Solving problems by searching

1

CHAPTER 3

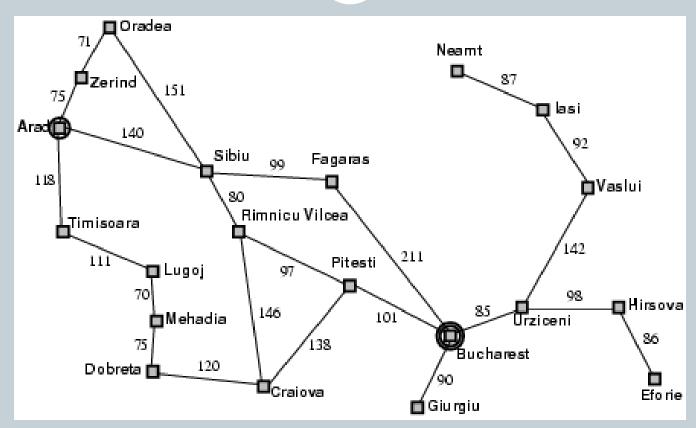
Outline

- 2
- Problem-solving agents
- Problem types
- Problem formulation
- Example problems
- Basic search algorithms

Problem-solving agents


```
function SIMPLE-PROBLEM-SOLVING-AGENT (percept) returns an action
   static: seq, an action sequence, initially empty
            state, some description of the current world state
            goal, a goal, initially null
            problem, a problem formulation
   state \leftarrow \text{UPDATE-STATE}(state, percept)
   if seq is empty then
        goal \leftarrow FORMULATE-GOAL(state)
        problem \leftarrow FORMULATE-PROBLEM(state, goal)
        seq \leftarrow Search(problem)
   action \leftarrow First(seq)
   seq \leftarrow Rest(seq)
   return action
```

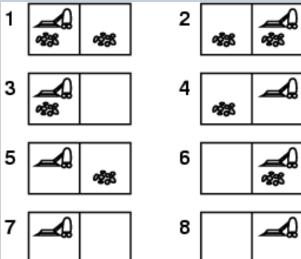
Note: this is offline problem solving; solution executed "eyes closed."


Example: Romania

- 4
- On holiday in Romania; currently in Arad.
- Flight leaves tomorrow from Bucharest
- Formulate goal:
 - o be in Bucharest
 - 0
- Formulate problem:
 - o states: various cities
 - o actions: drive between cities
- Find solution:
 - o sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

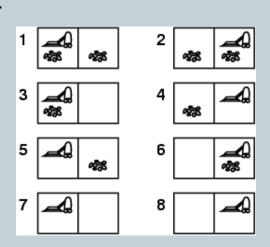
0

Example: Romania

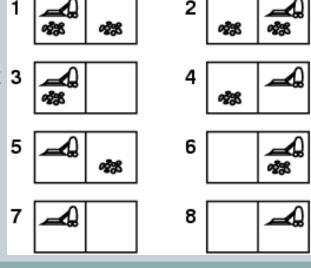

Abstraction: The process of removing details from a representation Is the map a good representation of the problem? What is a good replacement?

Problem types

- Deterministic, fully observable → single-state problem
 - Agent knows exactly which state it will be in; solution is a sequence
 - Vacuum world → everything observed
 - Romania → The full map is observed


- Single-state: Start in #5. Solution??
 - o [Right, Suck]

Problem types


- Non-observable → sensorless problem (conformant problem)
 - Agent may have no idea where it is; solution is a sequence
 - o Vacuum world → No sensors
 - Romania → No map just know operators(cities you can move to)
- Conformant: Start in {1, 2, 3, 4, 5, 6, 7, 8}
 - o e.g., Right goes to {2, 4, 6, 8}. Solution??
 - o [Right, Suck, Left, Suck]

Problem types

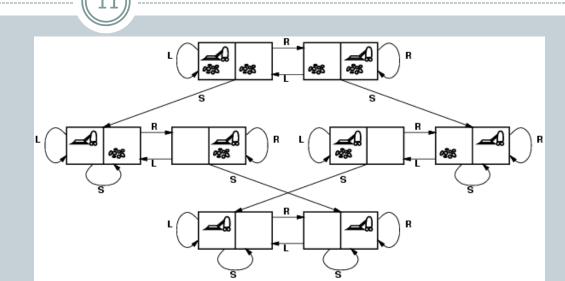
- Nondeterministic and/or partially observable > contingency problem
 - o percepts provide **new** information about current state
 - Unknown state space → exploration problem
 - o Vacuum world → know state of current location
 - o Romania → know current location and neighbor cities
- Contingency: [L,clean]
 - o Start in #5 or #7
 - Murphy's Law: Suck can dirty a clean carpet 3
 - Local sensing: dirt, location only.
 - Solution??
 - [Right, if dirt then Suck]

Single-state problem formulation

A problem is defined by four items:

- initial state e.g., "at Arad"
- actions or successor function S(x) = set of action state pairs
 - e.g., $S(Arad) = \{ \langle Arad \rangle Zerind, Zerind \rangle, \dots \}$
- goal test, can be
 - explicit, e.g., x = "at Bucharest"
 - implicit, e.g., Checkmate(x)
- path cost (additive)
 - e.g., sum of distances, number of actions executed, etc. c(x,a,y) is the step cost, assumed to be ≥ 0
- A solution is
 - a sequence of actions leading from the initial state to a goal state

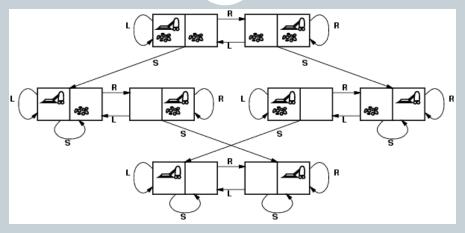
Selecting a state space


- Real world is absurdly complex
 - → state space must be abstracted for problem solving
- (Abstract) state = set of real states

- (Abstract) action = complex combination of real actions
 - e.g., "Arad → Zerind" represents a complex set of possible routes, detours, rest stops, etc.
- (Abstract) solution =
 - o set of real paths that are solutions in the real world

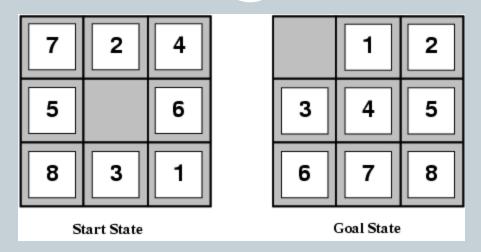
0

• Each abstract action should be "easier" than the original problem

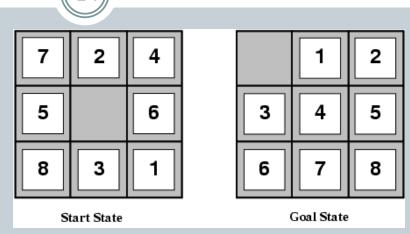

Vacuum world state space graph

- states?
- actions?
- goal test?
- path cost?

Vacuum world state space graph

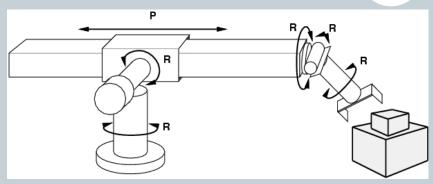


- states? integer dirt and robot location
- actions? Left, Right, Suck
- goal test? no dirt at all locations
- path cost? 1 per action


Example: The 8-puzzle

- states?
- actions?
- goal test?
- path cost?

Example: The 8-puzzle



- states? locations of tiles
- actions? move blank left, right, up, down
- goal test? = goal state (given)
- path cost? 1 per move

[Note: optimal solution of *n*-Puzzle family is NP-hard]

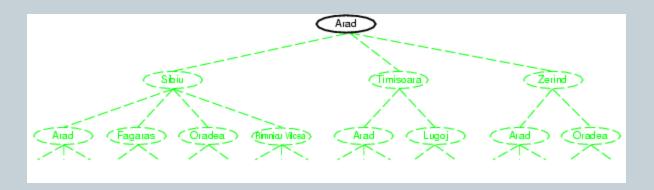
Example: robotic assembly

- states?:
 - o real-valued coordinates of robot joint angles parts of the object to be assembled
- actions?:
 o continuous motions of robot joints
- goal test?:
 complete assembly
- path cost?:
 - time to execute

Tree search algorithms

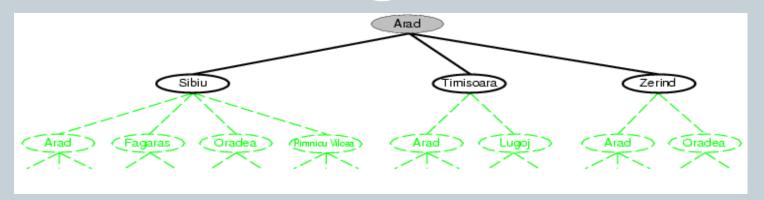
16

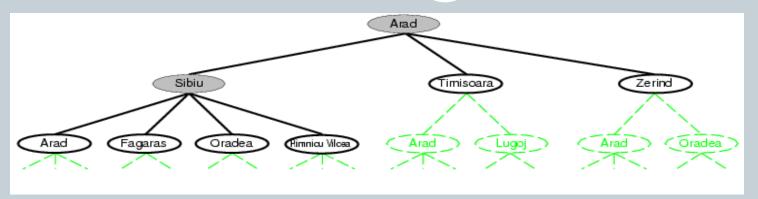
Basic idea:


o offline, simulated exploration of state space by generating successors of already-explored states (a.k.a.~expanding states)

function TREE-SEARCH(problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problem loop do

if there are no candidates for expansion then return failure choose a leaf node for expansion according to strategy if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree


Tree search example


Tree search example

Tree search example

Search strategies

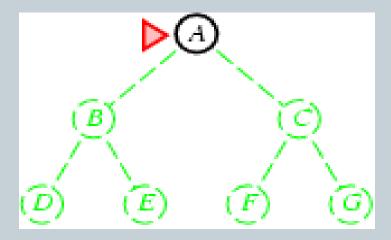
- A search strategy is defined by picking the order of node expansion
- Strategies are evaluated along the following dimensions:
 - o completeness: does it always find a solution if one exists?
 - o time complexity: number of nodes generated
 - o space complexity: maximum number of nodes in memory
 - o optimality: does it always find a least-cost solution?

0

- Time and space complexity are measured in terms of
 - b: maximum branching factor of the search tree
 - d: depth of the least-cost solution
 - \circ *m*: maximum depth of the state space (may be ∞)

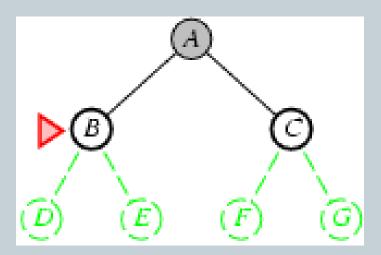
O

Uninformed search strategies



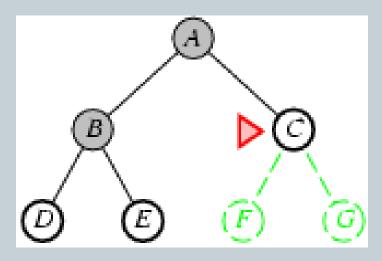
- Uninformed search strategies use only the information available in the problem definition
- Breadth-first search
- Uniform-cost search
- Depth-first search
- Depth-limited search
- Iterative deepening search

- Expand shallowest unexpanded node
- Implementation:
 - o fringe is a FIFO queue, i.e., new successors go at end


0

- Expand shallowest unexpanded node
- Implementation:
 - o fringe is a FIFO queue, i.e., new successors go at end

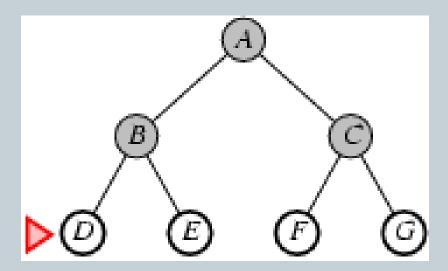
0



Expand shallowest unexpanded node

- Implementation:
 - o fringe is a FIFO queue, i.e., new successors go at end

0



Expand shallowest unexpanded node

- Implementation:
 - o fringe is a FIFO queue, i.e., new successors go at end

0

Properties of breadth-first search

26)

- Complete? Time? Space?Optimal?
- Complete? Yes (if b is finite)
- Time? $1+b+b^2+b^3+...+b^d+b(b^d-1) = O(b^{d+1})$
- Space? $O(b^{d+1})$ (keeps every node in memory)
- Optimal? Yes (if cost = 1 per step)
- Space is the bigger problem (more than time)

Uniform-cost search

- Expand least-cost unexpanded node
- Implementation:
 - o fringe = queue ordered by path cost

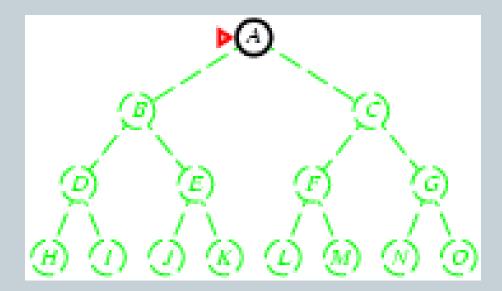
0

Equivalent to breadth-first if step costs all equal

• Complete? Yes, if step cost $\geq \varepsilon$

- Time? $O(b^{ceiling(C^*/\epsilon)})$ where C^* is the cost of the optimal solution
- Space? $O(b^{ceiling(C^*/\varepsilon)})$

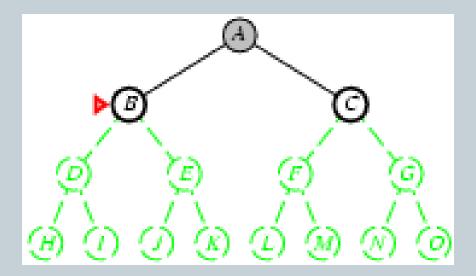
• Optimal? Yes – nodes expanded in increasing order of g(n)


28

Expand deepest unexpanded node

• Implementation:

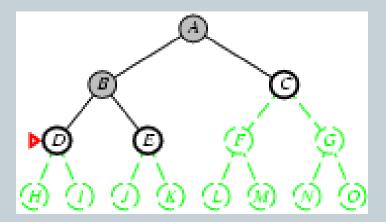
o fringe = LIFO queue, i.e., put successors at front


C

29

- Expand deepest unexpanded node
- Implementation:
 - o fringe = LIFO queue, i.e., put successors at front

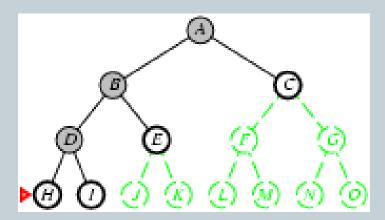
C



30

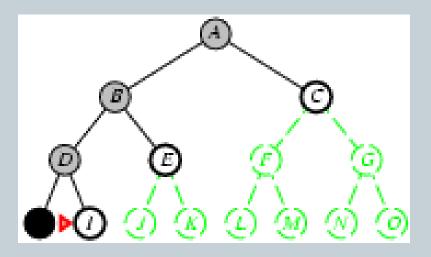
Expand deepest unexpanded node

- Implementation:
 - o fringe = LIFO queue, i.e., put successors at front


0

- Expand deepest unexpanded node
- Implementation:
 - o fringe = LIFO queue, i.e., put successors at front

0

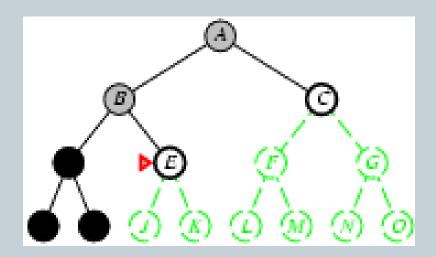


32

Expand deepest unexpanded node

- Implementation:
 - o fringe = LIFO queue, i.e., put successors at front

0

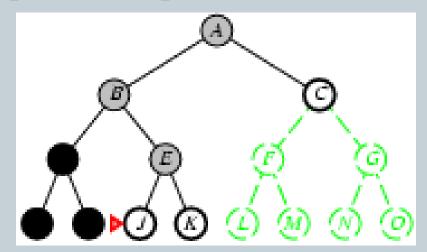


(33)

Expand deepest unexpanded node

- Implementation:
 - o fringe = LIFO queue, i.e., put successors at front

0

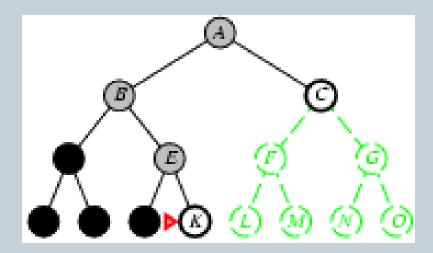

34)

Expand deepest unexpanded node

• Implementation:

o fringe = LIFO queue, i.e., put successors at front

0

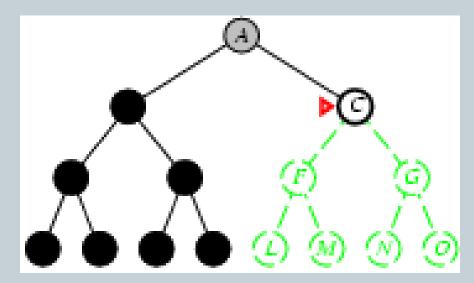

35

Expand deepest unexpanded node

• Implementation:

o fringe = LIFO queue, i.e., put successors at front

0

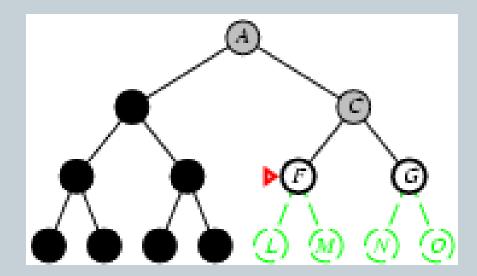


Expand deepest unexpanded node

- Implementation:
 - o fringe = LIFO queue, i.e., put successors at front

0

Depth-first search


(37)

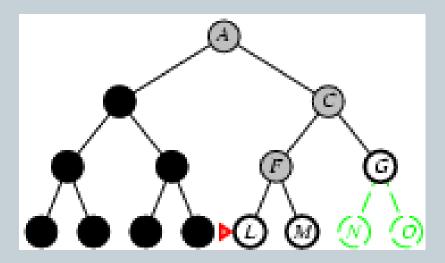
Expand deepest unexpanded node

• Implementation:

o fringe = LIFO queue, i.e., put successors at front

O

Depth-first search


(38)

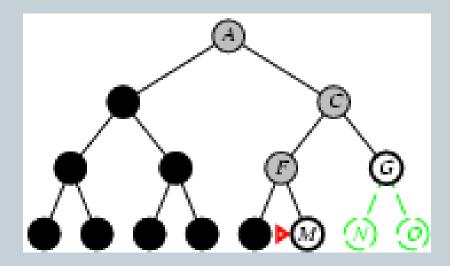
Expand deepest unexpanded node

• Implementation:

o fringe = LIFO queue, i.e., put successors at front

O

Depth-first search


(39)

Expand deepest unexpanded node

• Implementation:

o fringe = LIFO queue, i.e., put successors at front

0

Properties of depth-first search

(40)

- Complete? Time? Space? Optimal?
- <u>Complete?</u> No: fails in infinite-depth spaces, spaces with loops
 - Modify to avoid repeated states along path

0

- → complete in finite spaces
- Time? $O(b^m)$: terrible if m is much larger than d
 - o but if solutions are dense, may be much faster than breadth-first

0

• Space? O(bm), i.e., linear space!

• Optimal? No

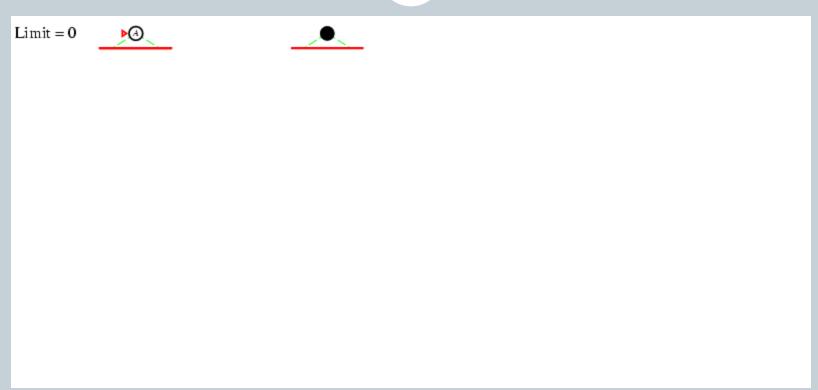
Depth-limited search

- depth-first search with depth limit *l*,
 - o i.e., nodes at depth *l* have no successors
 - Solves infinite loop problem

•

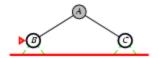
- <u>Complete?</u> No if l < d:
- Time? $O(b^l)$:
- Space? *O(bl)*, i.e., linear space!
- Optimal? No if l > b

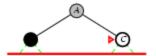

```
function Iterative-Deepening-Search (problem) returns a solution, or failure
```

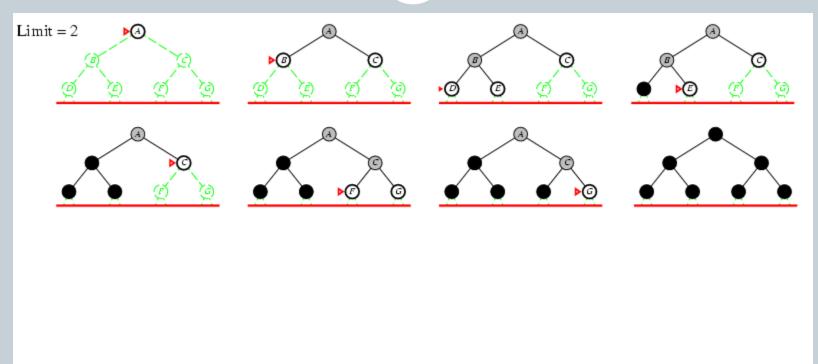

```
inputs: problem, a problem
```

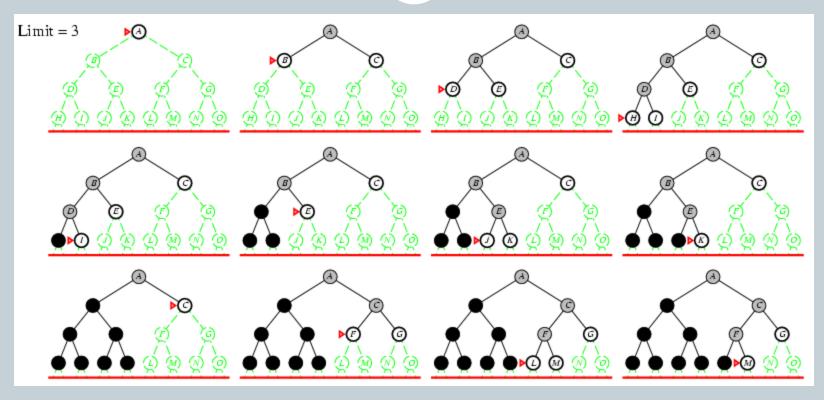
```
for depth \leftarrow 0 to \infty do
```

 $result \leftarrow \text{Depth-Limited-Search}(problem, depth)$


if $result \neq cutoff$ then return result







47)

• Number of nodes generated in a depth-limited search to depth *d* with branching factor *b*:

$$N_{DLS} = b^0 + b^1 + b^2 + \dots + b^{d-2} + b^{d-1} + b^d$$

• Number of nodes generated in an iterative deepening search to depth *d* with branching factor *b*:

$$N_{IDS} = (d+1)b^{o} + db^{-1} + (d-1)b^{-2} + ... + 3b^{d-2} + 2b^{d-1} + 1b^{d}$$

• For b = 10, d = 5,

o
$$N_{DLS} = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111$$

o $N_{IDS} = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456$

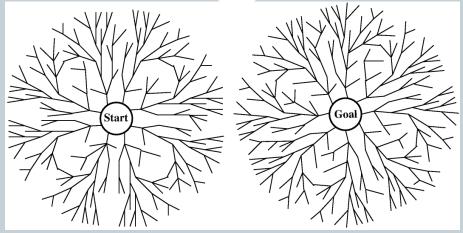
• Overhead = (123,456 - 111,111)/111,111 = 11%

Properties of iterative deepening search

(48)

• Complete? Yes

• Time? $(d+1)b^{o} + db^{1} + (d-1)b^{2} + ... + b^{d} = O(b^{d})$


•

• <u>Space?</u> *O*(*bd*)

• Optimal? Yes, if step cost = 1

Bidirectional serach

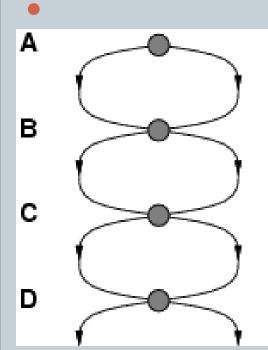
- Motivation: time O(b d/2)
- Example d=6, b=10
 - o BFS = 11,111,000 nodes
 - Bidirectional = 22 200 nodes

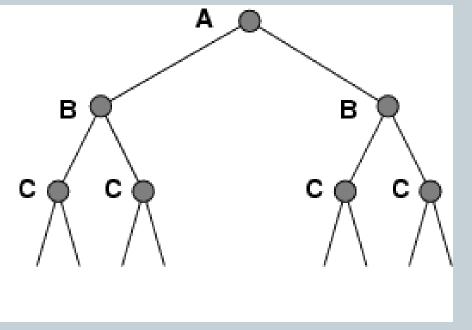
Properties of Bidirectional search

50

- Complete? Yes
- Time? $O(b^{d/2})$
- Space? $O(b^{d/2})$
- Optimal? Yes

Summary of algorithms


Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening
Complete?	Yes	Yes	No	No	Yes
Time	$O(b^{d+1})$	$O(b^{\lceil C^*/\epsilon ceil})$	$O(b^m)$	$O(b^l)$	$O(b^d)$
Space	$O(b^{d+1})$	$O(b^{\lceil C^*/\epsilon ceil})$	O(bm)	O(bl)	O(bd)
Optimal?	Yes	Yes	No	No	Yes


Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening	Bidirectional (if applicable)
Time Space Optimal? Complete?	$egin{array}{c} b^d \ b^d \ ext{Yes} \end{array}$	$egin{array}{c} b^d \ b^d \ ext{Yes} \end{array}$	b ^m bm No No	b^{l} bl No $Yes, \text{ if } l \ge d$	b ^d bd Yes Yes	b ^{d/2} b ^{d/2} Yes Yes

Repeated states

52

• Failure to detect repeated states can turn a linear problem into an exponential one!

Graph search


```
function GRAPH-SEARCH( problem, fringe) returns a solution, or failure

closed ← an empty set

fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

loop do

if fringe is empty then return failure

node ← REMOVE-FRONT(fringe)

if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)

if STATE[node] is not in closed then

add STATE[node] to closed

fringe ← INSERTALL(EXPAND(node, problem), fringe)
```

Summary

54

 Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored

Variety of uninformed search strategies

• Iterative deepening search uses only linear space and not much more time than other uninformed algorithms