
CPSC 259 Structs (Records) Page 1

CPSC 259: Data Structures and Algorithms for
Electrical Engineers

 Structs (Records)

Textbook References:

(a) Etter: start of Chapter 7
(b) Thareja (first edition): 7.1 – 7.4

(c) Thareja (second edition): 5.1 – 5.4

 Hassan Khosravi

(borrowing some slides from Ed Knorr)

CPSC 259 Structs (Records) Page 2

Learning Goals
•  Define and use records (e.g., structs in C) in an

implementation with dynamic memory allocation.

•  Become more familiar with addresses and pointers in C.

CPSC 259 Structs (Records) Page 3

Records (Structures)
  Often, we need to deal with related data (i.e., several attributes)

about a specific entity. For example:
  an employee is identified by a unique employee number, and

has the following additional (possibly non-unique) attributes:
name, street address, city, province, postal code, salary, job
title, etc.

  A structure is declared using the keyword struct followed by a
structure name. All the variables of a structure are declared within
the structure. A structure type is defined by using the given syntax.

struct Employee { !
 int empNum; !
 char name[MAXLEN]; !
 double salary; !
}; !

CPSC 259 Structs (Records) Page 4

Records (Structures)
  The structure definition does not allocate any memory.

It just gives a template that conveys to the C compiler
how the structure is laid out in memory and gives details
of the member names.

  Memory is allocated for the structure when we declare a
variable of the structure. For example, we can define a
variable of an employee by writing

 struct Employee boss1;

struct Employee { !
 int empNum; !
 char name[MAXLEN]; !
 double salary; !
}; !

CPSC 259 Structs (Records) Page 5

Typedef
  We can define a structure as a type so then we can

declare it without using the struct keyword.

 struct Employee boss1; Employee boss1;

 typedef struct{ !
 int empNum; !
 char name[MAXLEN]; !
 double salary; !
} Employee;

struct Employee{ !
 int empNum; !
 char name[MAXLEN]; !
 double salary; !
} ; !
!
typedef struct Employee Employee

Method 1 Method 2

CPSC 259 Structs (Records) Page 6

Initialization of Structures
  Initializing a structure means assigning some constants

to the members of the structure.

  The initializers are enclosed in braces and are separated
by commas. Note that initializers match their
corresponding types in the structure definition.

  When the user does not explicitly initialize the structure
then C automatically does that. For int and float
members, the values are initialized to zero and char and
string members are initialized to the ‘\0’ by default.

 Employee former_boss = {5000, "Derek", 99250.75};

CPSC 259 Structs (Records) Page 7

Accessing the Members of a Structure
  Each member of a structure can be used just like a

normal variable, but its name will be a bit longer. A
structure member variable is generally accessed using
the ‘.’ (dot operator).

  The syntax of accessing a structure member:

new_boss.empNum = 1000; !
strcpy(new_boss.name, "Ralph"); !
new_boss.salary = 125750.99;

CPSC 259 Structs (Records) Page 8

Arrays of Structures
  The general syntax for declaring an array of structure

can be given as:

  Now, to assign values to the ith staff, we will write:

 Employee staff_junior[20];

staff_junior[0].empNum = 2000; !
strcpy(staff_junior[0].name, "Susan"); !
staff_junior[0].salary = 50000.00;

CPSC 259 Structs (Records) Page 9

Declaring a Stand-alone Structure (pointers)
  Like in other cases, a pointer to a structure is never itself

a structure, but merely a variable that holds the address
of a structure. The syntax to declare a pointer to a
structure can be given as

  To access the members of the structure, one way is to
write /* get the structure, then select a member */

  An alternative to the above statement can be used by
using ‘pointing-to’ operator (->)

Employee * vice_president; !
vice_president = (Employee *) malloc(sizeof(Employee)); !

(*vice_president).salary += 10000.00; /* one way */

vice_president->empNum = 1; /* another way */
vice_president->salary = 105000.00; !

CPSC 259 Structs (Records) Page 10

Declaring an Arrays of a Structure

 Employee * staff_senior; !
 staff_senior = (Employee *) malloc(num_staff_senior *

 sizeof(Employee)); !
 !
/* Accessing the data using arrays */!
 staff_senior[i].empNum = 100 +i; !
 !
/* another way of accessing the data, via pointer arithmetic */!
(staff_senior +i)->salary = 80000;/* parentheses needed */!
(*(staff_senior+i)).salary *= 1.05; /* 5% pay increase */!
!

CPSC 259 Structs (Records) Page 11

Nested Structs
  A structure can be placed within another structure;

 typedef struct{ !
 int empNum; !
 char name[MAXLEN]; !
 double salary; !
 Date dob; !
} Employee;

 typedef struct{ !
 int dd; !
 int mm; !
 int yy; !
} Date;

int main(void){ !
 Employee instructor; !
 instructor.empNum = 100; !
 instructor.dob.dd = 10; !
 instructor.dob.mm = 11; !
 instructor.dob.yy = 1962; !
}

CPSC 259 Structs (Records) Page 12

Passing a structure to a function
call by value

  When a structure is passed as an argument, it is passed
using call by value method. That is a copy of each
member of the structure is made.

void printEmp(Employee emp){ !
printf("Employee Number: %d\n", emp.empNum); !
printf("Employee Name: %s\n", emp.name); !
printf("Employee Salary: $%.2f\n\n", emp.salary); !

}

printEmp(new_boss); !

CPSC 259 Structs (Records) Page 13

Passing a structure to a function
call by reference

  This is a very inefficient method especially when the
structure is very big or the function is called frequently.
Therefore, in such a situation passing and working with
pointers may be more efficient.

void printEmp_ptr(Employee* emp){ !
printf("Employee Number: %d\n", (*emp).empNum); !
printf("Employee Name: %s\n", (*emp).name); !
printf("Employee Salary: $%.2f\n\n", (*emp).salary); !

}

printEmp_ptr(&new_boss); !

Please see employee_records.c

CPSC 259 Structs (Records) Page 14

Clicker question
What is the size of the Employee struct given sizeof(int) =4,
sizeof(char*)=8, and sizeof(double)=8?
A.  12 bytes
B.  16 bytes
C.  20 bytes
D.  32 bytes
E.  We can’t estimate the size since we don’t know how

many characters are in the name field.

 typedef struct{ !
 int empNum; !
 char* name; !
 double salary; !
} Employee;

CPSC 259 Structs (Records) Page 15

Clicker question
What is the size of the Employee struct given sizeof(int) = 4,
sizeof(char*)=8, and sizeof(double)=8?
A.  12 bytes
B.  16 bytes
C.  20 bytes
D.  32 bytes
E.  We can’t estimate the size since we don’t know how

many characters are in the name field.

4 8 8

 typedef struct{ !
 int empNum; !
 char* name; !
 double salary; !
} Employee;

CPSC 259 Structs (Records) Page 16

Clicker question
  What is stored in the “name” field in boss? Choose the

best answer

A.  The name field eventually contains a character string of some
currently unknown length, so the size of “boss” will change.

B.  The name field eventually contains a character string of some
currently unknown length, but the size of “boss” will not change.

C.  The name field is a pointer to another area of memory that eventually
holds a character string of some currently unknown length, but the
size of “boss” will not change.

 typedef struct{ !
 int empNum; !
 char* name; !
 double salary; !
} Employee; !
... !
Employee boss; !

CPSC 259 Structs (Records) Page 17

Clicker question
  What is stored in the “name” field in boss? Choose the

best answer

A.  The name field eventually contains a character string of some
currently unknown length, so the size of “boss” will change.

B.  The name field eventually contains a character string of some
currently unknown length, but the size of “boss” will not change.

C.  The name field is a pointer to another area of memory that eventually
holds a character string of some currently unknown length, but the
size of “boss” will not change.

 typedef struct{ !
 int empNum; !
 char* name; !
 double salary; !
} Employee; !
... !
Employee boss; !

CPSC 259 Structs (Records) Page 18

A running example
  Example of an Airplane structure.

  Declare and initialize a local record using the Airplane
structure

struct Airplane { !
 int flight_number; !
 char source[32]; !
 char destination[32]; !
}; !

 struct Airplane AC={101, "Vancouver", "Calgary"};

 struct Airplane AC; !
 AC.flight_number = 101; !
 strcpy(AC.source, "Vancouver"); !
 strcpy(AC.destination, "Calgary");

