Solving problems by searching

CS 3243 - Blind Search 14 Jan 2004

Pro
Pro
Pro

D)
D)

em-solving agents
em types

)

em formulation

Example problems

Basic search algorithms

Problem-solving agents

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
static: seg, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state — UPDATE-STATE(state, percept)

if seq is empty then
goal+— FORMULATE-GOAL(state)
problem < FORMULATE-PROBLEM(state, goal)
seq+— SEARCH(problem)

action«— FIRST(seq)

seq+— REST(seq)

return action

Note: this is offline problem solving; solution executed “eyes closed.”

CS 3243 - Blind Search 14 Jan 2004

Example: Romania

CS 3243 - Blind Search 14 Jan 2004

Example: Romania

O] Giurgiu

Abstraction: The process of removing details from a representation
Is the map a good representation of the problem? What is a good replacement?

CS 3243 - Blind Search 14 Jan 2004

Problem types

e Deterministic, fully observable - single-state problem

o Agent knows exactly which state it will be in; solution is a
sequence

o Vacuum world = everything observed 1 ;ﬁﬂ - 2| e f
o Romania - The full map is observed
3 | =A) 4 =)
off oFR
» Single-state: Start in #5. Solution?? 5| 2 ° f
o [Right, Suck] 7 [5 4

CS 3243 - Blind Search 14 Jan 2004

Problem types

e Non-observable - sensorless problem (conformant
problem)

o Agent may have no idea where it is; solution is a sequence
o Vacuum world - No sensors

© Romania - No map just know operators(cities you can move to)

» Conformant: Startin {1, 2, 3, 4,5, 6, 7, 8}

o e.g., Right goes to {2, 4, 6, 8}. Solution?? L P I R B P

o [Right, Suck,Left, Suck] 3 [A —
R ofR

5 | =) 6)

o8 L3

7 | =) 8 =

CS 3243 - Blind Search 14 Jan 2004

Problem types

e Nondeterministic and/or partially observable -
contingency problem
o percepts provide new information about current state
o Unknown state space - exploration problem
o Vacuum world - know state of current location
© Romania - know current location and neighbor cities

» Contingency: [L,clean] 1[4 2 i
O Start in #5 or #7 - | - il
o Murphy’s Law: Suck can dirty a clean carpet 3 | = 4 =)
o Local sensing: dirt, location only.
o Solution?? 5 | =d) 6 =
o [Right, if dirt then Suck] = i
7 | =A) 8 =)

CS 3243 - Blind Search 14 Jan 2004

Single-state problem formulation

CS 3243 - Blind Search 14 Jan 2004

Real world is absurdly complex
—> state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions

e.g., "Arad - Zerind" represents a complex set of possible routes,
detours, rest stops, etc.

(Abstract) solution =
set of real paths that are solutions in the real world

Each abstract action should be "easier" than the original problem

Vacuum world state space graph

CS 3243 - Blind Search 14 Jan 2004

Vacuum world state space graph

CS 3243 - Blind Search 14 Jan 2004

Example: The 8-puzzle

CS 3243 - Blind Search 14 Jan 2004

7 2 4 1

5 6 3 4

8 3 1 6 7

Start State Goal State

states? locations of tiles

actions? move blank left, right, up, down
goal test? = goal state (given)

path cost? 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

Example: robotic assembly

CS 3243 - Blind Search 14 Jan 2004

Tree search algorithms

» Basic idea:

o offline, simulated exploration of state space by generating
successors of already-explored states (a.k.a.~expanding
states)

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

CS 3243 - Blind Search 14 Jan 2004

Tree search example

Timisoara’
PN
& A
TR <l
f’FR. S

CS 3243 - Blind Search 14 Jan 2004

Tree search example

CS 3243 - Blind Search 14 Jan 2004

Tree search example

CS 3243 - Blind Search 14 Jan 2004

Search strategies

» A search strategy is defined by picking the order of node
expansion

» Strategies are evaluated along the following dimensions:
: does it always find a solution if one exists?
: number of nodes generated
: maximum number of nodes in memory
: does it always find a least-cost solution?

» Time and space complexity are measured in terms of
b: maximum branching factor of the search tree
d: depth of the least-cost solution
m: maximum depth of the state space (may be «)

Uninformed search strategies use only the information
available in the problem definition

Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search

Iterative deepening search

Breadth-first search

CS 3243 - Blind Search 14 Jan 2004

Breadth-first search

CS 3243 - Blind Search 14 Jan 2004

Breadth-first search

CS 3243 - Blind Search 14 Jan 2004

Breadth-first search

CS 3243 - Blind Search 14 Jan 2004

Complete? Time? Space?Optimal?

Complete? Yes (if b is finite)

Time? 1+b+b2+b3+... +bd + b(b?-1) = O(bd+?)

Space? O(b?*?) (keeps every node in memory)

Optimal? Yes (if cost = 1 per step)

Space is the bigger problem (more than time)

Expand least-cost unexpanded node

fringe = queue ordered by path cost

Equivalent to breadth-first if step costs all equal

Complete? Yes, if step cost > ¢

Time? O(beeling(C’/€)) where C" is the cost of the optimal solution
M O(bceiling(C*/ 8))

Optimal? Yes — nodes expanded in increasing order of g(n)

Depth-first search

CS 3243 - Blind Search 14 Jan 2004

Depth-first search

CS 3243 - Blind Search 14 Jan 2004

Depth-first search

CS 3243 - Blind Search 14 Jan 2004

Depth-first search

s bE
GG
o L T A
OROGEOEOEORE

CS 3243 - Blind Search 14 Jan 2004

Depth-first search

D

CS 3243 - Blind Search 14 Jan 2004

Depth-first search

CS 3243 - Blind Search 14 Jan 2004

Depth-first search

CS 3243 - Blind Search 14 Jan 2004

Depth-first search

CS 3243 - Blind Search 14 Jan 2004

Depth-first search

CS 3243 - Blind Search 14 Jan 2004

» Expand deepest unexpanded node

fringe = LIFO queue, i.e., put successors at front

Depth-first search

» Expand deepest unexpanded node

fringe = LIFO queue, i.e., put successors at front

Properties of depth-first search

e Complete? Time? Space?Optimal?

» Complete? No: fails in infinite-depth spaces, spaces with loops
o Modify to avoid repeated states along path
®

- complete in finite spaces

o Time? O(b™): terrible if m is much larger than d
o but if solutions are dense, may be much faster than breadth-first

@)
» Space? O(bm), i.e., linear space!

e Optimal? No

CS 3243 - Blind Search 14 Jan 2004

Depth-limited search

CS 3243 - Blind Search 14 Jan 2004

Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or fail-
ure
inputs: problem, a problem

for depth+ 0 to oo do
result +— DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

CS 3243 - Blind Search 14 Jan 2004

Iterative deepening search [=0

CS 3243 - Blind Search 14 Jan 2004

Iterative deepening search [=1

CS 3243 - Blind Search 14 Jan 2004

Iterative deepening search [=2

CS 3243 - Blind Search 14 Jan 2004

Iterative deepening search [=3

& \.}r A \}' s \}r F \?
i i
g B o @ » o W9

fff -"ff f’f}’ r!}’ f"f} f"f}' r'r}' .r’f}’
RO RO RO R RO RO R RO RO RO

PN
GEERG

"Ys
ORORORC)

PR
ORC)

CS 3243 - Blind Search 14 Jan 2004

Number of nodes generated in a depth-limited search to depth d
with branching factor b:

Nprg =00+ bl + b2 + ... + bd2 + pd-1 + pd

Number of nodes ghnerated in an iterative deepening search to
depth d with branching factor b

Nips = (d+1)b° + d b + (d- 1)b’\2 + ... + 3bd2 42pd1 4 1hd
For b =10, d = 5,

Np;g=1+ 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111

Nips = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

Overhead = (123,456 - 111,111) /111,111 = 11%

Properties of iterative deepening search

CS 3243 - Blind Search 14 Jan 2004

Bidirectional serach

CS 3243 - Blind Search 14 Jan 2004

Properties of Bidirectional search

CS 3243 - Blind Search 14 Jan 2004

Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- lterative
First Cost First Limited Deepening

Complete? Yes Yes No No Yes

Time oY) o®ICdy owm) oW O(b%)

Space O o@lcdy o®mm) Ol O(bd)

Optimal? Yes Yes No No Yes
Criteri Breadth- Uniform- Depth- Depth- lterative Bidirectional

riterion First Cost First Limited Deepening (if applicable)

Time b b b b b b
Space b b bm bl bd b
Optimal? Yes Yes No No Yes Yes
Complete? Yes Yes No Yes, if [> d Yes Yes

CS 3243 - Blind Search 14 Jan 2004

Repeated states

» Failure to detect repeated states can turn a linear
problem into an exponential one!

A

CS 3243 - Blind Search 14 Jan 2004

Graph search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed +— an empty set
fringe +— INSERT(MAKE-NODE(INITIAL- STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node < REMOVE- FRONT(fringe)
if GOAL-TESsT[problem|(STATE[node]) then return SOLUTION(node)
if STATE[Rode] is not in closed then
add STATE[node| to closed
fringe +— INSERTALL(EXPAND(node, problem), fringe)

CS 3243 - Blind Search 14 Jan 2004

Problem formulation usually requires abstracting away
real-world details to define a state space that can feasibly be
explored

Variety of uninformed search strategies

Iterative deepening search uses only linear space and not
much more time than other uninformed algorithms

