Constraint Satisfaction Problems

CHAPTER 5
HASSAN KHOSRAVI
SPRING2011

Outline

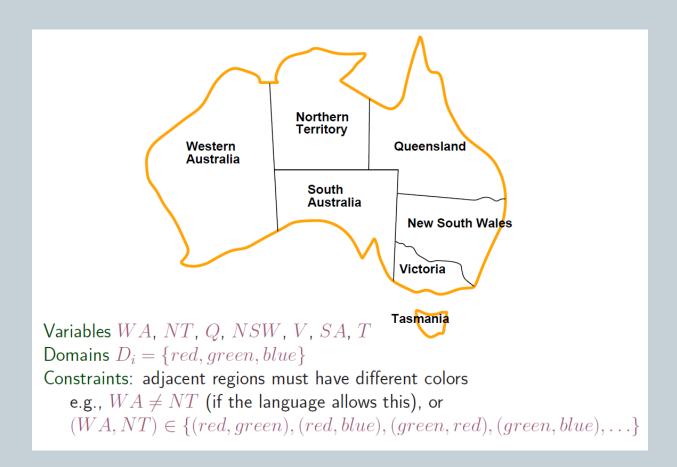
- CSP examples
- Backtracking search for CSPs
- Problem structure and problem decomposition
- Local search for CSPs

Constraint satisfaction problems (CSPs)

• CSP:

- o state is defined by variables X_i with values from domain D_i
- o goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Allows useful general-purpose algorithms with more power than standard search algorithms

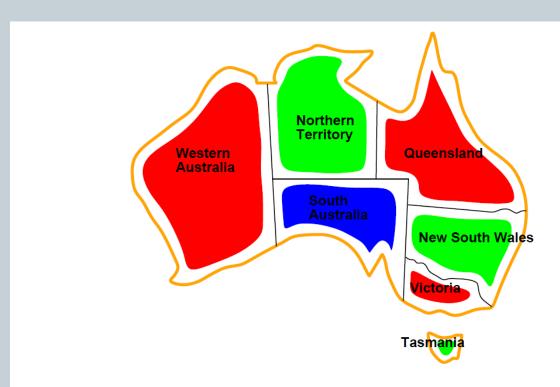
Example: Map-Coloring



CSPs (continued)

- An assignment is *complete* when every variable is mentioned.
- A *solution* to a CSP is a complete assignment that satisfies all constraints.
- Some CSPs require a solution that maximizes an *objective function*.
- Examples of Applications:
 - Airline schedules
 - Cryptography
 - Computer vision -> image interpretation
 - o Scheduling your MS or PhD thesis exam ☺

Example: Map-Coloring contd.

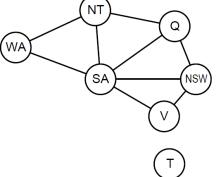


Solutions are assignments satisfying all constraints, e.g.,

 $\{WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green\}$

Constraint graph

- Binary CSP: each constraint relates at most two variables
- Constraint graph: nodes are variables, arcs show constraints



- General-purpose CSP algorithms use the graph structure
- to speed up search. E.g., Tasmania is an independent subproblem!

Varieties of constraints

- Unary constraints involve a single variable,
 - o e.g., SA 6= green
- Binary constraints involve pairs of variables,
 - o e.g., SA <> WA
- Higher-order constraints involve 3 or more variables
- Preferences (soft constraints), e.g., red is better than green
 often representable by a cost for each variable assignment
- → constrained optimization problems

Problem

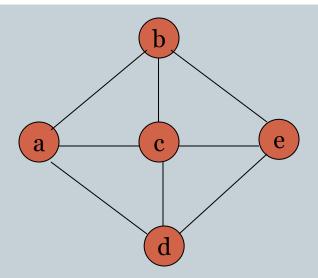
Consider the constraint graph on the right.

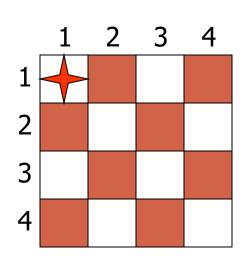
The domain for every variable is [1,2,3,4].

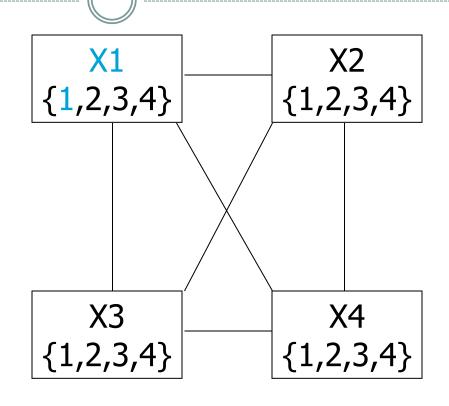
There are 2 unary constraints:

- variable "a" cannot take values 3 and 4.
- variable "b" cannot take value 4.

There are 8 binary constraints stating that variables connected by an edge cannot have the same value.







Standard search formulation (incremental)

- Let's start with the straightforward, dumb approach, then fix it
- States are defined by the values assigned so far
 - o ◆ Initial state: the empty assignment, { }
 - Successor function: assign a value to an unassigned variablethat does not conflict with current assignment.
 - ⇒ fail if no legal assignments (not fixable!)
 - ◆ Goal test: the current assignment is complete
- This is the same for all CSPs!

Standard search formulation (incremental)

- Can we use breadth first search?
 - o Branching factor at top level?
 - * *nd* any of the d values can be assigned to any variable
 - Next level?
 - \times (n-1)d
 - We generate n!.dⁿ leaves even though there are dⁿ complete assignments. Why?
 - Commutatively
 - If the order of applications on any given set of actions has no effect on the outcome.

Backtracking search

- Variable assignments are commutative, i.e.,
 - [WA=red then NT = green] same as [NT = green then WA=red]
- Only need to consider assignments to a single variable at each node
 - \circ \Rightarrow b=d and there are dⁿ leaves
- Depth-first search for CSPs with single-variable assignments is called backtracking search
- Is this uninformed or informed?
 - Backtracking search is the basic uninformed algorithm for CSPs

```
function Backtracking-Search(csp) returns solution/failure
  return Recursive-Backtracking({ }, csp)
function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure
  if assignment is complete then return assignment
   var \leftarrow \text{Select-Unassigned-Variable}(\text{Variables}[csp], assignment, csp)
  for each value in Order-Domain-Values (var, assignment, csp) do
       if value is consistent with assignment given Constraints [csp] then
           add \{var = value\} to assignment
           result \leftarrow Recursive-Backtracking(assignment, csp)
           if result \neq failure then return result
           remove \{var = value\} from assignment
  return failure
```

Improving backtracking efficiency

• General-purpose methods can give huge gains in speed:

• Which variable should be assigned next?

C

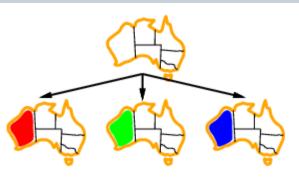
o In what order should its values be tried?

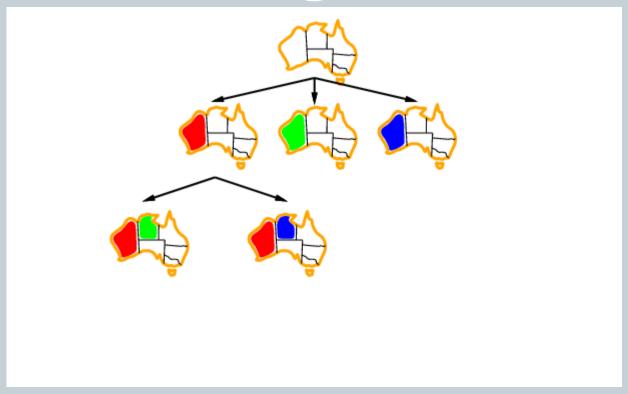
0

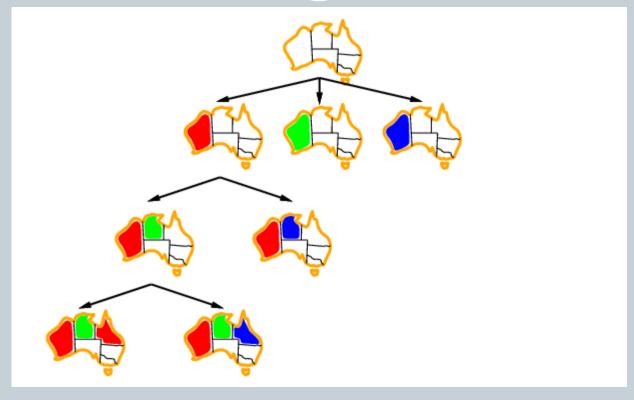
- Can we detect inevitable failure early?
- Can we take advantage of problem structure?

0

0



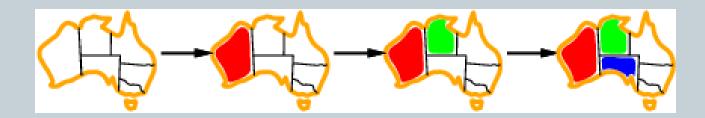




Most constrained variable

Most constrained variable:

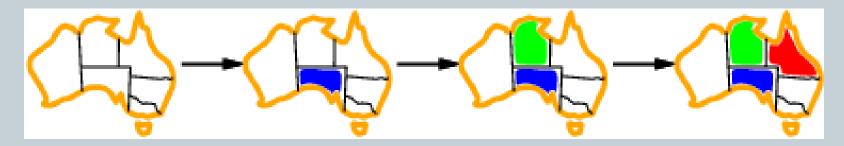
choose the variable with the fewest legal values a.k.a. minimum remaining values (MRV) heuristic



Only picks a variable (Not a value)

Most constraining variable

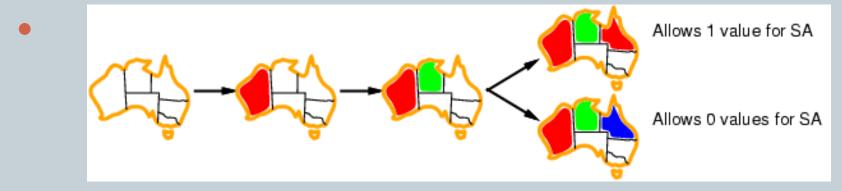
 How to choose between the variable with the fewest legal values?



- Tie-breaker among most constrained variables
 - o choose the variable with the most constraints on remaining variables

Least constraining value

- Given a variable, choose the least constraining value:
- the one that rules out the fewest values in the remaining variables



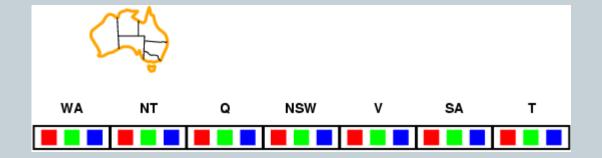
 Combining these heuristics makes 1000 queens feasible

23

• Idea:

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

C

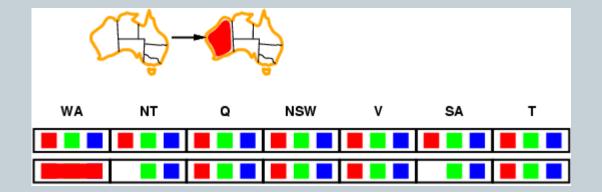


24

• Idea:

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

C

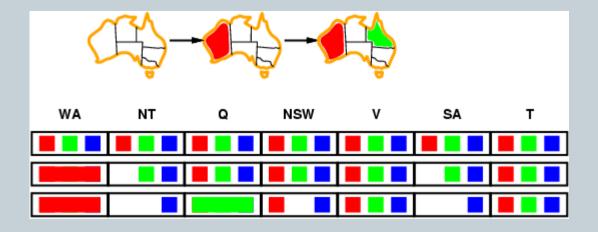


25

• Idea:

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

C

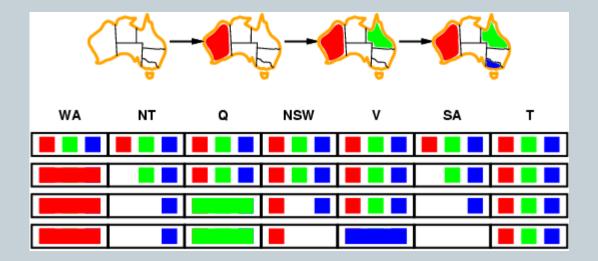


26

• Idea:

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

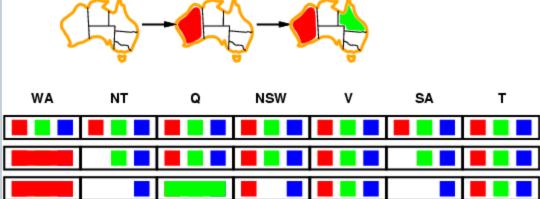
0



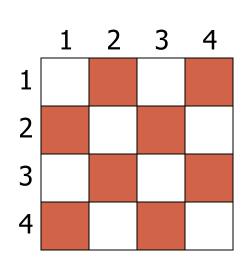
Constraint propagation

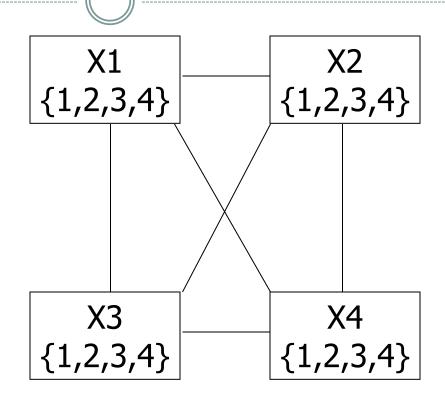
27

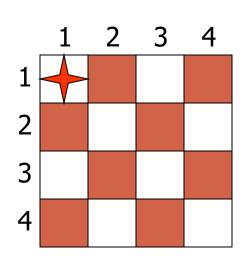
 Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

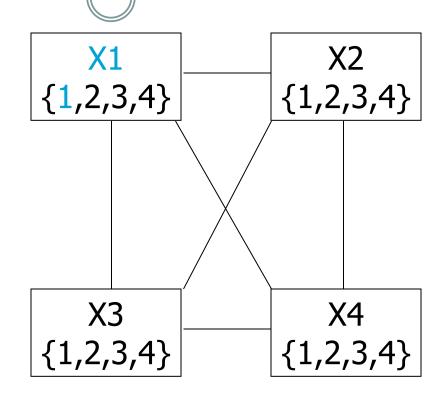


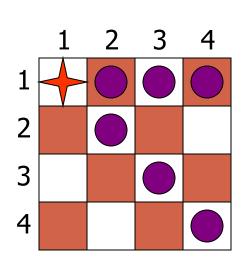
- NT and SA cannot both be blue!
- Constraint propagation repeatedly enforces constraints locally. Has to be faster than searching

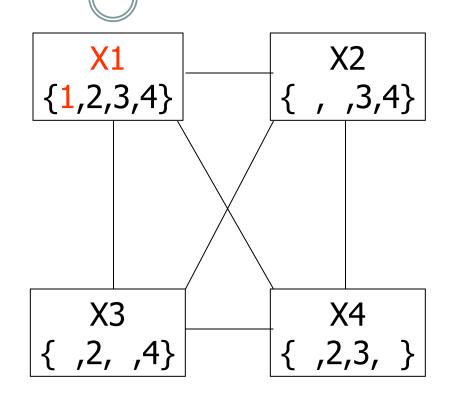


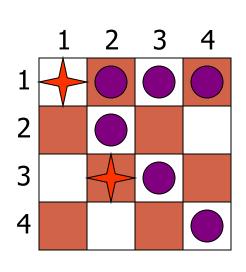


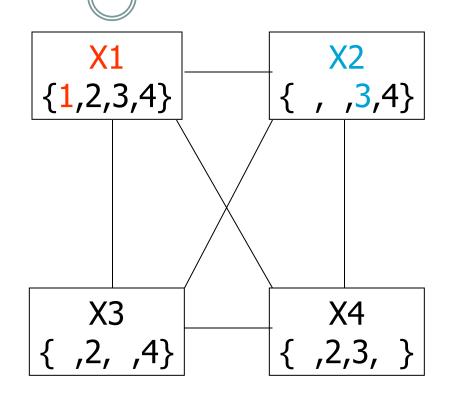


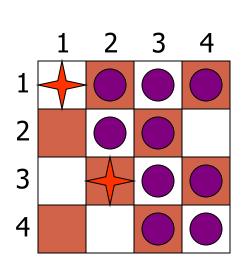


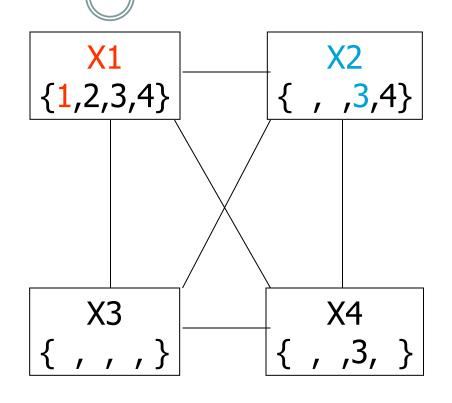


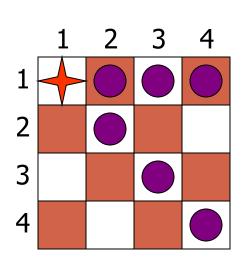


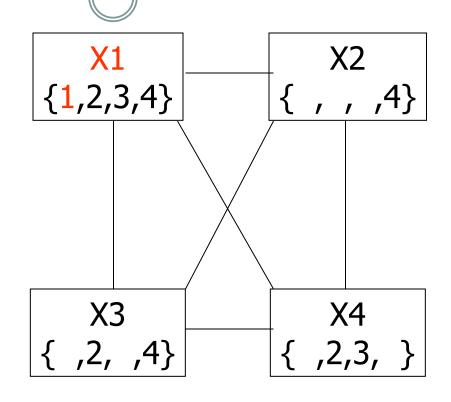


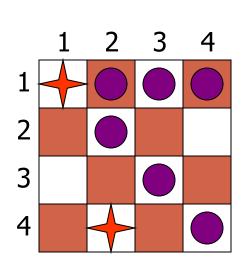


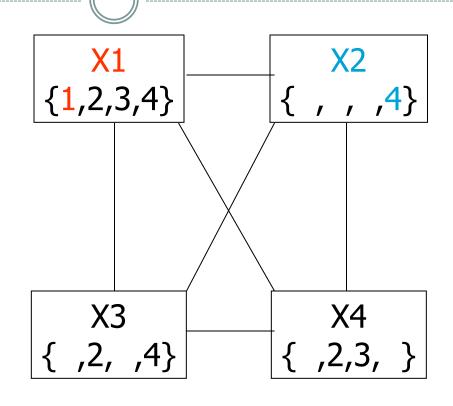


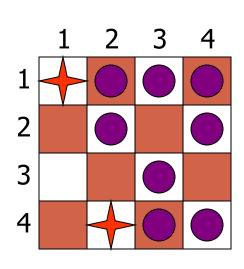


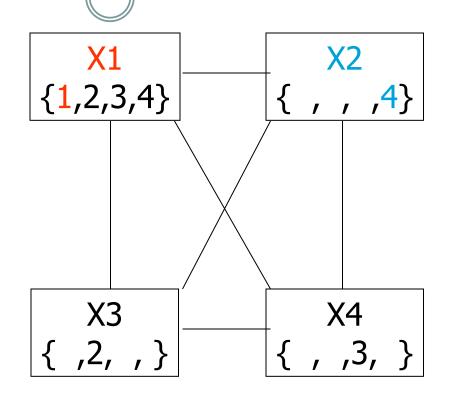


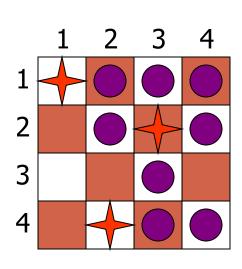


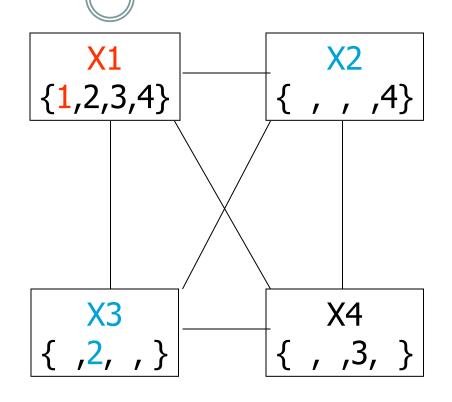




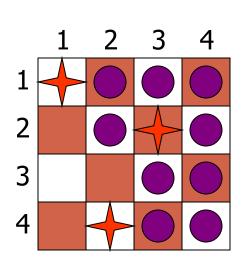


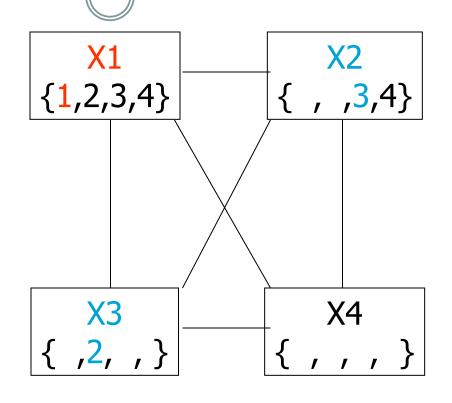






Example: 4-Queens Problem

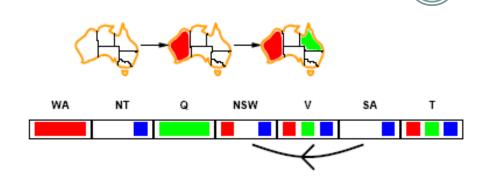


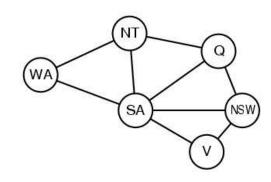


Constraint propagation

- Techniques like CP and FC are in effect eliminating parts of the search space
 - Somewhat complementary to search
- Constraint propagation goes further than FC by repeatedly enforcing constraints locally
 - Needs to be faster than actually searching to be effective

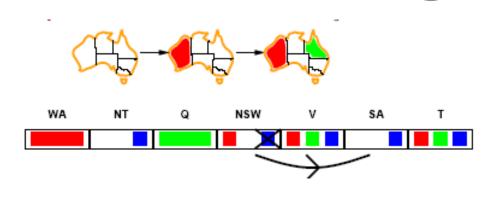
 Arc-consistency (AC) is a systematic procedure for Constraint propagation

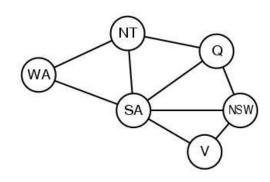




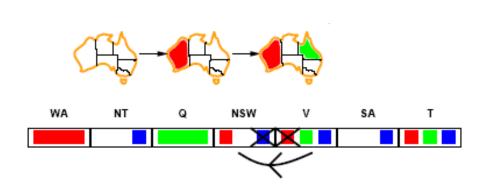
- An Arc X → Y is consistent if
 for every value x of X there is some value y consistent with x
 (note that this is a directed property)
- Consider state of search after WA and Q are assigned:

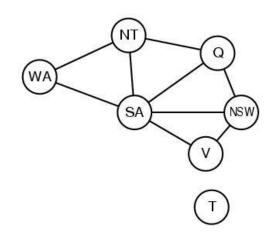
 $SA \rightarrow NSW$ is consistent if SA = blue and NSW = red





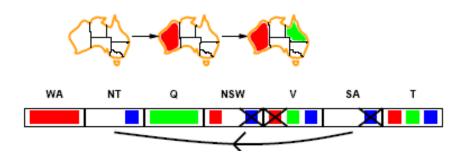
- $X \rightarrow Y$ is consistent if for *every* value x of X there is some value y consistent with x
- $NSW \rightarrow SA$ is consistent if NSW=red and SA=blue NSW=blue and SA=???

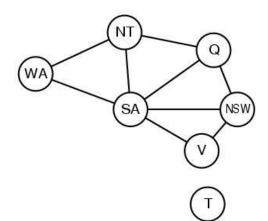




- Can enforce arc-consistency:

 Arc can be made consistent by removing *blue* from *NSW*
- Continue to propagate constraints....
 - \circ Check $V \to NSW$
 - Not consistent for V = red
 - \circ Remove red from V





- Continue to propagate constraints....
- $SA \rightarrow NT$ is not consistent
 - o and cannot be made consistent
- Arc consistency detects failure earlier than FC

Arc consistency checking

- Can be run as a preprocessor or after each assignment
 - Or as preprocessing before search starts
- AC must be run repeatedly until no inconsistency remains
- Trade-off
 - Requires some overhead to do, but generally more effective than direct search
 - In effect it can eliminate large (inconsistent) parts of the state space more effectively than search can
- Need a systematic method for arc-checking
 - If *X* loses a value, neighbors of *X* need to be rechecked:

Arc-consistency as message-passing

- This is a propagation algorithm. It's like sending messages to neighbors on the graph. How do we schedule these messages?
- Every time a domain changes, all incoming messages need to be re-sent. Repeat until convergence → no message will change any domains.
- Since we only remove values from domains when they can never be part of a solution, an empty domain means no solution possible at all \rightarrow back out of that branch.
- Forward checking is simply sending messages into a variable that just got its value assigned. First step of arc-consistency.

Arc consistency checking

```
function AC-3(csp) returns the CSP, possibly with reduced domains inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\} local variables: queue, a queue of arcs, initially all the arcs in csp while queue is not empty do (X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue) if REMOVE-INCONSISTENT-VALUES(X_i, X_j) then for each X_k in NEIGHBORS[X_i] do add (X_k, X_i) to queue
```

function Remove-Inconsistent-Values (X_i, X_j) returns true iff we remove a value $removed \leftarrow false$ for each x in Domain $[X_i]$ do

if no value y in Domain $[X_j]$ allows (x,y) to satisfy the constraint between X_i and X_j then delete x from Domain $[X_i]$; $removed \leftarrow true$ return removed

K-consistency

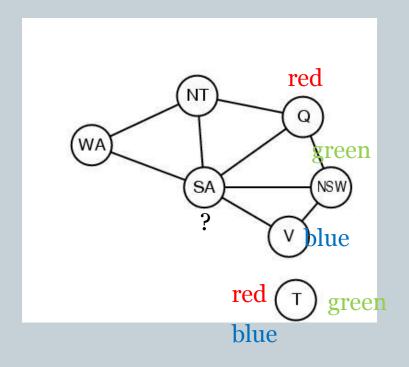
- Arc consistency does not detect all inconsistencies:
 - Partial assignment {WA=red, NSW=red} is inconsistent.
- Stronger forms of propagation can be defined using the notion of k-consistency.
- A CSP is k-consistent if for any set of k-1 variables and for any consistent assignment to those variables, a consistent value can always be assigned to any kth variable.
 - E.g. 1-consistency = node-consistency
 - E.g. 2-consistency = arc-consistency
 - E.g. 3-consistency = path-consistency
- Strongly k-consistent:
 - o k-consistent for all values {k, k-1, ...2, 1}

Trade-offs

- Running stronger consistency checks...
 - Takes more time
 - But will reduce branching factor and detect more inconsistent partial assignments
 - o No "free lunch"
 - ▼ In worst case n-consistency takes exponential time

Back-tracking or back-jumping?

• {Q=red , NSW= green, V= blue, T=red}



Local search for CSPs

- Use complete-state representation
 - Initial state = all variables assigned values
 - Successor states = change 1 (or more) values
- For CSPs
 - o allow states with unsatisfied constraints (unlike backtracking)
 - o operators **reassign** variable values
 - o hill-climbing with n-queens is an example
- Variable selection: randomly select any conflicted variable
- Value selection: *min-conflicts heuristic*
 - Select new value that results in a minimum number of conflicts with the other variables

Local search for CSP

function MIN-CONFLICTS(csp, max_steps) return solution or failure
inputs: csp, a constraint satisfaction problem
 max_steps, the number of steps allowed before giving up

 $current \leftarrow$ an initial complete assignment for csp

for i = 1 to max_steps **do**

if *current* is a solution for *csp* then return *current*

 $var \leftarrow$ a randomly chosen, conflicted variable from VARIABLES[csp]

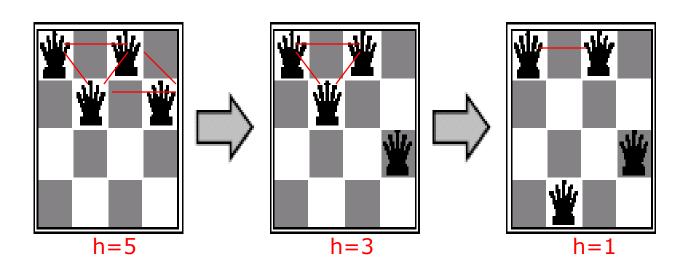
 $value \leftarrow the value v for var that minimize$

CONFLICTS(var,v,current,csp)

set var = value in current

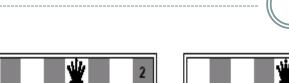
return failure

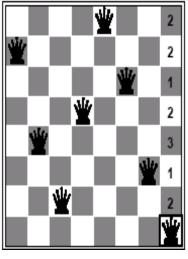
Min-conflicts example 1

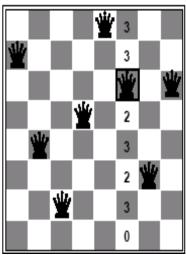


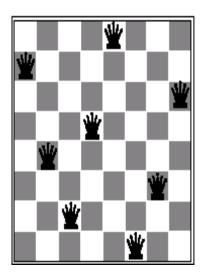
Use of min-conflicts heuristic in hill-climbing.

Min-conflicts example 2







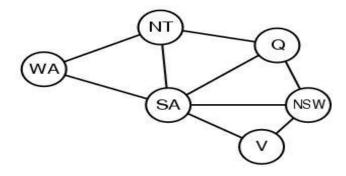


- A two-step solution for an 8-queens problem using min-conflicts heuristic
- At each stage a queen is chosen for reassignment in its column
- The algorithm moves the queen to the min-conflict square breaking ties randomly.

Advantages of local search

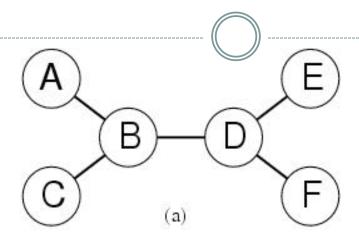
- Local search can be particularly useful in an online setting
 - Airline schedule example
 - E.g., mechanical problems require than 1 plane is taken out of service
 - Can locally search for another "close" solution in state-space
 - Much better (and faster) in practice than finding an entirely new schedule
- The runtime of min-conflicts is roughly independent of problem size.
 - Can solve the millions-queen problem in roughly 50 steps.
 - o Why?
 - n-queens is easy for local search because of the relatively high density of solutions in state-space

Graph structure and problem complexity



- Solving disconnected subproblems
 - \circ Suppose each subproblem has c variables out of a total of n.
 - Worst case solution cost is $O(n/c d^c)$, i.e. linear in n
 - Instead of $O(d^n)$, exponential in n
- E.g. n = 80, c = 20, d = 2
 - \circ 280 = 4 billion years at 1 million nodes/sec.
 - 4 * 2²⁰= .4 second at 1 million nodes/sec

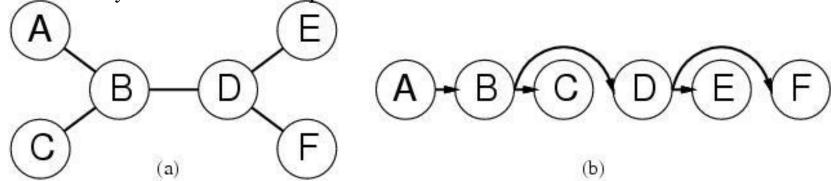
Tree-structured CSPs



- Theorem:
 - o if a constraint graph has no loops then the CSP can be solved in $O(nd^2)$ time
 - o linear in the number of variables!
- Compare difference with general CSP, where worst case is $O(d^n)$

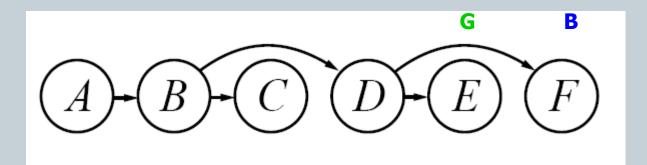
Algorithm for Solving Tree-structured CSPs

- Choose some variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering.
 - Label variables from X_i to X_n)
 - Every variable now has 1 parent



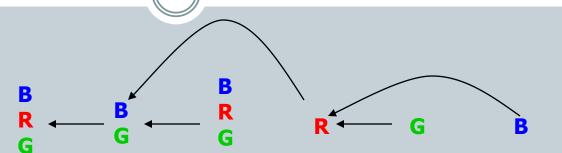
- Backward Pass
 - For j from n down to 2, apply arc consistency to arc [Parent(X_j), X_j)
 - \star Remove values from Parent(X_i) if needed
- Forward Pass
 - \star For j from 1 to n assign X_i consistently with Parent(X_i)

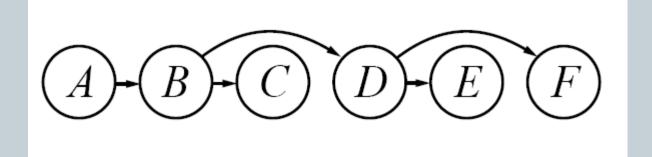
Tree CSP Example



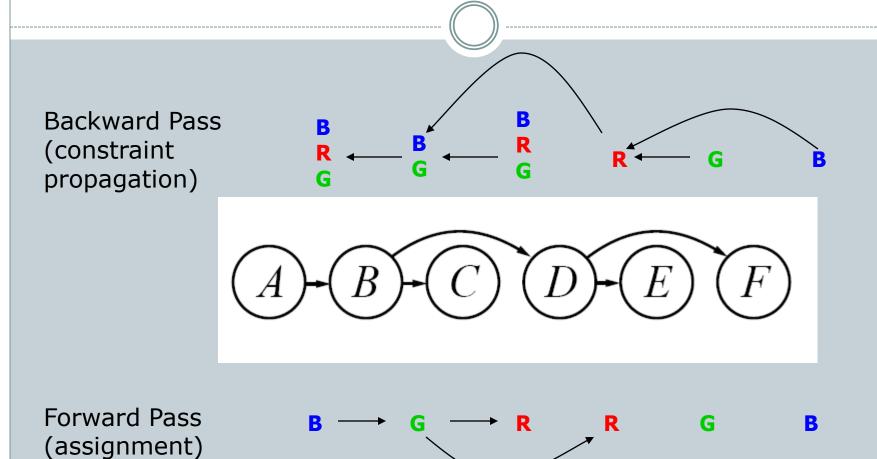
Tree CSP Example

Backward Pass (constraint propagation)





Tree CSP Example



What about non-tree CSPs?

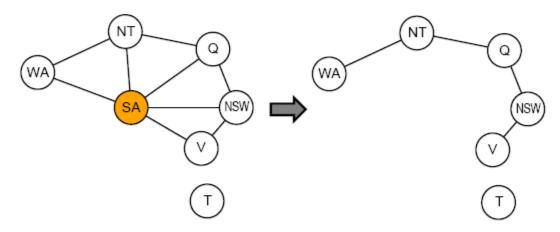
- General idea is to convert the graph to a tree
- 2 general approaches
- 1. Assign values to specific variables (Cycle Cutset method)
- 2. Construct a tree-decomposition of the graph
 - Connected subproblems (subgraphs) form a tree structure

Cycle-cutset conditioning

- Choose a subset S of variables from the graph so that graph without S is a tree
 - o S = "cycle cutset"
- For each possible consistent assignment for S
 - Remove any inconsistent values from remaining variables that are inconsistent with S
 - Use tree-structured CSP to solve the remaining tree-structure
 - If it has a solution, return it along with S
 - ▼ If not, continue to try other assignments for S

Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors' domains



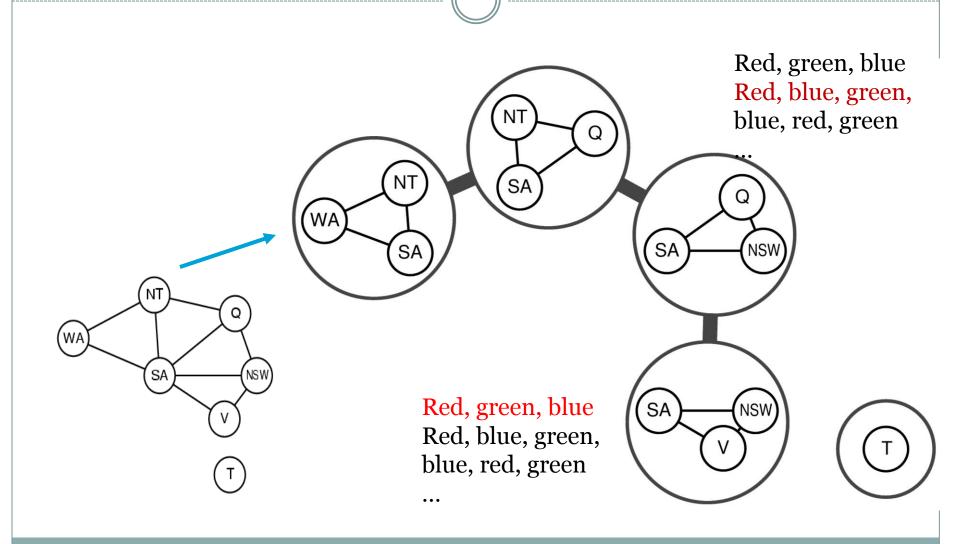
Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree

Cutset size $c \Rightarrow \text{runtime } O(d^c \cdot (n-c)d^2)$, very fast for small c

Finding the optimal cutset

- If c is small, this technique works very well
- However, finding smallest cycle cutset is NP-hard
 - But there are good approximation algorithms

Tree Decompositions



Rules for a Tree Decomposition

- Every variable appears in at least one of the subproblems
- If two variables are connected in the original problem, they must appear together (with the constraint) in at least one subproblem
- If a variable appears in two subproblems, it must appear in each node on the path.

Tree Decomposition Algorithm

- View each subproblem as a "super-variable"
 - Domain = set of solutions for the subproblem
 - Obtained by running a CSP on each subproblem
 - o E.g., 6 solutions for 3 fully connected variables in map problem
- Now use the tree CSP algorithm to solve the constraints connecting the subproblems
 - O Declare a subproblem a root node, create tree
 - Backward and forward passes
- Example of "divide and conquer" strategy

Summary

- CSPs
 - o special kind of problem: states defined by values of a fixed set of variables, goal test defined by constraints on variable values
- Backtracking=depth-first search with one variable assigned per node
- Heuristics
 - Variable ordering and value selection heuristics help significantly
- Constraint propagation does additional work to constrain values and detect inconsistencies
 - Works effectively when combined with heuristics
- Iterative min-conflicts is often effective in practice.
- Graph structure of CSPs determines problem complexity
 - o e.g., tree structured CSPs can be solved in linear time.