CPSC 259: Data Structures and Algorithms for
Electrical Engineers

Stack and Queue

(a) Thareja (first edition):9.1-9.6, 9.11, and 9.12
(b) Thareja (second edition): 7.1 —7.7.2 and 8.1-8.3
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Learning goals

* Differentiate an abstraction from an implementation.

* Determine the time complexities of operations on stacks
and queues.

* Manipulate data in stacks and queues (using array and
linked list implementation).

* Use stacks and queues to solve real world problems
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What 1s an Abstract Data Type?

* Abstract Data Type (ADT) — a mathematical description
of an object and the set of operations on the object.

— A description of how a data structure works (could be
implemented by different actual data structures).

* Example: Dictionary ADT
— Stores pairs of strings: (word, definition)
— Operations:

* Insert(word, definition)
e Delete(word)
* Find(word)
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Why so many data structures?

Ideal data structure: “Dictionary” ADT

fast, elegant, memory efficient — list

— Binary Search Tree

Trade-offs _ AVL tree

— time vs. space — Splay tree

— performance vs. elegance _ B+ tree

— generality vs. simplicity _ Red-Black tree

— one operation’s performance vs. _ hash table

another’s

. — concurrent hash table
— serial performance vs. parallel

performance
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Code Implementation

* Theoretically (in programming languages that support OOP)
— abstract base class describes ADT
— 1nherited implementations implement data structures

— can change data structures transparently (to client code)

 Practice

— different implementations sometimes suggest different interfaces
(generality vs. stmplicity)

— performance of a data structure may influence form of client code
(time vs. space, one operation vs. another)
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ADT Presentation Algorithm

* Present an ADT
Motivate with some applications

* Repeat until browned entirely through
— develop a data structure for the ADT
— analyze its properties
* efficiency
* correctness
* limitations

* ease of programming

Contrast data structure’s strengths and weaknesses

— understand when to use each one
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Stack ADT

* Stack operations
— create
— destroy

A _—~EDCBA

— push
— Pop
— top/peek
— 1s_empty F
* Stack property: if x 1s pushed before y 1s pushed,
then x will be popped after y is popped

LIFO: Last In First Out

MO QW

Demo: http://visualgo.net/list.html
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Stacks 1n Practice (Call Stack)

int square (int x){
mm) return XxXxkXx;
I3
Stack
int squareOfSum(int x, int y){
return square(x+y);
square
} X
int main() { @ squareOfSum
int a = 4; o
int b = 8;
int total = squareOfSum(a, b); Qi; main
cout << total<< endl; a,b
s
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Stacks in Practice (Arithmetic expressions)

* Application: Binary Expression Trees

Arithmetic expressions can be represented using binary
trees. We will build a binary tree representing the

expression: @
p

(3+42)*5-1
&) ©
3 &

Now let’s print this expression tree using postorder

traversal: —_—————————
We'll cover this topic
32+5%*1] - later in the course

CPSC 259 Stack and Queue Page 9



Stacks in Practice (Arithmetic expressions)

Now let’s compute this expression using a Stack

32Tl /@\
Character Stack
scanned a e

3 3

z oo

+ 5

5 5, 5

* 25

1 25,1

- 24
We'll cover this topic
later in the course
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Stacks in Practice (Backtracking)
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3 2 We'll cover this topic
later in the course
3,5,4
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Array Representation of Stacks

* In computer’s memory stacks can be represented as a

linear array.
* Every stack has a variable TOP associated with it.

* TOP 1s used to store the index of the topmost element
of the stack. It 1s this position from where the

element will be added or deleted.

* There i1s another variable MAX which will be used to
store the maximum number of elements that the stack
can hold.
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Array Representation of Stacks

typedef struct

{
int top;
intx list;
} Stack;

#define TRUE 1
#define FALSE 0‘

void initialize(Stackx stack)

{
stack—>top=-1;

stack—>1ist = (intx)malloc(sizeof(int)*CAPACITY):

}

int isEmpty(Stackx stack)
{
if (stack->top == -1)
return TRUE;
else
return FALSE;

}

int isFull(Stackx stack)
{

if (stack—->top == MAX-1)

return TRUE;

else
return FALSE;

}
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Push Operation

* The push operation 1s used to insert an element into the
stack.
* The new element is added at the topmost position of the stack.

 However, before inserting the value, we must first check 1f
TOP=MAX-1, because 1f this 1s the case then i1t means the stack
1s full and no more 1nsertions can further be done.

* An attempt to insert a value 1n a stack that 1s already full causes
an overflow error

)40 13 14 | 34 5
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Push Operation

int push(Stackkx stack, int value)

{
if (lisFull(stack))
{
stack—>top++;
stack—>1list[stack—->topl=value;
return TRUE;
¥
else
return FALSE;
¥
22 | 13 | 14 | 34 5
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Pop Operation

* The pop operation 1s used to delete the topmost element
from the stack.
 However, before deleting the value, we must first check if

TOP=-1, because 1f this 1s the case then it means the stack 1s
empty so no more deletions can further be done.

* An attempt to delete a value from a stack that is already empty
causes an underflow error.

22 13 14 | 34 5

0 1 2 3 TOP =4 5 6 7 8 9

22 13 14 | 34

0 1 2 TOP=3 4 5 6 7 8 9
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Pop Operation

int pop(Stackx stack)
{
if (!isEmpty(stack))
{
stack—>list [stack—>top]=-1;
stack—>top——;
return TRUE;
s
else
return FALSE;

22

13 14 | 34 5

(0] 1 2 3 TOP=4 5 6 7 8 9

22

13 14 | 34

1 2 TOP=3 4 5 6 7 8 9
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Peek Operation

* Peek 1s an operation that returns the value of the topmost
clement of the stack without deleting it from the stack.

* However, the peek operation first checks if the stack 1s empty or
contains some elements. If TOP = -1, then an appropriate

message 1s printed else the value 1s returned

22 13 14 | 34 5

* Here the Peck operation will return 3, as it is the value of

the topmost element of the stack.
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Peek Operation

int peek(Stackk stack)

{
if (!isEmpty(stack))
return stack—->list[stack—->top];
else
return FALSE;
I3

22 13 14 | 34 5

* Here Peek operation will return 5, as it 1s the value of the

topmost element of the stack.
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Example Stack with Arrays

Top

push B

pop
push K

push C

push A

pop
pop
pop
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Example Stack with Arrays

Top
push B
0 B
pop g
push K
1 0 K
push C
1 K|C
push A
2 K|C|A
pop
pop 1 K|C
-1
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CPSC 259 Administrative Notes

* Labs
— Lab3 — weekl 1n progress (Oct 13 — Oct 19)
— Lab3 — Week2 (Oct 26 — Oct 30)
— No labs (Oct 20 — Oct 23)

 Midterm: On Wednesday (details on course website)
— Up to and including the Stack and Queue module

e Extra office hour
— Sean: Tuesday October 20th, 2-4pm, in ICCSX239.

* Exercises/questions on Stack and Queue added to the
course website
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Stacks

* A stack operates on the LIFO principle: Last In, First
Out.

* Some stack operations and their complexities:

— push(item) O(1) (add to top)

— pop() O(1) (take off top)

— peek() O(1) (without removing)
— isempty() O(1) (is stack empty?)
— 1sfull() O(1) (1s stack full?)
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Linked list representation of Stacks

typedef struct
{

} Stack_list;

struct Nodex top;

int isEmpty_list( Stack listx stack)

{

if (stack—->top == NULL)
return TRUE;

\\\ else

return FALSE;

stack |

top

A 4
A 4

struct Node
{
int data;
struct Nodex next;

};

A 4
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Push Operation on a Linked Stack

int push_list( Stack listx stack, char value)
{
struct Nodex new_node = (struct Nodex)malloc(sizeof(struct Node));
if (new_node==NULL)
return FALSE;

new_node—>data value;
new_node—>next stack—>top;
stack—>top = new_node;
return TRUE;

new_node |

/

top

7

stack |
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Pop Operation on a Linked Stack

int pop_list(Stack listx stack)
{
if (!isEmpty_list(stack))
{
struct Nodex temp = stack—>top;
stack—>top = stack—>top—>next;
free(temp);
temp = NULL;
return TRUE;
s
return FALSE;
Iy
temp |
stack ‘
\\\g o 3 o 4 o 2 » 6 » 5N
top |/
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Peek Operation on a Linked Stack

int peek_list(Stack_ listx stack)
{
if (!'isEmpty_list(stack)) {
return stack—>top—>data;
s
else
{
return FALSE;
stack ‘ 1 ;
top |
\\\1 o 7 o 3 o 4 o 2 o 6 » 5|N
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Queue ADT

* Queue operations
— create
— destroy
— enqueue

— dequeue

— 1s_empty

enqueue .
G q >

dequeue
q . 4

FEDCB

* Queue property:
if x 1s enqueued before y 1s enqueued,
then x will be dequeued before y 1s dequeued.

FIFO: First In First Out

CPSC 259 Stack and Queue Page 28



Applications of the Q

Hold jobs for a printer

* Store packets on network routers
* Hold memory “freelists™

* Make waitlists fair

Breadth first search
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enqueue R
enqueue O
dequeue
enqueue T
enqueue A
enqueue T
dequeue
dequeue
enqueue B

dequeue

Abstract Q Example

In order, what letters are dequeued?

0O 0 T o

OATE

. ROTA

OTAE

. None of these, but it can

be determined from just the ADT.
None of these, and it cannot
be determined from just the ADT.
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enqueue R
enqueue O
dequeue
enqueue T
enqueue A
enqueue T
dequeue
dequeue
enqueue B

dequeue

Abstract Q Example

In order, what letters are dequeued?

Q0 T W

OATE

. ROTA

OTAE

. None of these, but it can

be determined from just the ADT.
None of these, and it cannot
be determined from just the ADT.
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Array Representation of Queues

* Queues can be easily represented using linear arrays.

* Every queue has front and back variables that point to the
position from where deletions and insertions can be done,
respectively. Consider the queue shown in figure

12

9

7

18

14

36

0
e Ifw

1

2

3

4

5

6

7

8

9

front=0
back =6

¢ want to add one more value 1n the list say with value
45, then back would be incremented by 1 and the value
would be stored at the position pointed by back.

12

9

7

18

14

36

45

0

1

2

3

4

5

6

7

8

9

front=0
back= 7
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Array Representation of Queues

* Now, i1f we want to delete an element from the queue, then
the value of front will be incremented. Deletions are done
from only this end of the queue

o | 7 | 18| 14 | 36 |45 front=1
back =7

* What 1s a problem with this implementation?

7 18 | 14 | 36 |45 21 | 99 | 72

0 1 2 3 4 5 6 7 8 9
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Circular Array Q Example 1

enqueue R

enqueue O

dequeue

enqueue T

enqueue A

enqueue T

dequeue

dequeue

enqueue B

dequeue
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Circular Array Q Example 1

enqueue R R

enqueue O

dequeue

enqueue T

“RR]=

RQ\Q\Q\OOOOO

enqueue A

enqueue T

dequeue

dequeue

- I I~ = | =

enqueue B E

a4

\i\\—l—l—l—l

dequeue E
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Circular Array Q Example 2

enqueue R
enqueue O
enqueue T
enqueue A
enqueue T

enqueue B

X || A |||

O||O|]|O |0 | O

—H||= ]|

* Before inserting

Check is_full()

* Before removing

Check is_empty()
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Stack and Queue

Page 36



Circular Array Q Example 3

enqueue R

enqueue O

dequeue

enqueue T

enqueue A

enqueue T

dequeue

dequeue

enqueue B

dequeue
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Circular Array Q Example 3

enqueue R R

enqueue O R |0

dequeue o

enqueue T glo|T

enqueue A Klo|T]|A

enqueue T Cannot add the second T

dequeue L

dequeue

enqueue B

dequeue ff,?c’ﬁ _ 1
R back- 1
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Array Representation of Stacks

typedef struct{
int front;
int back;
intx list;

} Queue;

void initialize(Queuex queue){
queue—>front=0;
queue—>back=0;

queue—>list = (intx)malloc(sizeof(int)*CAPACITY);
Iy

int isEmpty(Queuex queue){
return(queue->front ==queue->back);
I3

int isFull(Queuex queue){

return (queue—>front == (queue->back + 1) % CAPACITY);
}
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Linked Representation of Queues

* The START pointer of the linked list 1s used as FRONT.

* We will also use another pointer called REAR which will
store the address of the last element 1n the queue.

e All insertions will be done at the rear end and all the
deletions will be done at the front end.

 [f FRONT = REAR = NULL, then i1t indicates that the
queue 1s empty.

REAR |

FR{‘ /

1 o / o 3 o 4 o 2 » 6 »5|N
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Exercise

* Implement the queue data structure using arrays and linked
lists (very similar to the implementation of Stack)

CPSC 259 Stack and Queue Page 41



Queues

* Some queues operations and their complexities:

— push(item) O(1) (add to top)

— pop() 0(1) (take off top)

— peek() O(1) (without removing)
— 1sempty() 0(1) (1s queue empty?)
— 1sfull() 0(1) (1s queue full?)
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Popular Interview Question

* (G1ven an expression as a string comprising of opening and
closing characters of parentheses - (), curly braces - {} and
square brackets - [], check whether symbols are balanced
or not.

* You may make use of the following function and a Stack
implementation 1n your code

// Function to check whether two characters are opening
// and closing of same type.
int ArePair(char opening,char closing)
{
if(opening == '(' && closing == ')') return TRUE;
else if(opening == '{' && closing == '}') return TRUE;
else if(opening == '[' && closing == ']') return TRUE;
return FALSE;
s
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1s balanced

int is_balanced(charx exp){
Stack list S;
for(int i =0;i< strlen(exp); i++){

if(expl[i] == '(' || expli]l == '{' || expl[i] == '[")
push 1ist(&S, explil);
else if(expl[i] == ")"' || expli]l == "}' || expl[i] == '1"'){

if(isEmpty_1ist(&S) ||'ArePair(peek_1ist(&S),explil))
return FALSE;
else
pop_list(&S);
Iy

¥
return isEmpty_1list(&S);

}
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Learning goals revisited

* Differentiate an abstraction from an implementation.

* Determine the time complexities of operations on stacks
and queues.

* Manipulate data in stacks and queues (using array and
linked list implementation).

* Use stacks and queues to solve real world problems
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