CPSC 259: Data Structures and Algorithms for
Electrical Engineers

Stack and Queue

(a) Thareja (first edition):9.1-9.6, 9.11, and 9.12
(b) Thareja (second edition): 7.1 —7.7.2 and 8.1-8.3

Hassan Khosravi

CPSC 259 Stack and Queue Page 1

Learning goals

* Differentiate an abstraction from an implementation.

* Determine the time complexities of operations on stacks
and queues.

* Manipulate data in stacks and queues (using array and
linked list implementation).

* Use stacks and queues to solve real world problems

CPSC 259 Stack and Queue Page 2

What 1s an Abstract Data Type?

* Abstract Data Type (ADT) — a mathematical description
of an object and the set of operations on the object.

— A description of how a data structure works (could be
implemented by different actual data structures).

* Example: Dictionary ADT
— Stores pairs of strings: (word, definition)
— Operations:

* Insert(word, definition)
e Delete(word)
* Find(word)

CPSC 259 Stack and Queue Page 3

Why so many data structures?

Ideal data structure: “Dictionary” ADT

fast, elegant, memory efficient — list

— Binary Search Tree

Trade-offs _ AVL tree

— time vs. space — Splay tree

— performance vs. elegance _ B+ tree

— generality vs. simplicity _ Red-Black tree

— one operation’s performance vs. _ hash table

another’s

. — concurrent hash table
— serial performance vs. parallel

performance

CPSC 259 Stack and Queue Page 4

Code Implementation

* Theoretically (in programming languages that support OOP)
— abstract base class describes ADT
— 1nherited implementations implement data structures

— can change data structures transparently (to client code)

 Practice

— different implementations sometimes suggest different interfaces
(generality vs. stmplicity)

— performance of a data structure may influence form of client code
(time vs. space, one operation vs. another)

CPSC 259 Stack and Queue Page 5

ADT Presentation Algorithm

* Present an ADT
Motivate with some applications

* Repeat until browned entirely through
— develop a data structure for the ADT
— analyze its properties
* efficiency
* correctness
* limitations

* ease of programming

Contrast data structure’s strengths and weaknesses

— understand when to use each one

CPSC 259 Stack and Queue Page 6

Stack ADT

* Stack operations
— create
— destroy

A _—~EDCBA

— push
— Pop
— top/peek
— 1s_empty F
* Stack property: if x 1s pushed before y 1s pushed,
then x will be popped after y is popped

LIFO: Last In First Out

MO QW

Demo: http://visualgo.net/list.html

CPSC 259 Stack and Queue Page 7

Stacks 1n Practice (Call Stack)

int square (int x){
mm) return XxXxkXx;
I3
Stack
int squareOfSum(int x, int y){
return square(x+y);
square
} X
int main() { @ squareOfSum
int a = 4; o
int b = 8;
int total = squareOfSum(a, b); Qi; main
cout << total<< endl; a,b
s
CPSC 259 Stack and Queue Page 8

Stacks in Practice (Arithmetic expressions)

* Application: Binary Expression Trees

Arithmetic expressions can be represented using binary
trees. We will build a binary tree representing the

expression: @
p

(3+42)*5-1
&) ©
3 &

Now let’s print this expression tree using postorder

traversal: —_—————————
We'll cover this topic
32+5%*1] - later in the course

CPSC 259 Stack and Queue Page 9

Stacks in Practice (Arithmetic expressions)

Now let’s compute this expression using a Stack

32Tl /@\
Character Stack
scanned a e

3 3

z oo

+ 5

5 5, 5

* 25

1 25,1

- 24
We'll cover this topic
later in the course

CPSC 259 Stack and Queue Page 10

Stacks in Practice (Backtracking)

— lll_ll I I lll:

|| Erl e oo e kR C e et b e T e PRI
R T S R e b

__rLI‘__|__'_ :ll

il

Tl e P e S fe e
:k_J ‘I_fP_LI t——j —ﬂl__lJ'ﬂll'{I;ELlﬂu — IIIL
l;%;}if O -Eg Hc%zj_l—

=€
i,

TG, _r"ﬂ'if;

e bl Gl
= hbh]_f[c'_} _rrT:r'*JIE[@ﬁT; %—Tﬁ—y rlr I r_J%— G

3 2 We'll cover this topic
later in the course
3,5,4

CPSC 259 Stack and Queue Page 11

Array Representation of Stacks

* In computer’s memory stacks can be represented as a

linear array.
* Every stack has a variable TOP associated with it.

* TOP 1s used to store the index of the topmost element
of the stack. It 1s this position from where the

element will be added or deleted.

* There i1s another variable MAX which will be used to
store the maximum number of elements that the stack
can hold.

CPSC 259 Stack and Queue Page 12

Array Representation of Stacks

typedef struct

{
int top;
intx list;
} Stack;

#define TRUE 1
#define FALSE 0‘

void initialize(Stackx stack)

{
stack—>top=-1;

stack—>1ist = (intx)malloc(sizeof(int)*CAPACITY):

}

int isEmpty(Stackx stack)
{
if (stack->top == -1)
return TRUE;
else
return FALSE;

}

int isFull(Stackx stack)
{

if (stack—->top == MAX-1)

return TRUE;

else
return FALSE;

}

CPSC 259 Stack and Queue

Page 13

Push Operation

* The push operation 1s used to insert an element into the
stack.
* The new element is added at the topmost position of the stack.

 However, before inserting the value, we must first check 1f
TOP=MAX-1, because 1f this 1s the case then i1t means the stack
1s full and no more 1nsertions can further be done.

* An attempt to insert a value 1n a stack that 1s already full causes
an overflow error

)40 13 14 | 34 5

CPSC 259 Stack and Queue Page 14

Push Operation

int push(Stackkx stack, int value)

{
if (lisFull(stack))
{
stack—>top++;
stack—>1list[stack—->topl=value;
return TRUE;
¥
else
return FALSE;
¥
22 | 13 | 14 | 34 5

CPSC 259

Stack and Queue

Page 15

Pop Operation

* The pop operation 1s used to delete the topmost element
from the stack.
 However, before deleting the value, we must first check if

TOP=-1, because 1f this 1s the case then it means the stack 1s
empty so no more deletions can further be done.

* An attempt to delete a value from a stack that is already empty
causes an underflow error.

22 13 14 | 34 5

0 1 2 3 TOP =4 5 6 7 8 9

22 13 14 | 34

0 1 2 TOP=3 4 5 6 7 8 9

CPSC 259 Stack and Queue Page 16

Pop Operation

int pop(Stackx stack)
{
if (!isEmpty(stack))
{
stack—>list [stack—>top]=-1;
stack—>top——;
return TRUE;
s
else
return FALSE;

22

13 14 | 34 5

(0] 1 2 3 TOP=4 5 6 7 8 9

22

13 14 | 34

1 2 TOP=3 4 5 6 7 8 9

CPSC 259

Stack and Queue

Page 17

Peek Operation

* Peek 1s an operation that returns the value of the topmost
clement of the stack without deleting it from the stack.

* However, the peek operation first checks if the stack 1s empty or
contains some elements. If TOP = -1, then an appropriate

message 1s printed else the value 1s returned

22 13 14 | 34 5

* Here the Peck operation will return 3, as it is the value of

the topmost element of the stack.

CPSC 259 Stack and Queue Page 18

Peek Operation

int peek(Stackk stack)

{
if (!isEmpty(stack))
return stack—->list[stack—->top];
else
return FALSE;
I3

22 13 14 | 34 5

* Here Peek operation will return 5, as it 1s the value of the

topmost element of the stack.

CPSC 259 Stack and Queue Page 19

Example Stack with Arrays

Top

push B

pop
push K

push C

push A

pop
pop
pop

CPSC 259 Stack and Queue Page 20

Example Stack with Arrays

Top
push B
0 B
pop g
push K
1 0 K
push C
1 K|C
push A
2 K|C|A
pop
pop 1 K|C
-1

CPSC 259 Stack and Queue Page 21

CPSC 259 Administrative Notes

* Labs
— Lab3 — weekl 1n progress (Oct 13 — Oct 19)
— Lab3 — Week2 (Oct 26 — Oct 30)
— No labs (Oct 20 — Oct 23)

 Midterm: On Wednesday (details on course website)
— Up to and including the Stack and Queue module

e Extra office hour
— Sean: Tuesday October 20th, 2-4pm, in ICCSX239.

* Exercises/questions on Stack and Queue added to the
course website

CPSC 259 Stack and Queue Page 22

Stacks

* A stack operates on the LIFO principle: Last In, First
Out.

* Some stack operations and their complexities:

— push(item) O(1) (add to top)

— pop() O(1) (take off top)

— peek() O(1) (without removing)
— isempty() O(1) (is stack empty?)
— 1sfull() O(1) (1s stack full?)

CPSC 259 Stack and Queue Page 23

Linked list representation of Stacks

typedef struct
{

} Stack_list;

struct Nodex top;

int isEmpty_list(Stack listx stack)

{

if (stack—->top == NULL)
return TRUE;

\\\ else

return FALSE;

stack |

top

A 4
A 4

struct Node
{
int data;
struct Nodex next;

};

A 4

CPSC 259

Stack and Queue Page 24

Push Operation on a Linked Stack

int push_list(Stack listx stack, char value)
{
struct Nodex new_node = (struct Nodex)malloc(sizeof(struct Node));
if (new_node==NULL)
return FALSE;

new_node—>data value;
new_node—>next stack—>top;
stack—>top = new_node;
return TRUE;

new_node |

/

top

7

stack |

CPSC 259 Stack and Queue Page 25

Pop Operation on a Linked Stack

int pop_list(Stack listx stack)
{
if (!isEmpty_list(stack))
{
struct Nodex temp = stack—>top;
stack—>top = stack—>top—>next;
free(temp);
temp = NULL;
return TRUE;
s
return FALSE;
Iy
temp |
stack ‘
\\\g o 3 o 4 o 2 » 6 » 5N
top |/

CPSC 259 Stack and Queue Page 26

Peek Operation on a Linked Stack

int peek_list(Stack_ listx stack)
{
if (!'isEmpty_list(stack)) {
return stack—>top—>data;
s
else
{
return FALSE;
stack ‘ 1 ;
top |
\\\1 o 7 o 3 o 4 o 2 o 6 » 5|N

CPSC 259 Stack and Queue Page 27

Queue ADT

* Queue operations
— create
— destroy
— enqueue

— dequeue

— 1s_empty

enqueue .
G q >

dequeue
q . 4

FEDCB

* Queue property:
if x 1s enqueued before y 1s enqueued,
then x will be dequeued before y 1s dequeued.

FIFO: First In First Out

CPSC 259 Stack and Queue Page 28

Applications of the Q

Hold jobs for a printer

* Store packets on network routers
* Hold memory “freelists™

* Make waitlists fair

Breadth first search

CPSC 259 Stack and Queue Page 29

enqueue R
enqueue O
dequeue
enqueue T
enqueue A
enqueue T
dequeue
dequeue
enqueue B

dequeue

Abstract Q Example

In order, what letters are dequeued?

0O 0 T o

OATE

. ROTA

OTAE

. None of these, but it can

be determined from just the ADT.
None of these, and it cannot
be determined from just the ADT.

CPSC 259

Stack and Queue Page 30

enqueue R
enqueue O
dequeue
enqueue T
enqueue A
enqueue T
dequeue
dequeue
enqueue B

dequeue

Abstract Q Example

In order, what letters are dequeued?

Q0 T W

OATE

. ROTA

OTAE

. None of these, but it can

be determined from just the ADT.
None of these, and it cannot
be determined from just the ADT.

CPSC 259

Stack and Queue Page 31

Array Representation of Queues

* Queues can be easily represented using linear arrays.

* Every queue has front and back variables that point to the
position from where deletions and insertions can be done,
respectively. Consider the queue shown in figure

12

9

7

18

14

36

0
e Ifw

1

2

3

4

5

6

7

8

9

front=0
back =6

¢ want to add one more value 1n the list say with value
45, then back would be incremented by 1 and the value
would be stored at the position pointed by back.

12

9

7

18

14

36

45

0

1

2

3

4

5

6

7

8

9

front=0
back= 7

CPSC 259

Stack and Queue

Page 32

Array Representation of Queues

* Now, i1f we want to delete an element from the queue, then
the value of front will be incremented. Deletions are done
from only this end of the queue

o | 7 | 18| 14 | 36 |45 front=1
back =7

* What 1s a problem with this implementation?

7 18 | 14 | 36 |45 21 | 99 | 72

0 1 2 3 4 5 6 7 8 9

CPSC 259 Stack and Queue Page 33

Circular Array Q Example 1

enqueue R

enqueue O

dequeue

enqueue T

enqueue A

enqueue T

dequeue

dequeue

enqueue B

dequeue

CPSC 259 Stack and Queue Page 34

Circular Array Q Example 1

enqueue R R

enqueue O

dequeue

enqueue T

“RR]=

RQ\Q\Q\OOOOO

enqueue A

enqueue T

dequeue

dequeue

- I I~ = | =

enqueue B E

a4

\i\\—l—l—l—l

dequeue E

CPSC 259 Stack and Queue Page 35

Circular Array Q Example 2

enqueue R
enqueue O
enqueue T
enqueue A
enqueue T

enqueue B

X || A |||

O||O|]|O |0 | O

—H||=]|

* Before inserting

Check is_full()

* Before removing

Check is_empty()

CPSC 259

Stack and Queue

Page 36

Circular Array Q Example 3

enqueue R

enqueue O

dequeue

enqueue T

enqueue A

enqueue T

dequeue

dequeue

enqueue B

dequeue

CPSC 259 Stack and Queue Page 37

Circular Array Q Example 3

enqueue R R

enqueue O R |0

dequeue o

enqueue T glo|T

enqueue A Klo|T]|A

enqueue T Cannot add the second T

dequeue L

dequeue

enqueue B

dequeue ff,?c’ﬁ _ 1
R back- 1

CPSC 259 Stack and Queue Page 38

Array Representation of Stacks

typedef struct{
int front;
int back;
intx list;

} Queue;

void initialize(Queuex queue){
queue—>front=0;
queue—>back=0;

queue—>list = (intx)malloc(sizeof(int)*CAPACITY);
Iy

int isEmpty(Queuex queue){
return(queue->front ==queue->back);
I3

int isFull(Queuex queue){

return (queue—>front == (queue->back + 1) % CAPACITY);
}

CPSC 259 Stack and Queue Page 39

Linked Representation of Queues

* The START pointer of the linked list 1s used as FRONT.

* We will also use another pointer called REAR which will
store the address of the last element 1n the queue.

e All insertions will be done at the rear end and all the
deletions will be done at the front end.

 [f FRONT = REAR = NULL, then i1t indicates that the
queue 1s empty.

REAR |

FR{‘ /

1 o / o 3 o 4 o 2 » 6 »5|N

CPSC 259 Stack and Queue Page 40

Exercise

* Implement the queue data structure using arrays and linked
lists (very similar to the implementation of Stack)

CPSC 259 Stack and Queue Page 41

Queues

* Some queues operations and their complexities:

— push(item) O(1) (add to top)

— pop() 0(1) (take off top)

— peek() O(1) (without removing)
— 1sempty() 0(1) (1s queue empty?)
— 1sfull() 0(1) (1s queue full?)

CPSC 259 Stack and Queue Page 42

Popular Interview Question

* (G1ven an expression as a string comprising of opening and
closing characters of parentheses - (), curly braces - {} and
square brackets - [], check whether symbols are balanced
or not.

* You may make use of the following function and a Stack
implementation 1n your code

// Function to check whether two characters are opening
// and closing of same type.
int ArePair(char opening,char closing)
{
if(opening == '(' && closing == ')') return TRUE;
else if(opening == '{' && closing == '}') return TRUE;
else if(opening == '[' && closing == ']') return TRUE;
return FALSE;
s

CPSC 259 Stack and Queue Page 43

1s balanced

int is_balanced(charx exp){
Stack list S;
for(int i =0;i< strlen(exp); i++){

if(expl[i] == '(' || expli]l == '{' || expl[i] == '[")
push 1ist(&S, explil);
else if(expl[i] == ")"' || expli]l == "}' || expl[i] == '1"'){

if(isEmpty_1ist(&S) ||'ArePair(peek_1ist(&S),explil))
return FALSE;
else
pop_list(&S);
Iy

¥
return isEmpty_1list(&S);

}

CPSC 259 Stack and Queue Page 44

Learning goals revisited

* Differentiate an abstraction from an implementation.

* Determine the time complexities of operations on stacks
and queues.

* Manipulate data in stacks and queues (using array and
linked list implementation).

* Use stacks and queues to solve real world problems

CPSC 259 Stack and Queue Page 45

