
CPSC 259 Binary Heaps and Heapsort Page 1

CPSC 259: Data Structures and Algorithms
 for Electrical Engineers

Binary Heaps and Heapsort

Textbook Reference:

Thareja first edition: Chapter 12, pages 501-506
Thareja second edition: Chapter 12, pages 361-365

Hassan Khosravi

CPSC 259 Binary Heaps and Heapsort Page 2

Learning Goals
•  Provide examples of appropriate applications for

priority queues and heaps.
•  Implement and manipulate a heap using an array as

the underlying data structure.
•  Describe and use the Heapify (“Build Heap”) and

Heapsort algorithms.
•  Analyze the complexity of operations on a heap.

CPSC 259 Binary Heaps and Heapsort Page 3

CPSC 259 Administrative Notes
•  MT2 on Friday

–  See course website for details
–  covers all of the course material up to and including what we cover

today

•  No Lecture on Wednesday

•  No labs this week.

•  Quiz 3 Marks are released

•  PeerWise grades for second call are posted

•  PeerWise: Third and final call ends Dec 4th.

CPSC 259 Binary Trees Page 4

Abstract Data Types

Data Structures

Stack Queue

Array Circular
Array

Linked list

Tools

Asymptotic Analysis

CPSC 259 Journey

Recursion

Algorithms

Dictionary

Binary Search
Tree

Pointers	

Dynamic	Memory	Alloca2on	
	

Priority Queue

Binary Heap

Heapsort

CPSC 259 Binary Heaps and Heapsort Page 5

Priority Queues
•  Let’s say we have the following tasks.

2 - Water plants
5 - Order cleaning supplies
1 - Clean coffee maker
3 - Empty trash
9 - Fix overflowing sink
2 - Shampoo carpets
4 - Replace light bulb
1 - Remove pencil sharpener shavings

We are interested in finding the task with the highest
priority quickly.

CPSC 259 Binary Heaps and Heapsort Page 6

Priority Queues
•  A collection organized so as to permit fast access

to and removal of the largest/smallest element
– Prioritization is a weaker condition than ordering.
– Order of insertion is irrelevant.
– Element with the highest priority (whatever that

means) comes out next.
•  Not really a queue: not a FIFO

CPSC 259 Binary Heaps and Heapsort Page 7

Priority Queue ADT

•  Priority Queue operations
– create
– destroy
–  insert
– deleteMin
–  isEmpty

•  Priority Queue property: for two elements in the
queue, x and y, if x has a lower priority value than
y, x will be deleted before y.

F(7)	E(5)		
D(100)	A(4)		

B(6)	

insert deleteMin G(9) C(3)

CPSC 259 Binary Heaps and Heapsort Page 8

Heaps and Priority Queues
•  A priority queue is an abstract data type (ADT) that

maintains a bag of items.
– What is the difference between a set and a bag?
• A set does not contain duplicates.

•  Two or more distinct items in a priority queue can
have the same priority. If all items have the same
priority, you might think a priority queue should
behave like a queue, but it may not. We’ll see why,
shortly.

•  A binary heap can implement a priority queue,
efficiently.

CPSC 259 Binary Heaps and Heapsort Page 9

Applications of the Priority Q
•  Hold jobs for a printer in order of length

•  Manage limited resources such as bandwidth on a
transmission line from a network router

•  Simulate events (simulation time used as the
priority)

•  Sort numbers

•  Anything greedy: an algorithm that makes the
“locally best choice” at each step

CPSC 259 Binary Heaps and Heapsort Page 10

Naïve Priority Q Data Structures
•  Let’s use an unsorted list (could be implemented

with either an Array or Linked List)
•  Running time of insert ?

a. O(1)
b. O(lg n)
c. O(n)
d. O(n lg n)
e.  Something else

CPSC 259 Binary Heaps and Heapsort Page 11

Naïve Priority Q Data Structures
•  Let’s use an unsorted list (could be implemented

with either an Array or Linked List)
•  Running time of insert ?

a. O(1)
b. O(lg n)
c. O(n)
d. O(n lg n)
e.  Something else

CPSC 259 Binary Heaps and Heapsort Page 12

Naïve Priority Q Data Structures
•  Let’s use an unsorted list (could be implemented

with either an Array or Linked List)
•  Running time of deleteMin?

a. O(1)
b. O(lg n)
c. O(n)
d. O(n lg n)
e.  Something else

CPSC 259 Binary Heaps and Heapsort Page 13

Naïve Priority Q Data Structures
•  Let’s use an unsorted list (could be implemented

with either an Array or Linked List)
•  Running time of deleteMin?

a. O(1)
b. O(lg n)
c. O(n)
d. O(n lg n)
e.  Something else

CPSC 259 Binary Heaps and Heapsort Page 14

Naïve Priority Q Data Structures
•  Let’s use a sorted list (could be implemented with

either an Array or Linked List)
•  Running time of insert ?

a. O(1)
b. O(lg n)
c. O(n)
d. O(n lg n)
e.  Something else

CPSC 259 Binary Heaps and Heapsort Page 15

Naïve Priority Q Data Structures
•  Let’s use a sorted list (could be implemented with

either an Array or Linked List)
•  Running time of insert ?

a. O(1)
b. O(lg n)
c. O(n)
d. O(n lg n)
e.  Something else

CPSC 259 Binary Heaps and Heapsort Page 16

Naïve Priority Q Data Structures
•  Let’s use a sorted list (could be implemented with

either an Array or Linked List)
•  Running time of deleteMin?

a. O(1)
b. O(lg n)
c. O(n)
d. O(n lg n)
e.  Something else

CPSC 259 Binary Heaps and Heapsort Page 17

Naïve Priority Q Data Structures
•  Let’s use a sorted list (could be implemented with

either an Array or Linked List)
•  Running time of deleteMin?

a. O(1)
b. O(lg n)
c. O(n)
d. O(n lg n)
e.  Something else

CPSC 259 Binary Heaps and Heapsort Page 18

Naïve Priority Q Data Structures
•  Let’s use a Binary Search Tree (could be

implemented with either an Array or Linked List)
•  Worst case running time of insert ?

a. O(1)
b. O(lg n)
c. O(n)
d. O(n lg n)
e.  Something else

CPSC 259 Binary Heaps and Heapsort Page 19

Naïve Priority Q Data Structures
•  Let’s use a Binary Search Tree (could be

implemented with either an Array or Linked List)
•  Worst case running time of insert ?

a. O(1)
b. O(lg n)
c. O(n)
d. O(n lg n)
e.  Something else

CPSC 259 Binary Heaps and Heapsort Page 20

Naïve Priority Q Data Structures
•  Let’s use a Binary Search Tree (could be

implemented with either an Array or Linked List)
•  Worst case running time of deleteMin?

a. O(1)
b. O(lg n)
c. O(n)
d. O(n lg n)
e.  Something else

CPSC 259 Binary Heaps and Heapsort Page 21

Naïve Priority Q Data Structures
•  Let’s use a Binary Search Tree (could be

implemented with either an Array or Linked List)
•  Worst case running time of deleteMin?

a. O(1)
b. O(lg n)
c. O(n)
d. O(n lg n)
e.  Something else

CPSC 259 Binary Heaps and Heapsort Page 22

Naïve Priority Q Data Structures (Summary)

Data	Structure	 Insert	
	(worst	case)	

deleteMin		
(worst	case)	

Unsorted	lists	 O(1)	 O(n)	
Sorted	lists	 O(n)	 O(1)	
Binary	Search	
Trees	

O(n)	 O(n)	

Binary	Heaps	 O(lg	n)	 O(lg	n)	

CPSC 259 Binary Heaps and Heapsort Page 23

The heap property
•  A node has the heap property if the priority of the

node is as high as or higher than the priority of its
children.

•  All leaf nodes automatically have the heap property.
•  A binary tree is a heap if all nodes in it have the

heap property.

12

8 3

Red	node	has	heap	
property	

12

8 12

Red	node	has	heap	
property	

12

8 14

Red	node	does	not	have	
heap	property	

CPSC 259 Binary Heaps and Heapsort Page 24

•  Given a node that does not have the heap property, you
can give it the heap property by exchanging its value
with the value of the child with the higher priority.

•  This is sometimes called Percolate-up (sifting up).
•  Notice that the child may have lost the heap property.

14

8 12

Red	node	has	heap	
property	

12

8 14

Red	node	does	not	have	
heap	property	

Percolate-up

CPSC 259 Binary Heaps and Heapsort Page 25

Binary Heap Priority Q Data Structure

20	14	12	9	11	

8	10	6	7	

5	4	

2	
•  Heap-order property
–  parent’s key is less

than or equal to
children’s keys

–  result: minimum is
always at the top

•  Structure property
–  “nearly complete tree”

WARNING: this has NO SIMILARITY to the “heap” you hear about
when people say “objects you create with new go on the heap”. 25

depth	is	always	O(log	n);	
	next	open	loca2on	always	known	

CPSC 259 Binary Heaps and Heapsort Page 26

It is important to realize that two binary heaps can
contain the same data but the data may appear in
different positions in the heap:

2
5 7

5 7 8

2
5 5

7 7 8

Both of the minimum binary heaps above contain the
same data: 2, 5, 5, 7, 7, and 8.

 Even though both heaps satisfy all the properties
necessary of a minimum binary heap, the data is stored in
different positions in the tree.

CPSC 259 Binary Heaps and Heapsort Page 27

(There’s also a maximum binary heap, where “parent
≤ each child” simply changes to “parent ≥ each child”.)

7
5 7

4 3 4

2
5 7

5 7 8

Min-heap Max-heap

Min-heap and Max-heap

CPSC 259 Binary Heaps and Heapsort Page 28

Constructing a heap I (Naïve approach)
•  A tree consisting of a single node is automatically

a heap.
•  We construct a heap by adding nodes one at a time:
–  Add the node just to the right of the rightmost node in

the deepest level.
–  If the deepest level is full, start a new level with the

leftmost position.
•  Examples:

Add	a	new	node	
here	

Add	a	new	node	
here	

CPSC 259 Binary Heaps and Heapsort Page 29

Constructing a heap II (Naïve approach)
•  Each time we add a node, we may destroy the heap

property of its parent node. To fix this, we percolate-up.
•  But each time we percolate-up, the value of the topmost

node in the sift may increase, and this may destroy the
heap property of its parent node.

•  We repeat the percolate-up process, moving up in the tree,
until either:
– we reach nodes whose values don’t need to be

swapped (because the parent is still larger than both
children), or

–  we reach the root

CPSC 259 Binary Heaps and Heapsort Page 30

Constructing a heap III (Naïve approach)

8 8

10

10

8

10

8 5

10

8 5

12

10

12 5

8

12

10 5

8

1	 2	 3	

4	

CPSC 259 Binary Heaps and Heapsort Page 31

Other children are not affected

•  The node containing 8 is not affected because its parent
gets larger, not smaller.

•  The node containing 5 is not affected because its parent
gets larger, not smaller.

•  The node containing 8 is still not affected because,
although its parent got smaller, its parent is still greater
than it was originally.

12

10 5

8 14

12

14 5

8 10

14

12 5

8 10

CPSC 259 Binary Heaps and Heapsort Page 32

A sample heap
•  Here’s a sample binary tree after it has been heapified.

•  Notice that heapified does not mean sorted.
•  Heapifying does not change the shape of the binary

tree; this binary tree is still a nearly complete binary
tree.

19

14 18

22

3 21

14

11 9

15

25

17 22

CPSC 259 Binary Heaps and Heapsort Page 33

Clicker Question
•  Is the following binary tree a maximum binary

heap?

– A: It is a maximum binary heap
– B: It is not a maximum binary heap
– C: I don’t know

19

18 14

23

5 21

16

6 9

15

25

17 22

CPSC 259 Binary Heaps and Heapsort Page 34

Clicker Question (answer)
•  Is the following binary tree a maximum binary

heap?

– A: It is a maximum binary heap
– B: It is not a maximum binary heap
– C: I don’t know

19

18 14

23

5 21

16

6 9

15

25

17 22

CPSC 259 Binary Heaps and Heapsort Page 35

Clicker question

•  Which of the following statement(s) are true of
the tree shown below?

– a. It is a binary search tree.
– b. It is a complete tree.
– c. It is a Max-heap.
– d. It is a Min-heap.
– e. More than one of the above statements is true.

15

2

7

CPSC 259 Binary Heaps and Heapsort Page 36

Clicker question

•  Which of the following statement(s) are true of
the tree shown below?

– a. It is a binary search tree.
– b. It is a complete tree.
– c. It is a Max-heap.
– d. It is a Min-heap.
– e. More than one of the above statements is true.

15

2

7

CPSC 259 Binary Heaps and Heapsort Page 37

In-class exercise

•  Build a binary Max-heap using the following
numbers, assuming numbers arrive one at a time,
so you don’t have the whole list to start with).
– 2,7,26,25,19,17,1,90,3,36

25

3 2

26 7 1

90

17 36

19

See	hPp://visualgo.net/heap.html	

CPSC 259 Binary Heaps and Heapsort Page 38

Mapping into an array

•  Because of the heap's shape, node values can
be stored in an array.

19

14 18

22

3 21

14

11 9

15

25

17 22

25 22 17 19 22 14 15 18 14 21 3 9 11
 0 1 2 3 4 5 6 7 8 9 10 11 12

CPSC 259 Binary Heaps and Heapsort Page 39

Mapping into an array

19

14 18

22

3 21

14

11 9

15

25

17 22

25 22 17 19 22 14 15 18 14 21 3 9 11
 0 1 2 3 4 5 6 7 8 9 10 11 12

LeV	child	=	2*node	+	1	
right	child=	2*node	+	2	
parent	=	floor((node-1)/2)	
nex\ree	=	length	
root	=	0	

CPSC 259 Binary Heaps and Heapsort Page 40

Adding an item to a heap
•  If a new item is added to the heap, use ReheapUp

(percolate-up) to maintain a heap.

/* This function performs the Reheapup operation on an array,
to establish heap properties (for a subtree). !
 !
 PARAM: data – integer array containing the heap !
 top – position of the root !
 bottom - position of the added element !
 */!
void ReheapUp(int * data, int top, int bottom){ !
 if (bottom > top) { !
 int parent = getparent(bottom); !
 if (data[parent] < data[bottom]) { !
 swap(&data[parent], &data[bottom]); !
 ReheapUp(data, top, parent); !
 } !
 } !
}

CPSC 259 Binary Heaps and Heapsort Page 41

•  For the max-heap below draw the recursion tree of
ReheapUp(data, 0, 12), where 25 is stored in data[0] !

19

14 18

22

3 21

14

26 9

15

25

17 22

ReheapUp(data, 0, 12)

ReheapUp(data, 0, 5)

ReheapUp(data, 0, 2)

In-class exercise

ReheapUp(data, 0, 0)

CPSC 259 Binary Heaps and Heapsort Page 42

Example (min-heap)

20	14	12	9	11	

8	10	6	7	

5	4	

2	

3	 20	14	12	9	11	

8	3	6	7	

5	4	

2	

10	

20	14	12	9	11	

8	5	6	7	

3	4	

2	

10	 20	14	12	9	11	

8	5	6	7	

3	4	

2	

10	

CPSC 259 Binary Heaps and Heapsort Page 43

Removing the root (Min-heap example)
•  So we know how to add new elements to our heap.
•  We also know that root is the element with the

highest priority.
•  But what should we do once root is removed?
– Which element should replace root?

20	14	12	9	11	

8	10	6	7	

5	4	

?	

CPSC 259 Binary Heaps and Heapsort Page 44

One possibility

20	14	12	9	11	

8	10	6	7	

5	4	

?	

20	14	12	9	11	

8	10	6	7	

5	?	

4	

20	14	12	9	11	

8	10	?	7	

5	6	

4	

20	14	20	9	11	

8	10	12	7	

5	6	

4	

CPSC 259 Binary Heaps and Heapsort Page 45

Removing the root (max-heap example)
•  So we know how to add new elements to our heap.
•  We also know that root is the element with the

highest priority.
•  But what should we do once root is removed?
– Which element should replace root?

19

14 18

22

3 21

14

11 9

15

25

17 22

CPSC 259 Binary Heaps and Heapsort Page 46

Removing the root
•  Suppose we remove the root:

•  How can we fix the binary tree so it is once again a
nearly complete tree?

•  Solution: remove the rightmost leaf at the deepest
level and use it for the new root.

19

14 18

22

3 21

14

11 9

15

17 22

11

CPSC 259 Binary Heaps and Heapsort Page 47

The percolate-down method
•  Our tree is now a nearly complete binary tree, but no longer a heap.
•  However, only the root lacks the heap property.

•  We can percolate-down the root.
•  After doing this, one and only one of its children

may have lost the heap property.

19

14 18

22

3 21

14

9

15

17 22

11

CPSC 259 Binary Heaps and Heapsort Page 48

The percolate-down method
•  Now the left child of the root (still the number 11)

lacks the heap property.

•  We can percolate-down this node.
•  After doing this, one and only one of its children

may have lost the heap property.

19

14 18

22

3 21

14

9

15

17 11

22

CPSC 259 Binary Heaps and Heapsort Page 49

The percolate-down method
•  Now the right child of the left child of the root (still the

number 11) lacks the heap property:

•  We can percolate-down this node.
•  After doing this, one and only one of its children may

have lost the heap property.

19

14 18

11

3 21

14

9

15

17 22

22

CPSC 259 Binary Heaps and Heapsort Page 50

The percolate-down method
•  Our tree is once again a heap, because every node

in it has the heap property

– Once again, the largest (or a largest) value is in the root

19

14 18

21

3 11

14

9

15

17 22

22

CPSC 259 Binary Heaps and Heapsort Page 51

In-class exercise
•  Build a binary Max-heap using the following numbers
– 2,7,26,25,19,17,1,90,3,36

– Now remove max and reheap.

25

3 2

26 7 1

90

17 36

19

25

3 2

19 7 1

36

17 26

CPSC 259 Binary Heaps and Heapsort Page 52

•  Use ReheapDown (percolate-down) to remove an item from a
max heap

Removing an item from a heap

/* This function performs the ReheapDown operation on an
array, to establish heap properties (for a subtree). !
 !

 PARAM: data – integer array containing the heap !
 top – position of the root !
 bottom – position of the final elements in heap !
*/ !
void ReheapDown(int * data, int top, int bottom){ !
 if (!isLeaf(top, bottom)){ /* top is not a leaf */!
 int maxChild = getMaxChild(top) /* position of the !
 child having largest data value */!
 !

 if (data[top] < data[maxChild]){ !
 swap(&data[top], &data[maxChild]) !
 ReheapDown(data, maxChild, bottom); !
 } !
 } !
} !

CPSC 259 Binary Heaps and Heapsort Page 53

•  For the max heap below draw the recursion tree of
ReheapDown(data, 0, 10). !

19

14 18

22

3 21

14 15

9

17 22

ReheapDown(data, 0, 10)

ReheapDown(data, 1, 10)

ReheapDown(data, 4, 10)

ReheapDown(data, 9, 10)

In-class exercise

CPSC 259 Binary Heaps and Heapsort Page 54

When performing either a ReheapUp or ReheapDown
operation, the number of operations depends on the depth of
the tree. Notice that we traverse only one path or branch of
the tree. Recall that a nearly complete binary tree of height h
has between 2h and 2h+1-1 nodes:

D
F J

H K L M

D
F J

H

We can now determine the height of a heap in terms of the number of
nodes n in the heap. The height is lg n.
The time complexity of the ReheapUp and ReheapDown operations is
therefore O(lg n).

Time Complexity

CPSC 259 Binary Heaps and Heapsort Page 55

Building a Heap (Naïve)
– Adding the elements one add a time with a reheapUp
•  See http://visualgo.net/heap.html

/* This function builds a heap from an array. !
 !
 PARAM: data – integer array (no order is assumed) !
 top - position of the root !
 bottom – position of the final elements in heap !
 */!
void Build_heap(int * data, int top, int bottom) !
{ !
 int index = 0; !
 while (index <= bottom){ !
 ReheapUp(data, top, index); !
 index ++; !
 } !
} !

CPSC 259 Binary Heaps and Heapsort Page 56

•  Complexity analysis:
–  we add each of n nodes and each node has to be sifted up,

possibly as far as the root
–  Since the binary tree is a nearly complete binary tree, sifting up

a single node takes O(lg n) time
–  Since we do this N times, Build_heap takes N*O(lg n) time,

that is, O(n lg n) time

8 8

10

10

8

10

8 5

10

8 5

12

10

12 5

8

12

10 5

8

CPSC 259 Binary Heaps and Heapsort Page 57

Heapify method
•  See http://visualgo.net/heap.html

/* This function builds a heap from an array. !
 !
 PARAM: data – integer array (no order is assumed) !
 top - position of the root !
 bottom – position of the final elements in heap !
!
 */!
void Heapify(int * data, int top, int bottom) !
{ !
 int index = position of last parent node in entire tree; !
 while (index => top){ !
 /* go backwards from the last parent */!
 ReheapDown(data, index, bottom); !
 index --; !
 } !
}

CPSC 259 Binary Heaps and Heapsort Page 58

Example: Convert the following array to a min-heap:

8 9 7 3 2 5 0 1

8

9

3 2

7

5 0

1

To do so, picture the array as a nearly complete binary tree:

In-class exercise

CPSC 259 Binary Heaps and Heapsort Page 59

8

9

1 2

7

5 0

3

8

9

1 2

0

5 7

3

8

1

3 2

0

5 7

9

0

1

3 2

5

8 7

9

CPSC 259 Binary Heaps and Heapsort Page 60

Time complexity of Heapify
•  We can determine the time complexity of the Heapify function by

looking at the total number of times the comparison and swap
operations occur while building the heap. Let us consider the
worst case, which is
–  when the last level in the heap is full, and all of the nodes with high

priorities are in the leafs.

•  We will colour all the paths from each node, starting with the
lowest parent and working up to the root, each going down to a
leaf node. The number of edges on the path from each node to a
leaf node represents an upper bound on the number of comparison
and swap operations that will occur while applying the
ReheapDown operation to that node. By summing the total length
of these paths, we will determine the time complexity of the
Heapify function.

CPSC 259 Binary Heaps and Heapsort Page 61

In the worse possible case how many swaps are going to take place?

Relate the number of swaps first to the number of edges and then
nodes.

Time complexity of Heapify

CPSC 259 Binary Heaps and Heapsort Page 62

Note that no edge is coloured more than once. Hence the work
done by the Heapify function to build the heap can be measured in
terms of the number of coloured edges.

Time complexity of Heapify

CPSC 259 Binary Heaps and Heapsort Page 63

Note that no edge is coloured more than once. Hence the work
done by the Heapify function to build the heap can be measured in
terms of the number of coloured edges.

Time complexity of Heapify

CPSC 259 Binary Heaps and Heapsort Page 64

Note that no edge is coloured more than once. Hence the work
done by the Heapify function to build the heap can be measured in
terms of the number of coloured edges.

Time complexity of Heapify

CPSC 259 Binary Heaps and Heapsort Page 65

Note that no edge is coloured more than once. Hence the work
done by the Heapify function to build the heap can be measured in
terms of the number of coloured edges.

Time complexity of Heapify

CPSC 259 Binary Heaps and Heapsort Page 66

Suppose H is the height of the tree, N is the number of elements in
the tree, and E is the number of edges in the tree.

•  How many edges are there in a nearly complete tree with N
elements?

 N-1

•  Total number of coloured edges or swaps =

 E – H = N - 1 - H = N – 1 – lg N

 T(n) ∈ O (n)

Hence, in the worst case, the overall time complexity of the
Heapify algorithm is:

 O(n)

Time complexity of Heapify (sketch)

CPSC 259 Binary Heaps and Heapsort Page 67

Motivation: In this section, we examine a sorting
algorithm that guarantees worst case O(n lg n) time.

We will use a binary heap to sort an array of data

The Heapsort algorithm consists of 2 phases:

1. [Heapify] Build a heap using the elements to be sorted.

2. [Sort] Use the heap to sort the data.

The Heapsort Algorithm

CPSC 259 Binary Heaps and Heapsort Page 68

Having built the heap, we now sort the array:

0

1

3 2

5

8 7

9

0 1 5 3 2 8 7 9

Note: In this section, we
represent the data in both
binary tree and array formats.
It is important to understand
that in practice the data is
stored only as an array.

More about this later when we cover sorting!!!

CPSC 259 Binary Heaps and Heapsort Page 69

Time Complexity of Heapsort

We need to determine the time complexity of the Heapify O(n)
operation, and the time complexity of the subsequent sorting
operation.

The time complexity of the sorting operation once the heap has
been built is fairly easy to determine. For each element in the heap,
we perform a single swap and a ReheapDown. If there are N
elements in the heap, the ReheapDown operation is O(lg n), and
hence the sorting operation is O(n lg n).

Hence, in the worst case, the overall time complexity of the
Heapsort algorithm is:

build heap from
unsorted array

essentially
perform N
RemoveMin’s

O(n) + O(n lg n) = O(n lg n)

CPSC 259 Binary Heaps and Heapsort Page 70

Learning Goals revisited
•  Provide examples of appropriate applications for

priority queues and heaps.
•  Implement and manipulate a heap using an array as

the underlying data structure.
•  Describe and use the Heapify (“Build Heap”) and

Heapsort algorithms.
•  Analyze the complexity of operations on a heap.

