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 In many cases, our knowledge of the world is incomplete 
(not enough information) or uncertain (sensors are 
unreliable).

 Often, rules about the domain are incomplete or even 
incorrect

 We have to act in spite of this!

 Drawing conclusions under uncertainty



Example

 Goal: The agent wants to drive someone to air port to 
catch a flight 

Let action At = leave for airport t minutes before flight
Will At get me there on time?

Problems:

1. partial observability (road state, other drivers' plans, etc.)
2. noisy sensors (traffic reports)
3. uncertainty in action outcomes (flat tire, etc.)
4. immense complexity of modeling and predicting traffic

Hence a purely logical approach either
1. risks falsehood: “A25 will get me there on time”, or
2. leads to conclusions that are too weak for decision making:

“A25 will get me there on time if there's no accident on the bridge and it doesn't rain and 
my tires remain intact etc etc.”

(A1440 might reasonably be said to get me there on time but I'd have to stay overnight in 
the airport …)



Uncertainty in logical rules



Probability 

 First order logic fails with medical diagnosis
 laziness: failure to enumerate exceptions, qualifications, etc.

 Theoretical ignorance: lack of relevant facts, initial conditions, etc.

 Practical ignorance: Even if we know all the rules, a patience might not 
have done all the necessary tests.

 Probabilistic assertions summarize effects of
Laziness

 Ignorance



 Degree of belief vs degree of truth

 Probability of 0.8 does not mean 80% true.

 A card is taken out of a deck of cards

 The probability of it being Ace of clubs 

 The probability after seeing the card

 Being 0.8 intelligence is not probabilistic. It means on a scale 
of 0 to 1 you are 0.8 intelligence 



Methods for handling uncertainty

 Default or nonmonotonic logic:


 Assume my car does not have a flat tire


 Assume A25 works unless contradicted by evidence
 Issues: What assumptions are reasonable? How to handle 

contradiction?




Making decisions under uncertainty

Suppose I believe the following:

P(A25 gets me there on time | …) = 0.04 
P(A90 gets me there on time | …) = 0.70 
P(A120 gets me there on time | …) = 0.95 
P(A1440 gets me there on time | …) = 0.9999 

Which action to choose? Which one is rational?
Depends on my preferences for missing flight vs. time 
spent waiting, etc.
Utility theory is used to represent and infer preferences

Decision theory = probability theory + utility theory

The fundamental idea of decision theory is that an agent is rational if 
and only if it chooses the action that yields that highest expected 
utility, averaged over all the possible outcomes of the action.



Syntax

 Basic element: random variable

 Similar to propositional logic: possible worlds defined by assignment of 
values to random variables.

 Boolean random variables
e.g., Cavity (do I have a cavity?)

 Discrete random variables
e.g., Weather is one of <sunny,rainy,cloudy,snow>

 Elementary proposition constructed by assignment of a value to a 
random variable: e.g., Weather = sunny, Cavity = false

 Complex propositions formed from elementary propositions and 
standard logical connectives e.g., Weather = sunny Cavity = false



Syntax

 Atomic event: A complete specification of the 
state of the world about which the agent is 
uncertain
E.g., if the world consists of only two Boolean variables 

Cavity and Toothache, then there are 4 distinct atomic 
events:
Cavity = false Toothache = false

Cavity = false Toothache = true
Cavity = true Toothache = false
Cavity = true Toothache = true

 Atomic events are 
 mutually exclusive: at most one is true
 Exhaustive: at least one is true



Axioms of probability

 For any propositions A, B

 0 ≤ P(A) ≤ 1

 P(true) = 1 and P(false) = 0

 P(A B) = P(A) + P(B) - P(A B)

















Why are the Axioms Reasonable?

 If P represents an objectively observable probability, the axioms 
clearly make sense.

 But why should an agent respect these axioms when it models its 
own degree of belief?

 Objective vs. subjective probabilities
 The axioms limit the set of beliefs that an agent can maintain.

 One of the most convincing arguments for why subjective beliefs 
should respect the axioms was put forward by de Finetti in 1931. 
It is based on the connection between actions and degree of 
belief. 
 If the beliefs are contradictory, then the agent will fail in its environment in 

the long run!



The game

 Player1 gives a subjective probability “a” on the 
occurrence of an event “b” 

 Player2 can then decide to bet either $“a” dollars against 
player1’s $“1-a” that b happens or $“1-a” dollars against 
player1 $“a” that b does happen

 Which decision is more rational?
 To bet for b  0.4 *$60  - 0.6 *$40 =  0

 To bet against b   0.6 *$40  - 0.4 *$60 =  0

P(b) = 0.4

Player 2 bets $40 that “b”

player1 bets  $60 that not b

Player 2 bets $60 that “b”

player1 Bets 40 dollar that not b



Why are the Axioms Reasonable?

 P(a)= 0.4

 P(b) = 0.3

 P(    ) = 0.8ba

Player1 bets $40 for a 

Player2 bets $60  for   a

Player1 bets $60 for   a 

Player2 bet $40 for   a

Player1 bets $30 for b 

Player2 bets $70 for    b

Player1 bets $70 for    b

Player2 bets  $30 for b

Player1 bets $80 for  (        )

Player2 bets $20  for   (        )

Player1 bets $20 for     (       ) 

Player2 bets $80 for (       )

ba

ba

ba

ba



Why are the Axioms Reasonable?

a  , b Not a,  b a, not b Not a, not 
b

a 6 -4 6 -4

b 7 7 -3 -3

(        ) -2 -2 -2 8

11 1 1 1

ba



Inference by enumeration

 Start with the joint probability distribution:

 For any proposition φ, sum the atomic events where it is 
true: P(φ) = Σω:ω╞φ P(ω)



Inference by enumeration

 Start with the joint probability distribution:

 For any proposition φ, sum the atomic events where it is 
true: P(φ) = Σω:ω╞φ P(ω)

 P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2



Inference by enumeration

 Start with the joint probability distribution:

 For any proposition φ, sum the atomic events where it is 
true: P(φ) = Σω:ω╞φ P(ω)

 P(toothache or cavity) = 0.108 + 0.012 + 0.016 + 0.064 
+0.072 + 0.008 = 0.28



Inference by enumeration

 Can also compute conditional probabilities:

P( cavity | toothache) = P( cavity toothache)
P(toothache)

=     0.016+0.064                             = 0.4
0.108 + 0.012 + 0.016 + 0.064



Normalization

P( cavity | toothache) = P( cavity toothache)
P(toothache)

P(cavity | toothache) = P(cavity toothache)
P(toothache)

 Denominator can be viewed as a normalization constant α

P(Cavity | toothache) = α  P(Cavity,toothache) 
= α [P(Cavity,toothache,catch) + P(Cavity,toothache, catch)]
= α [<0.108,0.016> + <0.012,0.064>] 
= α <0.12,0.08> = <0.6,0.4>

General idea: compute distribution on query variable by fixing evidence 
variables and summing over hidden variables



Inference by enumeration, contd.

Typically, we are interested in 
the posterior joint distribution of the query variables Y 
given specific values e for the evidence variables E

Let the hidden variables be H = X - Y – E
Then the required summation of joint entries is done by summing out the hidden 

variables:

P(Y | E = e) = αP(Y,E = e) = αΣhP(Y,E= e, H = h)

 The terms in the summation are joint entries because Y, E and H together 
exhaust the set of random variables

 Obvious problems:


1. Worst-case time complexity O(dn) where d is the largest arity
2. Space complexity O(dn) to store the joint distribution
3. How to find the numbers for O(dn) entries?



Independence

 A and B are independent iff
P(A|B) = P(A)    or P(B|A) = P(B)     or P(A, B) = P(A) P(B)

P(Toothache, Catch, Cavity, Weather)
= P(Toothache, Catch, Cavity) P(Weather)

 32 entries reduced to 12; for n independent biased coins, O(2n) →O(n)


 Absolute independence powerful but rare


 Dentistry is a large field with hundreds of variables, none of which are 
independent. What to do?



Bayes' Rule

 Product rule P(a b) = P(a | b) P(b) = P(b | a) P(a)

Bayes' rule: P(a | b) = P(b | a) P(a) / P(b)

 or in distribution form 


P(Y|X) = P(X|Y) P(Y) / P(X) = αP(X|Y) P(Y)

 Useful for assessing diagnostic probability from causal 
probability:

 P(Cause|Effect) = P(Effect|Cause) P(Cause) / P(Effect)




Bayes' Ruled

 Doesn’t seem very useful

 Requires three terms to compute one conditional

 But useful in practice

 A doctor knows that the disease meningitis  
causes the patient to have a stiff neck 50% of the 
time. The prior that someone has meningitis is 
1/50000 and the prior that someone has a stiff 
neck is 1/20, knowing that a person has a stiff 
neck what is the probability that they have 
meningitis?



 let M be meningitis, S be stiff neck:

 P(m|s) = P(s|m) P(m) / P(s) = (0.5 1/50000 )/ (1/20)= 
0.0002

 Note: posterior probability of meningitis still very small! One 
in every 5000

 Stiff neck a strong indication 

 Why not just store the number?

 Based on facts if we had epidemic we know how to update facts



Bayes' Rule and conditional independence

P(Cavity | toothache catch) 
= αP(toothache catch | Cavity) P(Cavity)/ p(toothache catch)

= αP(toothache catch | Cavity) P(Cavity) 

= αP(toothache | Cavity) P(catch | Cavity) P(Cavity) 

P(Cause | Effect1, … ,Effectn) = α πiP(Effecti|Cause) P(Cause)  

 This is an example of a naïve Bayes model:
 P(Cause,Effect1, … ,Effectn) = P(Cause) πiP(Effecti|Cause)

 Total number of parameters is linear in n



Wumpus World

Let’s define the random variables first

•Pij = true if [i,j] contains a pit

•Bij = true if [i,j] is breezy

•We want to be able to predict the probability of possbile boards



Specifying the probability model

P

P

P

P

P

PP

=0
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P

P

PP = 0.24 × 0.812



P?

Done?

Unknown has 12 squares.   2 12 = 4096

Is P13 really related to P44?



Using conditional independence
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Using conditional independence contd.



Summary

 Probability is a rigorous formalism for uncertain 
knowledge

 Joint probability distribution specifies probability 
of every atomic event

 Queries can be answered by summing over atomic 
events

 For nontrivial domains, we must find a way to 
reduce the joint size

 Independence and conditional independence
provide the tools




