering.

= Label variables from X, to X))

= Every variable now has 1 parent
(b)

o Backward Pass

= For j from n down to 2, apply arc consistency to arc [Parent(X)), X))]
= Remove values from Parent(X)) if needed

o Forward Pass
= For j from 1 to n assign X; consistently with Parent(X;)

Tree CSP Example

O

Tree CSP Example

O

Tree CSP Example

O

General idea is to convert the graph to a tree
2 general approaches

Assign values to specific variables (Cycle Cutset
method)

Construct a tree-decomposition of the graph
- Connected subproblems (subgraphs) form a tree structure

» Choose a subset S of variables from the graph so that
graph without S is a tree
S = “cycle cutset”

» For each possible consistent assignment for S

Remove any inconsistent values from remaining variables that
are inconsistent with S
Use tree-structured CSP to solve the remaining tree-structure
If it has a solution, return it along with S
If not, continue to try other assignments for S

Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains
O3 O—G
c P WG
@‘@ = ()
O O
@ @

Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

Cutset size ¢ = runtime O(d- (n — ¢)d?), very fast for small ¢

Sections 3.7 and 4.4, Chaptler 5 of A TNV ARe

kL]

If c is small, this technique works very well

However, finding smallest cycle cutset is NP-hard
But there are good approximation algorithms

Tree Decompositions

Red, green, blue
Red, blue, green,
blue, red, green

o Red, green, blue
Red, blue, green,

@ blue, red, green

Every variable appears in at least one of the
subproblems

If two variables are connected in the original
problem, they must appear together (with the
constraint) in at least one subproblem

If a variable appears in two subproblems, it must
appear in each node on the path.

» View each subproblem as a “super-variable”
Domain = set of solutions for the subproblem
Obtained by running a CSP on each subproblem

E.g., 6 solutions for 3 fully connected variables in map problem

» Now use the tree CSP algorithm to solve the constraints
connecting the subproblems
Declare a subproblem a root node, create tree
Backward and forward passes

» Example of “divide and conquer” strategy

CSPs

special kind of problem: states defined by values of a fixed set of variables, goal test
defined by constraints on variable values

Backtracking=depth-first search with one variable assigned per node

Heuristics
Variable ordering and value selection heuristics help significantly

Constraint propagation does additional work to constrain values and detect
inconsistencies

Works effectively when combined with heuristics
Iterative min-conflicts is often effective in practice.

Graph structure of CSPs determines problem complexity
e.g., tree structured CSPs can be solved in linear time.

