
C H A P T E R 5

H A S S A N K H O S R A V I

S P R I N G 2 0 1 1

Constraint Satisfaction
Problems

Outline

 ♦ CSP examples

 ♦ Backtracking search for CSPs

 ♦ Problem structure and problem decomposition

 ♦ Local search for CSPs

Constraint satisfaction problems (CSPs)

 CSP:

 state is defined by variables Xi with values from domain Di

 goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

 Allows useful general-purpose algorithms with more
power than standard search algorithms

Example: Map-Coloring

CSPs (continued)

 An assignment is complete when every variable is mentioned.

 A solution to a CSP is a complete assignment that satisfies all constraints.

 Some CSPs require a solution that maximizes an objective function.

 Examples of Applications:

 Airline schedules

 Cryptography

 Computer vision -> image interpretation

 Scheduling your MS or PhD thesis exam 

Example: Map-Coloring contd.

Constraint graph

 Binary CSP: each constraint relates at most two
variables

 Constraint graph: nodes are variables, arcs show
constraints

 General-purpose CSP algorithms use the graph
structure

 to speed up search. E.g., Tasmania is an independent
subproblem!

Varieties of constraints

 Unary constraints involve a single variable,
 e.g., SA 6= green

 Binary constraints involve pairs of variables,
 e.g., SA <> WA

 Higher-order constraints involve 3 or more variables

 Preferences (soft constraints), e.g., red is better than
green
often representable by a cost for each variable
assignment

 → constrained optimization problems

ca

d

e

b

Consider the constraint graph on the right.

The domain for every variable is [1,2,3,4].

There are 2 unary constraints:
- variable “a” cannot take values 3 and 4.
- variable “b” cannot take value 4.

There are 8 binary constraints stating that variables
connected by an edge cannot have the same value.

Problem

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Standard search formulation (incremental)

 Let’s start with the straightforward, dumb approach,
then fix it

 States are defined by the values assigned so far
 ♦ Initial state: the empty assignment, { }

 ♦ Successor function: assign a value to an unassigned
variablethat does not conflict with current assignment.

⇒ fail if no legal assignments (not fixable!)

 ♦ Goal test: the current assignment is complete

 This is the same for all CSPs!

Standard search formulation (incremental)

 Can we use breadth first search?

 Branching factor at top level?

 nd any of the d values can be assigned to any variable

 Next level?

 (n-1)d

 We generate n!.dn leaves even though there are dn complete
assignments. Why?

 Commutatively

 If the order of applications on any given set of actions has no
effect on the outcome.

Backtracking search

 Variable assignments are commutative, i.e.,
 [WA=red then NT =green] same as [NT =green thenWA=red]

 Only need to consider assignments to a single variable at
each node
 ⇒b=d and there are dn leaves

 Depth-first search for CSPs with single-variable
assignments is called backtracking search

 Is this uninformed or informed?
 Backtracking search is the basic uninformed algorithm for CSPs

Improving backtracking efficiency

4 Feb 2004CS 3243 - Constraint Satisfaction

15

 General-purpose methods can give huge gains in speed:



 Which variable should be assigned next?



 In what order should its values be tried?



 Can we detect inevitable failure early?

 Can we take advantage of problem structure?





Backtracking example

4 Feb 2004CS 3243 - Constraint Satisfaction

16

Backtracking example

4 Feb 2004CS 3243 - Constraint Satisfaction

17

Backtracking example

4 Feb 2004CS 3243 - Constraint Satisfaction

18

Backtracking example

4 Feb 2004CS 3243 - Constraint Satisfaction

19

Most constrained variable

4 Feb 2004CS 3243 - Constraint Satisfaction

20

 Most constrained variable:

choose the variable with the fewest legal values

a.k.a. minimum remaining values (MRV) heuristic

Only picks a variable (Not a value)

Most constraining variable

4 Feb 2004CS 3243 - Constraint Satisfaction

21

 How to choose between the variable with the fewest
legal values?

 Tie-breaker among most constrained variables

 choose the variable with the most constraints on remaining
variables

Least constraining value

4 Feb 2004CS 3243 - Constraint Satisfaction

22

 Given a variable, choose the least constraining value:

 the one that rules out the fewest values in the
remaining variables



 Combining these heuristics makes 1000 queens
feasible

Forward checking

4 Feb 2004CS 3243 - Constraint Satisfaction

23

 Idea:

 Keep track of remaining legal values for unassigned variables

 Terminate search when any variable has no legal values



Forward checking

4 Feb 2004CS 3243 - Constraint Satisfaction

24

 Idea:

 Keep track of remaining legal values for unassigned variables

 Terminate search when any variable has no legal values



Forward checking

4 Feb 2004CS 3243 - Constraint Satisfaction

25

 Idea:

 Keep track of remaining legal values for unassigned variables

 Terminate search when any variable has no legal values



Forward checking

4 Feb 2004CS 3243 - Constraint Satisfaction

26

 Idea:

 Keep track of remaining legal values for unassigned variables

 Terminate search when any variable has no legal values



Constraint propagation

4 Feb 2004CS 3243 - Constraint Satisfaction

27

 Forward checking propagates information from assigned to
unassigned variables, but doesn't provide early detection for all
failures:



 NT and SA cannot both be blue!
 Constraint propagation repeatedly enforces constraints locally.

Has to be faster than searching


Example: 4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{ , , , }

X4
{ , ,3, }

X2
{ , ,3,4}

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , , ,4}

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , , ,4}

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{ ,2, , }

X4
{ , ,3, }

X2
{ , , ,4}

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{ ,2, , }

X4
{ , ,3, }

X2
{ , , ,4}

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{ ,2, , }

X4
{ , , , }

X2
{ , ,3,4}

Constraint propagation

 Techniques like CP and FC are in effect eliminating
parts of the search space
 Somewhat complementary to search

 Constraint propagation goes further than FC by
repeatedly enforcing constraints locally
 Needs to be faster than actually searching to be effective

 Arc-consistency (AC) is a systematic procedure for
Constraint propagation

Arc consistency

 An Arc X  Y is consistent if

for every value x of X there is some value y consistent with x

(note that this is a directed property)

 Consider state of search after WA and Q are assigned:

SA  NSW is consistent if

SA=blue and NSW=red

Arc consistency

 X  Y is consistent if

for every value x of X there is some value y consistent with x

 NSW  SA is consistent if

NSW=red and SA=blue

NSW=blue and SA=???

Arc consistency

 Can enforce arc-consistency:

Arc can be made consistent by removing blue from NSW

 Continue to propagate constraints….

 Check V  NSW

 Not consistent for V = red

 Remove red from V

Arc consistency

 Continue to propagate constraints….

 SA  NT is not consistent

 and cannot be made consistent

 Arc consistency detects failure earlier than FC

Arc consistency checking

 Can be run as a preprocessor or after each assignment
 Or as preprocessing before search starts

 AC must be run repeatedly until no inconsistency remains

 Trade-off
 Requires some overhead to do, but generally more effective than direct

search
 In effect it can eliminate large (inconsistent) parts of the state space

more effectively than search can

 Need a systematic method for arc-checking
 If X loses a value, neighbors of X need to be rechecked:

Arc-consistency as message-passing

 This is a propagation algorithm. It’s like sending messages to neighbors on the graph.
How do we schedule these messages?

 Every time a domain changes, all incoming messages need to be re-sent. Repeat until
convergence  no message will change any domains.

 Since we only remove values from domains when they can never be part of a solution, an
empty domain means no solution possible at all  back out of that branch.

 Forward checking is simply sending messages into a variable that just got its value
assigned. First step of arc-consistency.

Arc consistency checking

K-consistency

 Arc consistency does not detect all inconsistencies:

 Partial assignment {WA=red, NSW=red} is inconsistent.

 Stronger forms of propagation can be defined using the notion of k-consistency.

 A CSP is k-consistent if for any set of k-1 variables and for any consistent
assignment to those variables, a consistent value can always be assigned to any
kth variable.

 E.g. 1-consistency = node-consistency

 E.g. 2-consistency = arc-consistency

 E.g. 3-consistency = path-consistency

 Strongly k-consistent:

 k-consistent for all values {k, k-1, …2, 1}

Trade-offs

 Running stronger consistency checks…

 Takes more time

 But will reduce branching factor and detect more inconsistent
partial assignments

 No “free lunch”

 In worst case n-consistency takes exponential time

Back-tracking or back-jumping?

 {Q=red , NSW= green, V= blue, T=red}

red

green

blue

red

?

blue

green

Local search for CSPs

 Use complete-state representation

 Initial state = all variables assigned values

 Successor states = change 1 (or more) values

 For CSPs

 allow states with unsatisfied constraints (unlike backtracking)

 operators reassign variable values

 hill-climbing with n-queens is an example

 Variable selection: randomly select any conflicted variable

 Value selection: min-conflicts heuristic

 Select new value that results in a minimum number of conflicts with the
other variables

Local search for CSP

function MIN-CONFLICTS(csp, max_steps) return solution or failure

inputs: csp, a constraint satisfaction problem

max_steps, the number of steps allowed before giving up

current an initial complete assignment for csp

for i = 1 to max_steps do

if current is a solution for csp then return current

var a randomly chosen, conflicted variable from VARIABLES[csp]

value  the value v for var that minimize
CONFLICTS(var,v,current,csp)

set var = value in current

return failure

Min-conflicts example 1

Use of min-conflicts heuristic in hill-climbing.

h=5 h=3 h=1

Min-conflicts example 2

 A two-step solution for an 8-queens problem using min-conflicts heuristic

 At each stage a queen is chosen for reassignment in its column

 The algorithm moves the queen to the min-conflict square breaking ties
randomly.

Advantages of local search

 Local search can be particularly useful in an online setting

 Airline schedule example

 E.g., mechanical problems require than 1 plane is taken out of service

 Can locally search for another “close” solution in state-space

 Much better (and faster) in practice than finding an entirely new schedule

 The runtime of min-conflicts is roughly independent of problem size.

 Can solve the millions-queen problem in roughly 50 steps.

 Why?

 n-queens is easy for local search because of the relatively high density of solutions in
state-space

Graph structure and problem complexity

 Solving disconnected subproblems

 Suppose each subproblem has c variables out of a total of n.

 Worst case solution cost is O(n/c dc), i.e. linear in n

 Instead of O(d n), exponential in n

 E.g. n= 80, c= 20, d=2

 280 = 4 billion years at 1 million nodes/sec.

 4 * 220= .4 second at 1 million nodes/sec

Tree-structured CSPs

 Theorem:

 if a constraint graph has no loops then the CSP can be solved in O(nd 2)
time

 linear in the number of variables!

 Compare difference with general CSP, where worst case is O(d n)

Algorithm for Solving Tree-structured CSPs

 Choose some variable as root, order variables from root to leaves such
that every node’s parent precedes it in the ordering.

 Label variables from X1 to Xn)

 Every variable now has 1 parent

 Backward Pass

 For j from n down to 2, apply arc consistency to arc [Parent(Xj), Xj)]

 Remove values from Parent(Xj) if needed

 Forward Pass

 For j from 1 to n assign Xj consistently with Parent(Xj)

Tree CSP Example

G B

Tree CSP Example

B
R
G

B
G

B
R
G

R G B

Backward Pass
(constraint
propagation)

Tree CSP Example

B
R
G

B
G

B
R
G

R G B

B G R G BRForward Pass
(assignment)

Backward Pass
(constraint
propagation)

What about non-tree CSPs?

 General idea is to convert the graph to a tree

2 general approaches

1. Assign values to specific variables (Cycle Cutset
method)

2.Construct a tree-decomposition of the graph

- Connected subproblems (subgraphs) form a tree structure

Cycle-cutset conditioning

 Choose a subset S of variables from the graph so that
graph without S is a tree

 S = “cycle cutset”

 For each possible consistent assignment for S

 Remove any inconsistent values from remaining variables that
are inconsistent with S

 Use tree-structured CSP to solve the remaining tree-structure

 If it has a solution, return it along with S

 If not, continue to try other assignments for S

Finding the optimal cutset

 If c is small, this technique works very well

 However, finding smallest cycle cutset is NP-hard

 But there are good approximation algorithms

Tree Decompositions

Red, green, blue
Red, blue, green,
blue, red, green
…

Red, green, blue
Red, blue, green,
blue, red, green
…

Rules for a Tree Decomposition

 Every variable appears in at least one of the
subproblems

 If two variables are connected in the original
problem, they must appear together (with the
constraint) in at least one subproblem

 If a variable appears in two subproblems, it must
appear in each node on the path.

Tree Decomposition Algorithm

 View each subproblem as a “super-variable”
 Domain = set of solutions for the subproblem
 Obtained by running a CSP on each subproblem

 E.g., 6 solutions for 3 fully connected variables in map problem

 Now use the tree CSP algorithm to solve the constraints
connecting the subproblems
 Declare a subproblem a root node, create tree
 Backward and forward passes

 Example of “divide and conquer” strategy

Summary

 CSPs
 special kind of problem: states defined by values of a fixed set of variables, goal test

defined by constraints on variable values

 Backtracking=depth-first search with one variable assigned per node

 Heuristics
 Variable ordering and value selection heuristics help significantly

 Constraint propagation does additional work to constrain values and detect
inconsistencies
 Works effectively when combined with heuristics

 Iterative min-conflicts is often effective in practice.

 Graph structure of CSPs determines problem complexity
 e.g., tree structured CSPs can be solved in linear time.

