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Learning Goals  
•  Provide examples of appropriate applications for 

priority queues and heaps. 
•  Implement and manipulate a heap using an array as 

the underlying data structure. 
•  Describe and use the Heapify (“Build Heap”) and 

Heapsort algorithms. 
•  Analyze the complexity of operations on a heap. 
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CPSC 259 Administrative Notes   
•  MT2 on Friday 

–  See course website for details 
–  covers all of the course material up to and including what we cover 

today 

•  No Lecture on Wednesday 
 

•  No labs this week. 

•  Quiz 3 Marks are released 

•  PeerWise grades for second call are posted 

•  PeerWise: Third and final call ends Dec 4th. 
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Priority Queues 
•  Let’s say we have the following tasks. 

2 - Water plants 
5 - Order cleaning supplies 
1 - Clean coffee maker 
3 - Empty trash 
9 - Fix overflowing sink 
2 - Shampoo carpets 
4 - Replace light bulb 
1 - Remove pencil sharpener shavings 
 
We are interested in finding the task with the highest 
priority quickly. 
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Priority Queues 
•  A collection organized so as to permit fast access 

to and removal of the largest/smallest element 
– Prioritization is a weaker condition than ordering. 
– Order of insertion is irrelevant. 
– Element with the highest priority (whatever that 

means) comes out next. 
•  Not really a queue: not a FIFO 
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Priority Queue ADT 

•  Priority Queue operations 
– create 
– destroy 
–  insert 
– deleteMin 
–  isEmpty 

•  Priority Queue property: for two elements in the 
queue, x and y, if x has a lower priority value than 
y, x will be deleted before y. 

F(7)	E(5)		
D(100)	A(4)		

B(6)	

insert deleteMin G(9) C(3) 
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Heaps and Priority Queues 
•  A priority queue is an abstract data type (ADT) that 

maintains a bag of items. 
– What is the difference between a set and a bag? 
• A set does not contain duplicates. 

•  Two or more distinct items in a priority queue can 
have the same priority. If all items have the same 
priority, you might think a priority queue should 
behave like a queue, but it may not.  We’ll see why, 
shortly. 

•  A binary heap can implement a priority queue, 
efficiently. 
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Applications of the Priority Q 
•  Hold jobs for a printer in order of length 

•  Manage limited resources such as bandwidth on a 
transmission line from a network router 

•  Simulate events (simulation time used as the 
priority) 

•  Sort numbers 
 

•  Anything greedy: an algorithm that makes the 
“locally best choice” at each step 
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Naïve Priority Q Data Structures 
•  Let’s use an unsorted list (could be implemented 

with either an Array or Linked List) 
•  Running time of insert ? 

a. O(1) 
b. O(lg n) 
c. O(n) 
d. O(n lg n) 
e.  Something else 
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Naïve Priority Q Data Structures 
•  Let’s use a sorted list (could be implemented with 

either an Array or Linked List) 
•  Running time of insert ? 

a. O(1) 
b. O(lg n) 
c. O(n) 
d. O(n lg n) 
e.  Something else 
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Naïve Priority Q Data Structures 
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Naïve Priority Q Data Structures 
•  Let’s use a Binary Search Tree (could be 

implemented with either an Array or Linked List) 
•  Worst case running time of insert ? 

a. O(1) 
b. O(lg n) 
c. O(n) 
d. O(n lg n) 
e.  Something else 
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Naïve Priority Q Data Structures (Summary) 

Data	Structure	 Insert	
	(worst	case)	

deleteMin		
(worst	case)	

Unsorted	lists	 O(1)	 O(n)	
Sorted	lists	 O(n)	 O(1)	
Binary	Search	
Trees	

O(n)	 O(n)	

Binary	Heaps	 O(lg	n)	 O(lg	n)	
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The heap property
•  A node has the heap property if the priority of the 

node is as high as or higher than the priority of its 
children. 

•  All leaf nodes automatically have the heap property. 
•  A binary tree is a heap if all nodes in it have the 

heap property. 

12 

8 3 

Red	node	has	heap	
property	

12 

8 12 

Red	node	has	heap	
property	

12 

8 14 

Red	node	does	not	have	
heap	property	
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•  Given a node that does not have the heap property, you 
can give it the heap property by exchanging its value 
with the value of the child with the higher priority. 

•  This is sometimes called Percolate-up (sifting up). 
•  Notice that the child may have lost the heap property. 

14 

8 12 

Red	node	has	heap	
property	

12 

8 14 

Red	node	does	not	have	
heap	property	

Percolate-up
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Binary Heap Priority Q Data Structure 

20	14	12	9	11	

8	10	6	7	

5	4	

2	
•  Heap-order property 
–  parent’s key is less 

than or equal to 
children’s keys 

–  result: minimum is 
always at the top 

•  Structure property 
–  “nearly complete tree” 

WARNING: this has NO SIMILARITY to the “heap” you hear about 
when people say “objects you create with new go on the heap”. 25 

depth	is	always	O(log	n);	
	next	open	loca2on	always	known	
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It is important to realize that two binary heaps can 
contain the same data but the data may appear in 
different positions in the heap: 

2 
5 7 

5 7 8 

2 
5 5 

7 7 8 

Both of the minimum binary heaps above contain the 
same data: 2, 5, 5, 7, 7, and 8.  

 Even though both heaps satisfy all the properties 
necessary of a minimum binary heap, the data is stored in 
different positions in the tree. 
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(There’s also a maximum binary heap, where “parent 
≤ each child” simply changes to “parent ≥ each child”.) 

7 
5 7 

4 3 4 

2 
5 7 

5 7 8 

Min-heap Max-heap 

Min-heap and Max-heap 
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Constructing a heap I (Naïve approach) 
•  A tree consisting of a single node is automatically 

a heap. 
•  We construct a heap by adding nodes one at a time: 
–  Add the node just to the right of the rightmost node in 

the deepest level. 
–  If the deepest level is full, start a new level with the 

leftmost position. 
•  Examples: 

Add	a	new	node	
here	

Add	a	new	node	
here	
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Constructing a heap II (Naïve approach) 
•  Each time we add a node, we may destroy the heap 

property of its parent node. To fix this, we percolate-up. 
•  But each time we percolate-up, the value of the topmost 

node in the sift may increase, and this may destroy the 
heap property of its parent node. 

•  We repeat the percolate-up process, moving up in the tree, 
until either: 
– we reach nodes whose values don’t need to be 

swapped (because the parent is still larger than both 
children),  or 

–   we reach the root 
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Constructing a heap III (Naïve approach) 

8 8 

10 

10 

8 

10 

8 5 

10 

8 5 

12 

10 

12 5 

8 

12 

10 5 

8 

1	 2	 3	

4	
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Other children are not affected 

•  The node containing 8 is not affected because its parent 
gets larger, not smaller. 

•  The node containing 5 is not affected because its parent 
gets larger, not smaller. 

•  The node containing 8 is still not affected because, 
although its parent got smaller, its parent is still greater 
than it was originally. 

12 

10 5 

8 14 

12 

14 5 

8 10 

14 

12 5 

8 10 
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A sample heap 
•  Here’s a sample binary tree after it has been heapified. 

•  Notice that heapified does not mean sorted. 
•  Heapifying does not change the shape of the binary 

tree; this binary tree is still a nearly complete binary 
tree. 

19 

14 18 

22 

3 21 

14 

11 9 

15 

25 

17 22 
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Clicker Question 
•  Is the following binary tree a maximum binary 

heap? 

– A: It is a maximum binary heap 
– B: It is not a maximum binary heap 
– C: I don’t know 

19 

18 14 

23 

5 21 

16 

6 9 

15 

25 

17 22 
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Clicker Question (answer) 
•  Is the following binary tree a maximum binary 

heap? 

– A: It is a maximum binary heap 
– B: It is not a maximum binary heap 
– C: I don’t know 

19 

18 14 

23 

5 21 

16 

6 9 

15 

25 

17 22 
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Clicker question 

•  Which of the following statement(s) are true of 
the tree shown below? 

 
– a. It is a binary search tree.  
– b. It is a complete tree.  
– c. It is a Max-heap.  
– d. It is a Min-heap.  
– e. More than one of the above statements is true.   

15 

2 

7 
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Clicker question 

•  Which of the following statement(s) are true of 
the tree shown below? 

 
– a. It is a binary search tree.  
– b. It is a complete tree.  
– c. It is a Max-heap.  
– d. It is a Min-heap.  
– e. More than one of the above statements is true.   

15 

2 

7 
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In-class exercise 

•  Build a binary Max-heap using the following 
numbers, assuming numbers arrive one at a time, 
so you don’t have the whole list to start with). 
– 2,7,26,25,19,17,1,90,3,36 

25 

3 2 

26 7 1 

90 

17 36 

19 

See	hPp://visualgo.net/heap.html	
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Mapping into an array 

•  Because of the heap's shape, node values can 
be stored in an array.  

19 

14 18 

22 

3 21 

14 

11 9 

15 

25 

17 22 

25 22 17 19 22 14 15 18 14 21 3 9 11 
  0     1    2     3    4     5    6     7     8    9    10   11   12 
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Mapping into an array 

19 

14 18 

22 

3 21 

14 

11 9 

15 

25 

17 22 

25 22 17 19 22 14 15 18 14 21 3 9 11 
  0     1    2     3    4     5    6     7     8    9    10   11   12 

LeV	child	=	2*node	+	1	
right	child=	2*node	+	2	
parent	=	floor((node-1)/2)	
nex\ree	=	length	
root	=	0	
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Adding an item to a heap  
•  If a new item is added to the heap, use ReheapUp 

(percolate-up ) to maintain a heap. 

/* This function performs the Reheapup operation on an array, 
to establish heap properties (for a subtree). !
 !
 PARAM: data   – integer array containing the heap !
             top    – position of the root !
             bottom - position of the added element !
 */!
void ReheapUp( int * data, int top, int bottom ){ !
    if (bottom > top) { !
        int parent = getparent(bottom); !
        if (data[parent] < data[bottom]) { !
            swap( &data[parent], &data[bottom]); !
            ReheapUp(data, top, parent); !
        } !
    } !
} 
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•  For the max-heap below draw the recursion tree of 
ReheapUp(data, 0, 12), where 25 is stored in data[0] !

19 

14 18 

22 

3 21 

14 

26 9 

15 

25 

17 22 

ReheapUp(data, 0, 12) 

ReheapUp(data, 0, 5) 

ReheapUp(data, 0, 2) 

In-class exercise 

ReheapUp(data, 0, 0) 



CPSC 259                           Binary Heaps and Heapsort                                                      Page 42 

Example (min-heap) 

20	14	12	9	11	

8	10	6	7	

5	4	

2	

3	 20	14	12	9	11	

8	3	6	7	

5	4	

2	

10	

20	14	12	9	11	

8	5	6	7	

3	4	

2	

10	 20	14	12	9	11	

8	5	6	7	

3	4	

2	

10	
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Removing the root (Min-heap example) 
•  So we know how to add new elements to our heap. 
•  We also know that root is the element with the 

highest priority. 
•  But what should we do once root is removed? 
– Which element should replace root? 

20	14	12	9	11	

8	10	6	7	

5	4	

?	
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One possibility 

20	14	12	9	11	

8	10	6	7	

5	4	

?	

20	14	12	9	11	

8	10	6	7	

5	?	

4	

20	14	12	9	11	

8	10	?	7	

5	6	

4	

20	14	20	9	11	

8	10	12	7	

5	6	

4	
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Removing the root (max-heap example) 
•  So we know how to add new elements to our heap. 
•  We also know that root is the element with the 

highest priority. 
•  But what should we do once root is removed? 
– Which element should replace root? 

19 

14 18 

22 

3 21 

14 

11 9 

15 

25 

17 22 
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Removing the root 
•  Suppose we remove the root: 

•  How can we fix the binary tree so it is once again a 
nearly complete tree? 

•  Solution: remove the rightmost leaf at the deepest 
level and use it for the new root. 

19 

14 18 

22 

3 21 

14 

11 9 

15 

17 22 

11 
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The percolate-down method  
•  Our tree is now a nearly complete binary tree, but no longer a heap. 
•  However, only the root lacks the heap property. 

•  We can percolate-down the root. 
•  After doing this, one and only one of its children 

may have lost the heap property. 

19 

14 18 

22 

3 21 

14 

9 

15 

17 22 

11 
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The percolate-down method  
•  Now the left child of the root (still the number 11) 

lacks the heap property. 

•  We can percolate-down this node. 
•  After doing this, one and only one of its children 

may have lost the heap property. 

19 

14 18 

22 

3 21 

14 

9 

15 

17 11 

22 
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The percolate-down method  
•  Now the right child of the left child of the root (still the 

number 11) lacks the heap property: 

•  We can percolate-down this node. 
•  After doing this, one and only one of its children may 

have lost the heap property.  

19 

14 18 

11 

3 21 

14 

9 

15 

17 22 

22 
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The percolate-down method  
•  Our tree is once again a heap, because every node 

in it has the heap property 

– Once again, the largest (or a largest) value is in the root 

19 

14 18 

21 

3 11 

14 

9 

15 

17 22 

22 
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In-class exercise 
•  Build a binary Max-heap using the following numbers 
– 2,7,26,25,19,17,1,90,3,36 

 

– Now remove max and reheap. 

25 

3 2 

26 7 1 

90 

17 36 

19 

25 

3 2 

19 7 1 

36 

17 26 
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•  Use ReheapDown (percolate-down) to remove an item from a 
max heap 

Removing an item from a heap  

/* This function performs the ReheapDown operation on an 
array, to establish heap properties (for a subtree). !
 !

 PARAM:     data   – integer array containing the heap !
            top    – position of the root !
            bottom – position of the final elements in heap !
*/ !
void ReheapDown( int * data, int top, int bottom){ !
    if (!isLeaf(top, bottom)){ /* top is not a leaf */!
        int maxChild = getMaxChild(top) /* position of the !
        child having largest data value */!
        !

        if ( data[top] < data[maxChild] ){ !
            swap( &data[top], &data[maxChild]) !
            ReheapDown( data, maxChild, bottom); !
        } !
    } !
} !
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•  For the max heap below draw the recursion tree of 
ReheapDown(data, 0, 10). !

19 

14 18 

22 

3 21 

14 15 

9 

17 22 

ReheapDown(data, 0, 10) 

ReheapDown(data, 1, 10) 

ReheapDown(data, 4, 10) 

ReheapDown(data, 9, 10) 

In-class exercise 
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When performing either a ReheapUp or ReheapDown 
operation, the number of operations depends on the depth of 
the tree.  Notice that we traverse only one path or branch of 
the tree.  Recall that a nearly complete binary tree of height h 
has between 2h and 2h+1-1 nodes: 

D 
F J 

H K L M 

D 
F J 

H 

We can now determine the height of a heap in terms of the number of 
nodes n in the heap.  The height is lg n. 
The time complexity of the ReheapUp and ReheapDown operations is 
therefore O(lg n). 

Time Complexity 
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Building a Heap (Naïve) 
– Adding the elements one add a time with a reheapUp 
•  See http://visualgo.net/heap.html 

/* This function builds a heap from an array. !
 !
 PARAM:     data   – integer array (no order is assumed) !
            top    - position of the root !
            bottom – position of the final elements in heap !
  */!
void Build_heap( int * data, int top, int bottom ) !
{ !
    int index = 0; !
     while (index <= bottom){ !
        ReheapUp(data, top, index); !
        index ++; !
    } !
} !
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•  Complexity analysis:  
–  we add each of n nodes and each node has to be sifted up, 

possibly as far as the root 
–  Since the binary tree is a nearly complete binary tree, sifting up 

a single node takes O(lg n) time 
–  Since we do this N times, Build_heap takes N*O(lg n) time, 

that is, O(n lg n) time 

8 8 

10 

10 

8 

10 

8 5 

10 

8 5 

12 

10 

12 5 

8 

12 

10 5 

8 
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Heapify method  
•  See http://visualgo.net/heap.html 

/* This function builds a heap from an array. !
 !
 PARAM:  data  – integer array (no order is assumed) !
            top    - position of the root !
            bottom – position of the final elements in heap !
!
 */!
void Heapify( int * data, int top, int bottom ) !
{ !
    int  index = position of last parent node in entire tree; !
    while (index => top){ !
    /* go backwards from the last parent */!
        ReheapDown( data, index, bottom ); !
        index --; !
    } !
} 
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Example:  Convert the following array to a min-heap: 

8 9 7 3 2 5 0 1 

8 

9 

3 2 

7 

5 0 

1 

To do so, picture the array as a nearly complete binary tree: 

In-class exercise 
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8 

9 

1 2 

7 

5 0 

3 

8 

9 

1 2 

0 

5 7 

3 

8 

1 

3 2 

0 

5 7 

9 

0 

1 

3 2 

5 

8 7 

9 
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Time complexity of Heapify 
•  We can determine the time complexity of the Heapify function by 

looking at the total number of times the comparison and swap 
operations occur while building the heap.  Let us consider the 
worst case, which is  
–  when the last level in the heap is full, and all of the nodes with high 

priorities are in the leafs. 

•  We will colour all the paths from each node, starting with the 
lowest parent and working up to the root, each going down to a 
leaf node.  The number of edges on the path from each node to a 
leaf node represents an upper bound on the number of comparison 
and swap operations that will occur while applying the 
ReheapDown operation to that node.  By summing the total length 
of these paths, we will determine the time complexity of the 
Heapify function.  
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In the worse possible case how many swaps are going to take place? 

Relate the number of swaps first to the number of edges and then 
nodes.  

Time complexity of Heapify 
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Note that no edge is coloured more than once.  Hence the work 
done by the Heapify function to build the heap can be measured in 
terms of the number of coloured edges. 

Time complexity of Heapify 
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Note that no edge is coloured more than once.  Hence the work 
done by the Heapify function to build the heap can be measured in 
terms of the number of coloured edges. 

Time complexity of Heapify 
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Note that no edge is coloured more than once.  Hence the work 
done by the Heapify function to build the heap can be measured in 
terms of the number of coloured edges. 

Time complexity of Heapify 
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Note that no edge is coloured more than once.  Hence the work 
done by the Heapify function to build the heap can be measured in 
terms of the number of coloured edges. 

Time complexity of Heapify 
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Suppose H is the height of the tree, N is the number of elements in 
the tree, and E is the number of edges in the tree. 

•  How many edges are there in a nearly complete tree with N 
elements? 

 N-1 

•  Total number of coloured edges or swaps =  

          E – H = N - 1 - H = N – 1 – lg N  

         T(n) ∈ O (n)         

Hence, in the worst case, the overall time complexity of the 
Heapify algorithm is: 

  O(n) 

Time complexity of Heapify (sketch) 
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Motivation: In this section, we examine a sorting 
algorithm that guarantees worst case O(n lg n) time.   

We will use a binary heap to sort an array of data 

 
The Heapsort algorithm consists of 2 phases: 

1. [Heapify]   Build a heap using the elements to be sorted. 

2. [Sort]   Use the heap to sort the data. 

 

 

The Heapsort Algorithm 
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Having built the heap, we now sort the array: 

0 

1 

3 2 

5 

8 7 

9 

0 1 5 3 2 8 7 9 

Note: In this section, we 
represent the data in both 
binary tree and array formats. 
It is important to understand 
that in practice the data is 
stored only as an array. 

More about this later when we cover sorting!!! 
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Time Complexity of Heapsort 

We need to determine the time complexity of the Heapify O(n) 
operation, and the time complexity of the subsequent sorting 
operation. 

The time complexity of the sorting operation once the heap has 
been built is fairly easy to determine.  For each element in the heap, 
we perform a single swap and a ReheapDown.  If there are N 
elements in the heap, the ReheapDown operation is O( lg n ), and 
hence the sorting operation is O( n lg n ). 

Hence, in the worst case, the overall time complexity of the 
Heapsort algorithm is: 

 
build heap from 
unsorted array 

essentially 
perform N 
RemoveMin’s 

O(n)  +  O(n lg n)  =  O(n lg n) 

 



CPSC 259                           Binary Heaps and Heapsort                                                      Page 70 

Learning Goals revisited 
•  Provide examples of appropriate applications for 

priority queues and heaps. 
•  Implement and manipulate a heap using an array as 

the underlying data structure. 
•  Describe and use the Heapify (“Build Heap”) and 

Heapsort algorithms. 
•  Analyze the complexity of operations on a heap. 


