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Abstract

First-order methods are gaining substantial interest in the past two decades because

of their superior performance in solving today’s large-scale problems. In this thesis,

we study some widely used first-order methods for problems that satisfy certain

structures. Specifically, in the first part, we contribute to coordinate optimization

and show that greedy coordinate descent (GCD) has an implicit screening ability

that usually selects coordinates that are nonzero at the solution, which explains

why GCD works exceptionally well for problems that admit sparse solutions. We

also extend the elegant safe-screening rule that depends on duality gap to atomic-

norm regularized problems. In the second part, we study online mirror descent

(OMD) with unknown time horizon and unbounded domain, which is known to

suffer from linear regret. We provide a stabilization technique and show that the

stabilized-OMD can achieve sublinear regret. We also build the connection between

stabilized-OMD and dual averaging. In the third part, we derive improved iteration

complexity of the stochastic subgradient method for over-parameterized models that

satisfy an interpolation condition. The obtained iteration complexity matches the

rate of the stochastic gradient method applied to smooth problems that also satisfy

an interpolation condition. Our analysis partially explains the empirical observation

that nonsmoothness in modern machine learning models sometimes does not slow

down the training process.
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Lay Summary

Optimization algorithms are prevalent in modern data-driven applications. The

recent immense growth of data volumes has spurred the rapid development of new

varieties of algorithms efficient for large problems. Despite their success in practice,

the theory behind these algorithms is incomplete and often fails to explain empirical

performance. This thesis aims to fill some of these gaps, contribute to a better

understanding of some widely used optimization algorithms, and shed light on the

design of new algorithms.
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The main body of this thesis is based several collaborative papers that are either

published or currently under review.

• The work presented in the first part of Chapter 2 (Section 2.3) was published

in AISTATS, 2020 (Fang et al., 2020a). I am the primary contributor to
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Chapter 1

Introduction

Optimization is a fundamental aspect of many fields, including machine learning,

data mining, signal processing, and bioinformatics. In modern applications such

as recommender systems, computer vision, and natural language processing, both

the amount of data and the model’s size can be very large. For example, some

of today’s social networks could have hundreds of millions of users, and some

recent neural network architectures could have billions of parameters. As a result,

efficient optimization algorithms that can handle both big data and complex models

are of great interest in recent years. Many optimization algorithms were proposed

or re-discovered in the last two decades to solve today’s large-scale optimization

problems. Due to the low numerical accuracy required by most machine learning

and data mining tasks, first-order optimization methods with cheap per-iteration

computational cost dominate certain fields in machine learning. In particular,

stochastic gradient descent (SGD) and coordinate descent (CD) are the two most

important representatives. SGD and its variants are dominant for the big-N problems

— i.e., problems with a large number of samples, while CD and its variants are

highly efficient in handling the structured big-p problems — i.e., models with a

large number of parameters.

The empirical success of first-order methods has driven extensive research

in recent years on understanding the effectiveness of these methods as well as

developing new variants of first-order methods for emerging applications. However,

despite some notable progress made by some pioneering researchers in recent years,
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there are still many open problems left unsolved in this area. Given the importance

and popularity of first-order optimization algorithms, there is a great need to solve

these open problems. This thesis aims to solve some of these open problems and

contribute to a better understanding of first-order optimization methods in different

scenarios. In this chapter, we summarize some classical results of some important

first-order algorithms and describe the contributions of this thesis.

1.1 Notation and preliminaries
Throughout this thesis, unless otherwise specified, we use capital letters A,B, . . .

to denote matrices, lowercase letters x,y,w, . . . to denote vectors, except L which

usually denote the smoothness parameter, and m,n,d which are commonly used

as the dimension of matrices or vectors. We use Greek letters α,β ,γ, . . . to denote

scalars. The ith entry of a given vector x is denoted as xi, and we use x(t) to represent

the t-th iterate in an algorithm. The norm ‖ ·‖ stands for Euclidean-norm. We define

[n] to be the set {1,2, . . . ,n}. We denote a solution of an optimization problem to

be x∗ and the optimal function value f (x∗) to be f ∗, we assume that x∗ exist and

f ∗ >−∞ throughout this thesis.

Before proceeding to the classical results of first-order methods, we review some

standard definitions that are commonly used in the literature of convex optimization.

Definition 1.1.1. A function f : Rd → R is convex if

f (λx+(1−λ )y)≤ λ f (x)+(1−λ ) f (y)

for any x,y ∈ Rd , and any λ ∈ [0,1].

Definition 1.1.2. For a closed, convex function f : Rd → R, the subdifferential of

f at x is defined as

∂ f (x) :=
{

v ∈ Rd
∣∣∣ f (y)≥ f (x)+ 〈v,y− x〉, ∀y ∈ Rd

}
.

Definition 1.1.3. The dual norm of a given norm ‖ · ‖ is defined as

‖z‖∗ := sup{〈z,x〉 | ‖x‖ ≤ 1,x ∈ Rd}.

2



x(0)

Figure 1.1: Illustration of gradient descent

Definition 1.1.4. A function f : Rd → R is γ-Lipschitz continuous with respect to

a norm ‖ · ‖ for some γ > 0 if ∀x,y ∈ Rd ,

| f (x)− f (y)| ≤ γ‖x− y‖.

Definition 1.1.5. A function f : Rd → R is L-smooth with respect to a norm ‖ · ‖
for some L > 0 if it is differentiable and ∀x,y ∈ Rd ,

‖∇ f (x)−∇ f (y)‖ ≤ L‖x− y‖∗,

where ‖ · ‖∗ is the dual norm paired with ‖ · ‖.

Definition 1.1.6. A function f : Rd → R is µ-strongly convex with respect to a

norm ‖ · ‖ for some µ ≥ 0 if ∀x,y ∈ Rd ,

f (x)≥ f (y)+ 〈g,x− y〉+ µ

2
‖x− y‖2, ∀g ∈ ∂ f (y).

1.2 Gradient and subgradient descent
Gradient and subgradient descent (GD, subGD) are perhaps the oldest first-order

optimization methods that can be traced back to 1847 (Cauchy, 1847). Consider the

unconstrained optimization problem

min
x∈Rd

f (x), (1.1)

3



where f is a continuous function. In the t-th iteration, (sub)GD updates the iterate

by moving it to the negative (sub)gradient direction

x(t+1) = x(t)−ηtg, g ∈ ∂ f (x(t)),

where ηt is the stepsize used in the t-th iteration. An illustration of GD is shown in

Figure 1.1. It is known that GD has the following convergence properties:

• When f is convex and L-smooth, GD with constant stepsize ηt = 1/L is

guaranteed to achieve an ε-accurate solution1 inO(Lε−1) iterations (Nesterov,

2004). This rate can be improved to O(Lε−1/2) by adopting Nesterov’s

acceleration technique (Nesterov, 1983) and was proven to be optimal for

first-order methods in the convex and smooth setting;

• When f is µ-strongly convex and L-smooth, GD with constant stepsize

ηt = 1/L achieves a linear convergence rate O
(
(L/µ) log(ε−1)

)
(Nesterov,

2004);

• When f is convex but not necessarily smooth, GD with decaying stepsize

ηt ∝ t−1/2 converges at the rateO(Lε−2) (Nemirovski and Yudin, 1983; Shor,

1984). If we treat L as a constant, then the rate O(ε−2) has been proven to be

optimal for first-order methods (Nemirovski and Yudin, 1983) in the convex

and nonsmooth setting;

• When f is L-smooth but not necessarily convex, GD may not converge to a

global solution. Instead, GD with constant stepsize ηt = 1/L can converge

to an ε-stationary point2 in O(Lε−1) iterations. This is a well-known result

that can be found in optimization textbooks, but its origin is not known to the

author’s knowledge.

Note that many results in the literature treat the smoothness or strongly convex

parameters as constants and omit them in the big-O notation. However, as we

will show in Section 1.3, these parameters play an important role in understanding

the convergence of coordinate descent. In order to compare the convergence rates

1A point x is an ε-accurate solution if f (x)− f ∗ ≤ ε .
2A point x is an ε-stationary point if ‖∇ f (x)‖2 ≤ ε .

4



x(0)

Figure 1.2: Illustration of cooridnate descent

between different first-order algorithms, we will not treat them as constants in this

chapter.

1.3 Coordinate descent
Coordinate descent (CD) is a simple extension of GD. Instead of updating the

whole vector x in each iteration, CD selects a single coordinate (or a small set

of coordinates) according to some coordinate selection rules and apply standard

gradient step to them. Consider the single coordinate selection case with the update

rule

x(t+1) = x(t)−ηt∇it f (x(t))eeeit ,

where it is the coordinate selected by some selection rules in the t-th iteration and

eeeit is a zero vector with a one in the it-th entry. An illustration of CD is shown in

Figure 1.2.

CD is an old algorithm. Its history can be traced back to 1874 as an iterative

method due to Seidel to solve linear systems, also known as the Gauss-Seidel

method. Empirically, CD is simple and effective. Its superior performance against

other classical algorithms on some machine learning problems makes it a popular

optimizer for a wide range of applications, including clustering (Lloyd, 1982),

support vector machines (Chang and Lin, 2011; Joachims, 1999; Platt, 1998) and

LASSO (Hastie et al., 2008; Sylvain Sardy and Tseng, 2000). On the theory side,

pioneering researchers made important contributions to understand the convergence

5



behavour of CD in late 20th century (Bertsekas and Tsitsiklis, 1989; Luo and Tseng,

1992, 1993; Tseng, 2001). However, the global convergence rate of CD was not

clear until Nesterov’s seminal work (Nesterov, 2012), in which Nesterov explicitly

answered why CD could be significantly faster than GD.

Consider problem 1.1, where f is L-smooth. Let Li denote the coordinate-wise

smoothness parameter of f , namely for any i ∈ [d], i.e.,

|∇i f (x+αeeei)−∇i f (x)| ≤ Li|α|, ∀x ∈ Rd ,α ∈ R.

Let Lmax := maxi∈[d] Li. It is easy to verify that Lmax ≤ L ≤ dLmax. With a simple

random coordinate selection rule, Nesterov demonstrated that one could adopt a

longer stepsize 1/Lmax compared with the stepsize 1/L used in GD when updating

a single coordinate. Based on this observation, Nesterov established the following

convergence rates for randomized CD (RCD):

• When f is convex, RCD is guaranteed to obtain an ε-accurate solution within

O(dLmaxε−1) iterations in expectation;

• When f is µ-strongly convex, RCD has the rate O
(
(dLmax/µ) log(ε−1)

)
in

expectation.

Recall that Lmax ≤ L≤ dLmax, the above rates indicate that RCD is slower than GD

(see the rates in Section 1.2). However, Nesterov pointed out that for a wide range

of problems, RCD can be implemented cleverly such that running d RCD steps

cost roughly the same time as one GD iteration. Note that the convergence rate of

RCD in terms of epoch (d RCD iterations) is O(Lmaxε−1) for convex objective and

O
(
(Lmax/µ) log(ε−1)

)
for strongly convex objective. Therefore RCD is faster than

GD in terms of runtime. We refer interested readers to Nesterov (2012) for more

details.

Extensive research has been carried on since Nesterov’s 2012 work. Here we

just list some notable results: convergence analysis for proximal RCD (Richtárik

and Takác, 2014), different coordinate selection rules (Beck and Tetruashvili, 2013;

Lee and Wright, 2018; Nutini et al., 2015; Recht and Ré, 2012; Saha and Tewari,

2013; Sun and Ye, 2021), accelerated RCD (Allen Zhu et al., 2016; Lee and Sidford,

2013; Lin et al., 2015), and parallel CD with multiple computing cores (Bradley

6



x(0)

Figure 1.3: Illustration of stochastic gradient descent

et al., 2011; Hannah et al., 2019; Jaggi et al., 2014; Liu et al., 2014a; Richtárik and

Takác, 2011; You et al., 2016).

1.4 Stochastic gradient descent
For many machine learning and data mining applications, we are interested in

solving an empirical-risk minimization problem that can be written as a finite sum

minimization problem

min
x∈Rd

f (x) :=
1
n

n

∑
i=1

fi(x),

where n is the number of training samples that could be very large in modern

applications, for example 107 for the imagenet dataset3.

GD or subGD are expensive in this setting since they need to call n gradient

oracles for a single iteration. Instead of calculating the exact gradient in each

iteration, stochastic gradient descent (SGD) (Robbins and Monro, 1951) method

calculates an unbiased estimator of the true gradient from a small subset of the

whole training samples. Consider sampling one training sample in each iteration,

the update rule of SGD is

x(t+1) = x(t)−ηtg, g ∈ ∂ fit (x
(t)),

for some it uniform randomly chosen from {1,2, . . . ,n} in each iteration. An

3http://www.image-net.org/
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illustration of SGD is shown in Figure 1.3. Obviously, the per iteration cost of

SGD is n time cheaper than GD. At the cost of using cheap and noisy gradient for

update, SGD converges slower than GD in terms of the number of iterations. SGD

has the following convergence guarantee under the bounded variance assumption

(supx∈Rd E[‖∇ fi(x)−∇ f (x)‖]≤ σ for some σ > 0):

• When f is convex and γ-Lipschitz continuous, SGD with decaying stepsize

ηt ∝ t−1/2 could obtain an ε-solution within O((γ2 +σ2)ε−2) iterations (Ne-

mirovski et al., 2009) in expectation;

• When f is µ-strongly convex and γ-Lipschitz continuous, SGD converges

to global minimum with a rate O((γ2 +σ2)µ−1ε−1) (Lacoste-Julien et al.,

2012; Nemirovski et al., 2009) in expectation;

• When f is L-smooth but not necessarily convex, SGD with decaying stepsize

ηt ∝ t−1/2 could approach an ε-stationary point within O(Lε−1 +Lσ2ε−2)

iterations (Ghadimi and Lan, 2013) in expectation.

Compared with the rates of GD stated in Section 1.2, the convergence rates of

SGD described above are worse. However, an extraordinary fact of SGD is that its

convergence rates are independent of the total number of samples n. Therefore, SGD

fits perfectly to applications with a large number of training samples and require

low numerical accuracy. The superior empirical performance of SGD makes it and

its variants such as ADAM (Kingma and Ba, 2015) the default choice for training

modern machine learning models. Note that modern machine learning models

often yield nonconvex and nonsmooth objective, but SGD still usually performs

unreasonably well in these tasks.

An important advance of SGD in the last decade is the variance reduction

technique proposed by Schmidt et al. (2017), who proposed the first linear conver-

gent SGD (under strong convexity) based algorithm called SAG (Schmidt et al.,

2017). Following this work, there is a line of research that tries to improve SGD

with variance reduction under different scenarios. Examples include the well-

known SVRG (Johnson and Zhang, 2013), SAGA (Defazio et al., 2014), and

SARAH (Nguyen et al., 2017) algorithms.
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1.5 Mirror descent
The mirror descent (MD) algorithm (Beck and Teboulle, 2003; Nemirovski and

Yudin, 1983) is a generalization of the classical projected subgradient descent

(PGD) method. The major difference between MD and PGD is that MD explicitly

distinguishes the “primal” and “dual” spaces and applies the gradient update in the

dual space. Consider problem 1.1 with the constraint x ∈ X , the update rule of MD

can be written as

x(t+1) = argmin
x∈X

{
〈x,g〉+ 1

ηt
BΦ(x,x(t))

}
, g ∈ ∂ f (x(t)),

where BΦ is the Bregman divergence induced by the mirror map Φ : Rd → R,

detailed explanation of these technical terms will be described in Chapter 3.

We can recover the update rule of PGD by choosing the mirror map Φ to be

2-norm squared. Therefore PGD is a special case of MD. MD’s main advantage over

PGD is that MD, for certain applications, can enjoy a better Lipschitz constant and

simpler projection than PGD by choosing an appropriate mirror map. A typical ex-

ample that favours MD than PGD is when the constraint set is a probability simplex,

i.e., X = {∑d
i=1 xi = 1,xi ≥ 0}. In this case, MD has the following advantages:

• When f is γ-Lipschitz continuous with respect to ‖ · ‖∞. It follows that f is√
dγ-Lipschitz continuous with respect to ‖ · ‖2 and the number of iterations

required to obtain an ε-solution would be O(
√

dγε−2). By using negative

entropy as the mirror map, MD can improve the rate toO(Lε−2), which could

be significant when d is large.

• The projection in Euclidean space requires us to do a sorting while the

projection used in MD is a simple scaling operation by using negative entropy

as the mirror map.

Given the above observations, MD with the negative entropy mirror map (also

known as the exponentiated gradient descent) perfectly fits problems with Lipschitz

constant related to infinity norm and probability simplex constraints. A classic

example of this type is the prediction with expert advice problem in the online

learning community. Therefore MD is an useful algorithmic template for online
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learning problems and has been heavily studied in recent years.

1.6 Summary of contributions
As we described in previous sections, the theory of first-order optimization algo-

rithms is heavily studied. However, there are some deficiencies with the current

analysis:

• For some algorithms, the current analyses work for quite general problems.

At the cost of generality, the analyses are sometimes too pessimistic and fail

to explain some common empirical observations for problems that satisfy

certain structures.

• For some other algorithms, the analyses work only for a restricted class of

problems and cannot be applied to problems that satisfy some other important

structures, such as problems with atomic-norm regularization instead of the

classic 1-norm regularization.

This thesis aims to improve and extend the classical analysis of some first-order

optimization algorithms for problems that satisfy certain structures.

In Chapter 2, we focus on coordinate descent and sparse optimization. First,

we consider applying coordinate descent with greedy selection rule (GCD) for

composite objectives in form f +g. When the composite problem admits sparse

solutions, empirical evidence in the literature suggests that GCD, when initialized

as zero vector, has an implicit variable selection ability. Therefore, GCD can

usually select coordinates that are nonzero at the solution and converge significantly

faster than randomized CD. By leveraging the composite problem structure and

sparse solution, we present an improved analysis of GCD for sparse optimization

and theoretically explained why GCD has the implicit variable selection property.

Second, we consider problems with general atomic-sparsity and extend the analysis

of the gap safe screening rule (Ndiaye et al., 2017) to general atomic sets. We

also study the effectiveness of gap safe screening rule for problems with low-rank

solutions.

In Chapter 3, we try to improve mirror descent in the context of online learning.

In the literature of online convex optimization, online mirror descent (OMD) and
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dual averaging (DA) are two fundamental algorithmic templates. They are known

to have a very similar (or even identical) performance guarantee in most scenarios

when a fixed stepsize is used. However, for dynamic stepsize, OMD is provably

inferior to dual averaging. It is known that OMD with a dynamic stepsize scheduling

can suffer from linear regret. We modify the OMD algorithm through a simple

technique called stabilization and give essentially the same abstract regret bound for

stabilized-OMD and DA by modifying the classical OMD convergence analysis in a

careful and modular way. Simple corollaries of these bounds show that OMD with

stabilization and DA enjoy the same performance guarantees in many applications

even under dynamic stepsize scheduling.

In Chapter 4, we study the convergence behaviour of the stochastic subgradient

descent (SSGD) method applied to over-parameterized nonsmooth optimization

problems that satisfy an interpolation condition. By leveraging the composite struc-

ture of the empirical risk minimization problems, we prove that SSGD converges,

respectively, with rates O(ε−1) and O(log(ε−1)) for convex and strongly convex

objectives when interpolation holds. These rates coincide with established rates

for the stochastic gradient descent (SGD) method applied to smooth problems that

also satisfy an interpolation condition. Our analysis provides a partial explanation

for the empirical observation that sometimes SGD and SSGD behave similarly for

training smooth and nonsmooth machine learning models. We also prove that the

rate O(ε−1) is optimal for the subgradient method in the convex and interpolation

setting.
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Chapter 2

Coordinate descent and sparse
optimization

Coordinate descent (CD) is gaining increasing interest due to its simplicity and

effectiveness in the last two decades. It is the state-of-the-art optimization algorithm

for problems that satisfy the coordinate-friendly structure (Nutini et al., 2015; Peng

et al., 2016), that is the computation time required to update all coordinates is

roughly the same as the time of one gradient descent step. Problems of this type

including the `1 regularized least squares (LASSO) (Sylvain Sardy and Tseng, 2000)

and the support vector machines (SVMs) (Platt, 1998).

2.1 Different selection rules
The coordinate selection rule used in the CD algorithm plays an important role

in the convergence of CD. Five selection rules are commonly used in practice —

uniform random, non-uniform random, cyclic, random permuted cyclic and greedy

selection rules.

• Randomized CD (RCD): RCD uniform randomly selects a coordinate from

{1,2, . . . ,d} to update in each iteration. It is the version that Nesterov an-

alyzed in his seminal work (Nesterov, 2012). The convergence analysis of

randomized CD is simple since the coordinates selected in different iterations

are independent from each other. RCD has good theoretical properties, it is
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provably faster (in terms of run time) than GD for problems that satisfy the

coordinate-friendly structure. However, the implementation of RCD is cache

unfriendly due to random access in memory.

• Non-uniform random CD (Non-uniform RCD): Non-uniform RCD is sim-

ilar to RCD except that it adopts non-uniform sampling to select coordinate

to update. A typical example of non-uniform sampling is the Lipschitz sam-

pling, this sampling strategy sample a coordinate to update with probability

that proportional to the coordinate’s Lipschitz constant. This non-uniform

sampling strategy was first studied by Nesterov (2012). Nesterov showed that

the Lipschitz sampling could improve the convergence rate of RCD when the

Lipschitz constants among coordinates are highly imbalanced.

• Cyclic CD (CCD): CCD is the oldest version of CD and can be traced back

to the Gauss-Seidel algorithm for solving linear systems. CCD predefine a

permutation π of {1,2, . . . ,d} and selects coordinate π((i−1) mod d+1) in the

ith iteration. CCD is easy to implement and more cache friendly than RCD

because of the nature of sequential access. Though CCD usually converges at

a similar rate as (or sometimes even faster than) RCD in practice, its conver-

gence analysis is hard due to the inherent dependency among the coordinates

selected. In fact, Nesterov stated that “it is almost impossible to estimate

the rate of convergence” for CCD (Nesterov, 2012). The non-asymptotic

convergence rate of CCD was later investigated by Saha and Tewari (2013),

who obtained a non-asymptotic rate by imposing the isotonicity assumption,

which is a strong assumption that may not hold in practice. Later Beck and

Tetruashvili (2013) obtained the first global convergence rate of CCD without

any further assumptions (and actually with simple and clean proofs). However,

the rate that Beck and Tetruashvili obtained for CCD is much worse than RCD

and this result seems to be inconsistent with empirical observations, Beck

and Tetruashvili stated that the rate they derived may be improvable. This gap

between theory and practice was filled by Sun and Ye (2021), who formally

proved that there exist instances such that CCD is provably Ω(d2) slower

than RCD (Sun and Ye, 2021). However, their counterexample does not apply

to random permuted cyclic CD (Lee and Wright, 2018), which we describe
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next.

• Random permuted cyclic CD (RPCD): RPCD can be viewed as a midway

point between RCD and CCD. It produces a random permutation at the

beginning of each epoch and runs CCD with the permutation generated. The

coordinates being selected are independent between epochs but dependent

within each epoch. In terms of cache-friendliness, RPCD is better than RCD

but worse than CCD. RPCD is easy to implement and performs similarly

tp (or even better than) RCD empirically in many cases. Many efficient

solvers for machine learning problems such as LIBLINEAR (Fan et al.,

2008) are actually built on RPCD. The convergence rate of RPCD can be

directly obtained from Beck and Tetruashvili’s analyses for CCD (Beck

and Tetruashvili, 2013). But again, this rate cannot explain the empirical

performance of RPCD. Provably showing that RPCD outperforms RCD for

least square problems turns out to be a hard mathematical problem: Recht and

Ré (2012) abstracted the RPCD versus RCD problem into a formal conjecture

called the “matrix AMGM” inequality (Recht and Ré, 2012)1, which is the

matrix version of the arithmetic-geometric mean inequality. The matrix

AMGM inequality was recently proven to be false (Lai and Lim, 2020; Sa,

2020) and there exist instances such that RPCD is provably inferior to RCD.

• Greedy CD (GCD): GCD is also known as the Gauss-Southwell (GS) rule

for solving linear system. Different from RCD, CCD and RPCD, GCD

selects the coordinate from argmaxi∈[d] |∇i f (x(t))|, which has the largest

marginal change at each iteration. It is worth noting that one may not be

able to implement the greedy rule efficiently even if the problem satisfy the

coordinate-friendly structure. That is, the run time of one epoch of GCD

is usually much more expensive than one gradient descent step. However,

exceptions do exist, for example the dual problem of kernel SVM (a quadratic

programming problem with box constraints) whose kernel matrix has similar

number of nonzeros among its columns, in these cases GCD can be imple-

1The original matrix AMGM inequality from Recht and Ré (2012) was originally motivated by the
problem of random permuted SGD versus SGD, but its argument can be easily incorporated to CD.
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mented efficiently2 and one epoch of GCD has roughly the same computation

cost as one gradient descent iteration. The state-of-the-art solvers for kernel

SVM — LIBSVM (Chang and Lin, 2011) and SVMLight (Joachims, 1999)

both are built on GCD.

The computational costs of the above selection rules are different. Random,

cyclic and random permuted cyclic selection rule shares similar property. They can

all benefit from the coordinate-friendly structure, that is, the runtime of d iterations

with these three selection rules cost roughly the same time as one gradient descent

step. For GCD, as mentioned above, the coordinate-friendly structure alone is not

sufficient for it to have efficient implementation. To implement the greedy selection

rule efficiently, stronger problem structures (such as the Hessian matrix need to

be both row- and column-wise sparse, see a more comprehensive discussion in

Nutini et al. (2015)) are required. The computational cost of non-uniform RCD is

similar to GCD, and it depends on the sparsity structure of problems. For problems

with a balanced sparsity structure (for example, the least-square problem with a

balanced number of non-zeros for different columns), the time required to update

different coordinate costs similar time. Therefore, d steps of non-uniform RCD cost

similar time as one gradient descent step in this case. For problems with a highly

unbalanced sparsity structure (for example, least-square problem with one column

completely dense and other columns very sparse), the computational cost of RCD

with the Lipschitz sampling could be very high; one coordinate update could be as

expensive as one gradient descent step in the worst case.

2.2 Greedy coordinate descent (GCD)
GCD and GD are closely related. Both of these two methods can be interpreted

as steepest descent method on the first-order Taylor expansion of the objective

function, where GD is the steepest descent with respect to 2-norm and GCD is

the steepest descent with respect to 1-norm (Boyd and Vandenberghe, 2004, §9.4).

Different from the convergence rate of RCD, the convergence of GCD is more

“similar” to GD and both of them enjoy dimension free convergence rate. For convex

2But require to store the kernel matrix in memory.

15



and smooth (but not necessarily strongly convex) objective function f , GCD has the

convergence rate (see, for example, in work from Dhillon et al. (2011)3)

f (x(t))− f ∗ ≤ LmaxR1(x(0))
t

,

where R1(x(0)) = supx∈X ∗ ‖x− x(0)‖2
1, X ∗ is the solution set, Lmax is the maximum

coordinate-wise smoothness parameter, see Chapter 1.3 for its definition. Note that

the convergence rate of GD (Nesterov, 2004) is

f (x(t))− f ∗ ≤ LR(x(0))
2t

.

where L is the smoothness parameter with respect to 2-norm and R(x(0)) is the initial

condition under 2-norm. Therefore convergence rates of both GCD and GD are

independent from the problem size d, their only difference is how the smoothness

parameter and distance to solution is measured, where the parameters of GCD

depend on 1-norm and the parameters of GD depend on 2-norm.

For strongly convex objective, GCD has the convergence

f (x(t))− f ∗ ≤
(

1− µ1

Lmax

)t (
f (x(0))− f ∗

)
.

This rate is from the refined analysis of GCD from Nutini et al. (2015), where µ1 is

the strongly convex parameter with respect to 1-norm. Compared to the convergence

of GD for strongly convex objective

f (x(t))− f ∗ ≤
(

1− µ2

L

)t (
f (x(0))− f ∗

)
,

which is built on the smoothness and strongly convex parameters (L and µ2) with

respect to 2-norm. By norm inequality, we know that µ2/d ≤ µ1 ≤ µ2 and Lmax ≤
L≤ dLmax. The above rates implies that GCD converges faster than RCD (in terms

of iterations) since µ1 ≤ µ2. Moreover, these rates demonstrate that GCD could be

faster than GD when µ1/Lmax > µ2/L and slower than GD otherwise.

3The original proof from Dhillon et al. (2011) used the smoothness parameter with respect to
1-norm. However, their proof can be modified to use the coordinate-wise smoothness parameter Lmax.
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2.3 GCD for sparse optimization
We consider the composite problem

min
x∈Rd

F(x) := f (x)+g(x), (2.1)

where f is a strongly convex and L-smooth function, and the regularizer g is a

function that is separable and convex, but not necessarily smooth. Note that the

dual formulation of the SVM problem with a bias term has an additional linear

constraint and does not satisfy (2.1) because in this case g is not separable, the

formulation in (2.1) only applies to dual SVM without the bias term. For sparsity

inducing regularizer including 1-norm regularization and non-negative constraints,

it is observed in practice that GCD could converge significantly faster than RCD.

However, the refined analysis from Nutini et al. (2015) does not apply to composite

problems and cannot explain why GCD is faster than RCD in this scenario. This

gap was filled by Karimireddy et al. (2019), who proved that the bound

F(x(t))−F∗ ≤
(

1− µ1

Lmax

)dt/2e
(F(0)−F∗) (2.2)

holds for 1-norm regularization and box-constraints by adding a post-processing step

in each iteration. This result extends Nutini et al.’s refined analysis for composite

problems and illustrates the theoretical advantage of GCD over RCD.

A weakness of the above result is that the rate (2.2) suggests GCD applied

to strongly convex composite problems, with either 1-norm regularization or non-

negative constraints, has the same rate as it does for problems without regularizers

— i.e., minimizing only f (x) instead of the sum f (x)+g(x). However, GCD applied

to composite problems with sparsity inducing regularization is usually significantly

faster than its non-regularized counterpart and empirically exhibit screening ability,

that is the greedy selection rule can mostly focus on coordinates that are nonzero

at solution. Therefore an improved convergence analysis is needed to explain this

phenomenon. We present our work on GCD for sparse optimization in this section

to fill this gap between theory and practice.
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Algorithm 1 A generic template for GCD

1: Input: functions f and gi ∀i ∈ [d].
2: W0 = /0
3: x(0) = 0
4: for t = 0,1,2, . . . do
5: Coordinate selection: select i according to the GS-s rule
6: Gradient step: x(t+

1
2 ) = x(t)− (1/Li)∇i f (x(t))eeei

7: Prox step: x(t+1) = prox(1/Li)gi

(
x(t+

1
2 )
)

8: Post-processing; see (2.4)
9: Update working set: Wt+1 =Wt ∪{i}; see definition 2.3.1

10: end for

2.3.1 Problem setup

Formally, we make the following assumptions on f and g in problem (2.1):

• f is Li coordinate-wise smooth ∀i ∈ [d], and we let Lmax = maxi∈[d] Li.

• f is L∞-smooth with respect to the ∞-norm.

• f is µp strongly convex with respect to the p-norm, p ∈ {1,2}.

• g = λ‖ · ‖1 or g = δ≥0, where δ≥0 is the indicator function on the set {xi ≥
0 | x ∈ Rd} that vanishes on the nonnegative orthant, and is +∞ otherwise.

(It is an open problem if our analysis could be extended to general separable

regularizers that are nonsmooth at 0 for all i ∈ [d]).

We consider proximal CD algorithm with the GS-s selection rule (Nutini et al.,

2015):

Selection rule 2.1 (GS-s rule). Select coordinate i ∈ argmax
j∈[d]

Q j(x(t)), where

Q j(x) = min
s∈∂g j(x j)

|∇ j f (x)+ s|. (2.3)

The GS-s rule that appeared in Nutini et al. (2015) is a natural extension of the

vanilla greedy selection rule to composite problems, it has been widely used in the

literature (Bertsekas, 1999; Li and Osher, 2009; Shevade and Keerthi, 2003; Wu

and Lange, 2008). GS-r, GS-q rules are other variants that are commonly being
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used, see the discussion from Nutini et al. (2015) and the references therein. Here

we focus on the GS-s rule. The detailed algorithm of GCD for composite problem

is shown in Algorithm 1, where the post-processing step is defined as

x(t+1)
i := 0 if x(t+1)

i x(t)i < 0, (2.4)

and the proximal operator is defined as

proxηgi
(x) := argmin

u∈Rd

{
1
2
‖u− x‖2

2 +ηgi(ui)

}
.

We also make the following definitions to help our analysis.

Definition 2.3.1. The working set Wt is the set of indices selected up to and includ-

ing iteration t. Define also W :=
⋃

∞
t=0Wt as the overall working set.

Definition 2.3.2. The support of a vector x is the set supp(x) = { i | xi 6= 0}.

2.3.2 Analysis

We now study the screening ability of GCD and develop a bound on the size of the

working set W , i.e., focus on coordinates that are nonzero at solution. We require

the following quantity, often used in sparsity pattern identification:

δi := min{−∇i f (x∗)− `i, ui +∇i f (x∗)} , (2.5)

where ∂gi(x∗i ) = [`i,ui]; see Hare and Lewis (2007); Lewis and Wright (2011);

Nutini et al. (2017); Sun et al. (2019). The constant δi is closely related to the

distance to the relative interior of the sparse manifold, and is an important quantity

in sparse manifold identification (Lewis and Wright, 2011). Optimality conditions

for (2.1) imply that δi = 0 if x∗i 6= 0, and δi ≥ 0 if x∗i = 0. Because x∗ is unique

(by strong convexity), these quantities are problem-specific and algorithmically

invariant. The definition in (2.5) leads to the following identification result.

Lemma 2.3.1 (Nutini et al., 2017). If for some t > 0 and some coordinate i ∈ [d],

x∗i = 0 and x(t) satisfies

|∇i f (x(t))−∇i f (x∗)| ≤ δi and x(t)i = 0,
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(a) The evolution of the number of inac-
tive variables.

(b) Objective progress, where ρt is de-
fined in (2.8).

Figure 2.1: Exploratory investigations.

then after one coordinate proximal gradient step x(t+1)
i = 0.

This lemma suggests that if ∇i f (x(t)) is close to ∇i f (x∗) and x∗i = 0 , then the

ith entry of x(t) will be correctly identified as 0.

Numerical motivation

We present some numerical observations to motivate our analysis. Consider a

LASSO problem from random synthetic data. Define

f (x) =
1
2
‖Ax−b‖2

2 and g(x) = λ‖x‖1, (2.6)

where A ∈ R50×104
and b := Ax]+ ε . The elements Ai j,εi, and non-zeros in the

solution x] are distributed as standard Gaussians. We randomly select 10 elements

from x] to be non-zeros and set λ to be 2.

Figures 2.1a and 2.1b show the evolution of the number of “inactive” variables

and objective progress for Algorithm 1.

In Figure 2.1a, we define

#inactive :=
d

∑
i=1

1
{
|∇i f (x(t))−∇i f (x∗)| ≤ δi

}
. (2.7)

According to Lemma 2.3.1, this quantity measures how many variables are staying

“inactive”, i.e., will not move away from 0 in the next iteration. From Figure 2.1a,
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we observe that most variables are initially incorrectly labeled as “active”, i.e.,

|∇i f (x(t))−∇i f (x∗)|> δi, but a large number of them quickly switch to “inactive”

within first few iterations.

In Figure 2.1b, we illustrate the objective progress at each step by plotting ρt ,

defined to satisfy

F(x(t+1))−F∗ = (1−ρt)
(

F(x(t))−F∗
)
. (2.8)

These experiments illustrate the fact that the initial convergence of GCD, which, for

sparse solutions, may be sufficient to quickly identify the few non-zeros. From this

experiment we observe that

• GCD converges fast initially and ∇ f (x(t)) quickly approaches ∇ f (x∗) when

x(t) is still sparse; and

• before supp(x(t)) has grown significantly, the coordinates i where x∗i = 0

have mostly become inactive, and thus future coordinates that enter W are

constrained to supp(x(t)).

We then rigorously characterize these observations. Before proceeding to our

results, we first introduce some needed concepts.

Definition 2.3.3. The function f is µ
(τ)
p -strongly convex with respect to ‖ · ‖p and

sparse vectors if ∀x,y ∈ Rd such that whenever |supp(x)∪ supp(y)| ≤ τ ,

f (x)≥ f (y)+ 〈∇ f (y),x− y〉+ µ
(τ)
p

2
‖x− y‖2

p,

where p ∈ {1,2}.

The concept of strongly convexity with respect to sparse vectors is not new.

For example, see the idea of restricted strongly convex (Negahban and Wainwright,

2012) in the literature.
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It can be easily verified that µ
(τ)
1 and µ

(τ)
2 satisfy the following conditions:

µ1 = µ
(d)
1 ≤ µ

(d−1)
1 ≤ ·· · ≤ µ

(1)
1 ,

µ2 = µ
(d)
2 ≤ µ

(d−1)
2 ≤ ·· · ≤ µ

(1)
2 ,

µ
(τ)
2 /τ ≤ µ

(τ)
1 ≤ µ

(τ)
2 ∀τ ∈ [d]. (2.9)

Next, we present a formal analysis to answer why GCD may converge fast

initially, and give a bound on the size of the working set W .

Theorem 2.3.1 (Fast initial convergence). Let τ = |supp(x∗)| and let {x(i)}∞
i=1 be

the iterates generated by Algorithm 1 with the GS-s rule (selection rule 2.1). Then

for any t < d− τ ,

F(x(t))−F∗ ≤
dt/2e

∏
i=1

(
1−

µ
(τ+i−1)
1
Lmax

)
(F(0)−F∗) (2.10)

≤
dt/2e

∏
i=1

(
1− µ2

(τ + i−1)Lmax

)
(F(0)−F∗) . (2.11)

Proof is placed in Appendix. The bound in (2.11) follows from (2.9). In

Theorem 2.3.1 we show two different bounds, which allow us to draw comparisons

to existing results, below.

Bound (2.11). Nesterov (2012) and Richtárik and Takác (2014) established that

RCD exhibits the rate

E
[
F(x(t))−F∗

]
≤
(

1− µ2

dLmax

)
(F(0)−F∗) .

Compared to (2.11), we see that the dimension d is replaced by the quantity (τ +

i−1), which, if τ = |supp(x∗)| is small and we are in the first few iterations, may

be much smaller than d. This reflects the fast initial convergence often observed in

practice; cf. Figure 2.1b.

Bound (2.10). Nutini et al. (2015) and Karimireddy et al. (2019) established for

the GCD method the linear convergence rate described by (2.2). Compared to (2.10),
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(a) The trend of approximate µ
(τ+i)
1 ,

where τ = 10 in this example.
(b) The curve illustrates the upper bound

of |W | in Theorem 2.3.2.

Figure 2.2: Illustrations for Theorem 2.3.1 and 2.3.2

we see that µ1 is replaced with the quantity µ
(τ+i−1)
1 , which is potentially much

larger in the early stages (i is small), particularly if τ is small (x∗ is sparse). This

is confirmed by Figure 2.2a, which shows how in practice this quantity can be

much larger than µ1. In particular, when τ and i are small, µ2/d� µ
(τ+i−1)
1 and

the convergence rate for GCD is initially significantly faster than RCD, even in the

worst case.

The rate we derived here is based on two important ingredients: zero initializa-

tion and sparse solution. The screening ability of GCD does not hold without either

of these properties.

To better understand the effect of the quantity µ
(τ+i−1)
1 on the convergence

rate, we conduct a simulation using the LASSO problem described in eq. (2.6).

The term µ
(τ+i−1)
1 is hard to compute in general, and thus here we set τ = 10, and

for each i ∈ {1,2, . . . ,30} we generate 103 random (τ + i−1)-sparse vectors and

approximate µ
(τ+i−1)
1 as the minimum of ‖Ax‖2

2/‖x‖2
1 over the sample vectors. The

plot of approximate µ
(τ+i−1)
1 against i is shown in Figure 2.2a, and its pattern clearly

supports our previous argument.

To develop an upper bound for the size of working set, we define the error

measure

pδ (α) =
d

∑
i=1

1{α ≤ δi},

which we use to quantify the number of inactive elements in the iterates, as in

eq. (2.7).
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Theorem 2.3.2 (Working set bound). Let τ = |supp(x∗)| and {x(i)}∞
i=1 be the iterates

generated by Algorithm 1 with the GS-s rule (selection rule 2.1). Then

|W | ≤min
t∈[d]
{Bt + t} , (2.12)

where

Bt := d + τ− pδ

(
L∞ sup

i≥t

{
‖x(i)− x∗‖1

})
.

The term L∞ is the smoothness parameter with respect to infinity norm. The

detailed proof is placed in Appendix. We give a short interpretation to better

understand this bound. Note that Bt is a decreasing function of t. Thus, |W | is

bounded by the infimum of the sum of a decreasing and increasing function. (See

Figure 2.2b.) Theorem 2.3.2 implies that if x(t) converges quickly to x∗ (i.e., with

t� d), then the bound (2.12) will be far less than d.

Again, consider the synthetic LASSO problem (A ∈ R50×104
,λ = 2) as a con-

crete example to illustrate this bound. In this example, the curve of Bt + t is shown

in Figure 2.2b and the infimum of Bt + t is about 1000 in this case. This experiment

demonstrates that the bound we derived in Theorem 2.3.2 is non-trivial, especially

for problems whose d is large.

Furthermore, we can use Theorem 2.3.1 and 2.3.2 to derive an alternative bound

that depends only on the constant µ
(τ+i)
1 , i ∈ [d− τ], instead of the iterates x(i)’s.

Corollary 2.3.1. Let τ = |supp(x∗)| and let {x(i)}∞
i=1 be the sequence of iterates

generated by Algorithm 1 with the GS-s rule (selection rule 2.1). Then Bt in

bound (2.12) can be replaced by

Bt := d + τ− pδ

[2L2
∞

µ1

t−1

∏
i=0

(
1−

µ
(τ+i)
1

Lmax

)
R

]1/2
 ,

where R = F(0)−F∗ is the initial objective gap.

2.3.3 Improved selection rule

Our analysis in previous section provides an upper bound of |W |. In this section,

we propose a variant of the GS-s rule that could favour an even smaller working set.
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The resulting algorithm, which we call ∆-GCD, is Algorithm 1 with the following

modified selection rule.

Selection rule 2.2 (∆-GS-s rule). Given the fixed parameter ∆ ∈ (0,1], select coor-

dinate

i ∈


argmax

i∈[d]
Qi(x(t)), if ∆max

i∈[d]
Qi(x(t))2 ≥max

i∈Wt
Qi(x(t))2

argmax
i∈Wt

Qi(x(t)), if ∆max
i∈[d]

Qi(x(t))2 < max
i∈Wt

Qi(x(t))2

where Wt denotes the set of indices accrued thus far and Qi is defined by (2.3).

Note that when ∆ = 1, the ∆-GS-s and GS-s rules are equivalent. Intuitively, the

∆-GS-s rule, with small ∆, is more likely to focus on the current working set; on the

other hand, a large ∆ encourages the algorithm to include unexplored coordinates

and expand the current working set. Thus ∆ controls the trade-off between the size

of working set and the progress we can make when staying in the current working

set. This is similar to the exploration/exploitation trade-off in the context of online

learning (Auer et al., 1995).

Theorem 2.3.3. Let {x(i)}∞
i=1 be the iterates generated by Algorithm 1 with the

∆-GS-s rule (selection rule 2.2) and let W∆ be the final working set. Then for all

t > 0,

F(x(t))−F∗ ≤

(
1−

∆µ
(|W∆|)
1

Lmax

)dt/2e

(F(0)−F∗) (2.13)

≤
(

1− ∆µ2

|W∆|Lmax

)dt/2e
(F(0)−F∗) . (2.14)

Theorem 2.3.3 explicitly described the trade-off between the convergence rate

and the size of working set. Similar to Theorem 2.3.1, we provide two bounds

for easier interpretation: eq. (2.13) can be viewed as a refinement of the strong

convexity parameter in Karimireddy et al. (2019) and Nutini et al. (2015); and

eq. (2.14) where the variable dimension dependency that appears in Nesterov (2012)

and Richtárik and Takác (2014) is replaced by the size of the final working set.

The ∆-GCD variant is expected to outperform standard GCD when the latter has
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a comparatively large working set, and ∆-GCD can reduce the size of working set

with an appropriate value of ∆.

To better understand the relationship between W∆ and ∆, we present an descrip-

tion of W∆ as ∆→ 0. First, consider the standard GCD algorithm where at each

iteration we additionally minimize the objective over the current working set, i.e.,

the next iterate is obtained as

x(t+1) := argmin
supp(x)⊆Wt+1

f (x)+g(x), (2.15)

where all variables not in the working set are held fixed at 0. The algorithm

terminates when the iterate x(t+1) is optimal for (2.15). The resulting method

is known as the totally corrective greedy algorithm, which is closely related to

orthogonal matching pursuit for sparse least squares; see works from Pati et al.

(1993); Davis et al. (1997); and Foucart and Rauhut (2013). Note that when

∆→ 0, the result selection rule is close to the selection rule used in Algorithm 1

from Shevade and Keerthi (2003). We denote the final working set from this scheme

as W ].

Next, note that as ∆→ 0, the ∆-GS-s selection rule tends to select indices

from the current working set, and thus the ∆-GS algorithm converges to a solution

of (2.15). However, when the ∆-GCD iterate is close to the exact minimizer, the

∆-GS-s rule must eventually expand the working set. As the following result shows,

W∆ converges to W ].

Theorem 2.3.4. Let k = |W ]| and let {x(t)}k
t=0 be the iterates generated by the

totally corrective greedy algorithm. Assume that argmaxi∈[d] Qi(x(t)) are singletons

for t = 0,1, . . . ,k−1 and δi > 0 ∀x∗i = 0. Then ∃ ε > 0, such that

W∆ =W ]

for any ∆ < ε .

If the totally corrective greedy algorithm can yield a small working set, then we

expect that a sufficiently small value of ∆ would also yield a small working set (but

could probably slow down the convergence according to Theorem 2.3.3). Hence,
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Table 2.1: Properties of the experimental data. Here, d denotes the number of
features and n denotes the number of samples.

Datasets colon leukemia make circle ijcnn1

d 2,000 7,129 2 22
n 62 72 1,000 35,000

our new algorithm ∆-GCD can be viewed as a flexible greedy algorithm between the

two extreme cases — standard GS-GCD and the totally corrective greedy algorithm.

2.3.4 Numerical experiments

We conduct experiments on both real world data and synthetic data to illustrate

the importance of zero initialization and exam the effectiveness of our proposed

∆-GCD.

The statistics of our experimental data are shown in Table 2.1, where the datasets

colon, leukemia, and ijcnn1 were obtained from the LIBSVM website4 (Chang and

Lin, 2011). The make circle dataset were generated from the scikit-learn package

(Pedregosa et al., 2011). We solve the LASSO problem over the colon and leukemia

datasets, and the dual RBF kernel SVM over the make circle and ijcnn1 datasets.

For ijcnn1, we follow the parameter settings described by Hsieh et al. (2014), and

thus set γ = 2 and C = 32, where γ is the free parameter in the RBF kernel and 1/C

is the hinge-loss weight parameter. All experiments are conducted on a machine

with 4 CPUs and 16GB memory.

Code

The code to reproduce our experimental results is publicly available at https://github.

com/fanghgit/Greed Meets Sparsity.

Zero v.s. other initializations

We compare the convergence of standard GCD for solving LASSO problems over

different initialization strategies, we include the following initialization strategies

4https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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(a) LASSO, data: leukemia, λ = 0.1. (b) LASSO, data: colon, λ = 0.1.

Figure 2.3: Comparison between different kinds of initialization

into our comparisons:

• Zero initialization: x(0) = 0.

• Random initialization: x(0) is generated from Gaussian distributionsN (0,σ Id),

for σ ∈ {1,0.1,0.01}.

• Least-squares initialization: x(0) = (AT A+ λ Id)
−1AT b. This initialization

starts the method at a low objective value, but is not sparse.

In Figure 2.3, we can see that zero initialization clearly outperforms other

initialization strategies, and random initialization tends to be the worst. In particular,

GCD with zero initialization is able to get close to a solution even before one pass of

all coordinates. On the other hand, although GCD with least-squares initialization

has a better initial objective value than zero initialization, it suffers from slow

convergence and requires at least a full pass of all coordinates before reaching the

same low error, which is consistent with our intuition. Random initialization with

different standard deviations also vary in their performance and random initialization

with smaller variance tends to converge faster; however they are still outperformed

by the zero initialization for the same reasons as the least-squares initialization.

Evaluation of ∆-GCD

We evaluate the proposed ∆-GCD algorithm on LASSO, 1-norm regularized logistic

regression, and kernel SVM problems. As shown in Figure 2.4, the value of ∆
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(a) LASSO, data: leukemia, λ = 0.1.
Solid line is objective value, dashed
line is # non-zeros in x(t).

(b) LASSO, data: leukemia, λ = 0.01.
Solid line is objective value, dashed
line is # non-zeros in x(t).

(c) L1-regularized logistic regression,
data: colon, λ = 0.1.

(d) L1-regularized logistic regression,
data: leukemia, λ = 0.1.

(e) kernel SVM, data: make circle, C =
10,γ = 0.5.

(f) kernel SVM, data: ijcnn1, C = 32,γ =
2.

Figure 2.4: Compare ∆-GCD with different choices of ∆.

has a clear impact on the size of the working set, where smaller values of ∆ tend

to promote sparser iterates for all the test problems. This trend is more obvious

when the underlying solution is less sparse, as shown in Figures 2.4b and 2.4f. This

is because vanilla GCD produces a working set that is much larger than needed.

Sometimes this stronger screening ability of a smaller ∆ can lead to slightly faster
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convergence compared to standard GCD (i.e., ∆ = 1) as shown in Figures 2.4a

and 2.4b. A by-product of ∆-GCD is early identification of the final sparsity pattern,

which can be leveraged in two-stage methods (Bertsekas, 1976; Daniilidis et al.,

2009; Ko et al., 1994; Wright, 2012). However, the acceleration functionality of

∆-GCD is not present for all test problems, since vanilla GCD already has a strong

screening ability for constraining the size of the working set.

2.3.5 Discussion

By bringing techniques from sparsity pattern identification and convergence analysis

of GCD, we formally analyze the screening ability of GCD and explicitly answered

why GCD is usually fast for sparse optimization. We also propose an improved

selection rule with a stronger ability to encourage sparse iterates and connect to

existing algorithms.

For future work, it would be interesting to generalize our analysis and relax

the strong-convex assumption on the function f . In particular, one could consider

problems where x∗ may not be unique (but supp(x∗) may be). The core of our

analysis relies on understanding the convergence of the iterates themselves, and not

just the function values. Thus, the challenge in generalizing our analysis to more

general smooth objectives requires a different proof technique. Another direction

is to tighten the working set bound in Theorem 2.3.2. The bound illustrated in

Figure 2.2b is still about 10 times worse than the actual size of the working set,

and for small value of λ , the actual working set become larger and our bound can

be trivially larger than d. Our analysis also require the regularizer to be 1-norm

or nonnegative constraint, it is an open problem to extend our analysis to general

regularizer that are non-smooth at origin.
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2.4 Gap-based safe-screening rules for atomic-norm
regularized problem

The safe-screening rules, originally proposed by Ghaoui et al. (2012), generally refer

to approaches that correctly identify the coordinates that can be safely discarded

without changing the solution or hindering the optimization process. It has been

successfully applied to coordinate optimization algorithms to reduce the overall

computational effort and achieved promising result for 1-norm regularized problem.

Due to the empirical success of safe-screening rule on sparse optimization, various

screening strategies (Atamtūrk and Gómez, 2020; Bao et al., 2020; Bonnefoy et al.,

2015; Kuang et al., 2017; Liu et al., 2014b; Ndiaye et al., 2017; Raj et al., 2015;

Wang et al., 2014, 2013; Xiang et al., 2017; Zhang et al., 2017) have been proposed

for difference tasks in recent years. In particular, Ndiaye et al. (2017) proposed

an effective and elegant screening framework based on duality gap called the gap

safe-screening rule. The gap-based safe-screening rule has been shown to be useful

for 1- and group-norm regularized problems.

2.4.1 From coordinates to atoms

Sparse optimization problems are characterized by solutions that are sparse vectors,

i.e., few nonzero entries. The idea of vector sparsity can be generalized to “atomic”

sparsity. That is, the problem attains a solution that is sparse with respect to

some atomic set A, where A could potentially contain infinite number of elements.

Formally, for a given atomic set A⊆ Rd , an optimal solution x∗ can be represented

as

x∗ = ∑
a∈A

caa, ca ≥ 0, (2.16)

where only a small number of coefficients ca are nonzero. The archetypal example

is a sparse vector, which is sparse with respect to the set of signed canonical unit vec-

torsA= {±eee1, . . . ,±eeed}. 1-norm regularization is the standard approach to produce

sparse solution. The atoms that participate nontrivially in the decomposition (2.16)

represent latent structure in the solution. The notion of atomic sparsity is prevalent

in machine learning (Argyriou et al., 2007; Meinshausen and Bühlmann, 2006;

Tibshirani, 1996; Yuan and Lin, 2006) and signal processing (Candes et al., 2015),
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and has been formalized in the context of inverse problems by Chandrasekaran

et al. (2012).

The gap-based safe-screening rules have been shown to be effective for 1-norm

regularized problems. In the following sections, we will extend the gap-based safe-

screening rule to general atomic sets and investigate whether it is possible to use

the generalized gap-based safe-screening rule to save computation for nuclear-norm

regularized problems.

2.4.2 Some technical tools

We introduce in this section the basic tools of convex analysis and atomic sparsity

that serve as the cornerstone of our analysis, most of the material for sections 2.4.1

to 2.4.3 is a summary of the framework described by Fan et al. (2020). We make

the blanket assumption that the atomic set A⊆ Rd is compact, and that the origin

is contained in its convex hull (we do not assume that A is convex). The gauge

function to the set A measure the magnitude of a function relative to that set.

Definition 2.4.1 (Gauge function). The gauge function with respect to A is defined

as

γA(x) = inf

{
∑

a∈A
ca

∣∣∣∣∣ x = ∑
a∈A

caa, ca ≥ 0,∀a ∈ A

}
. (2.17)

The gauge function is always convex, nonnegative, and positively homogeneous.

However, it is not necessarily a norm because it may not be symmetric (unless A
is centrosymmetric) and may vanish or take infinite value at points off the origin

(unless the origin is in the relative interior of A). Definition 2.4.1 makes explicit

the role of a gauge function as a convex penalty for atomic sparsity. The support

of a vector x describes the atoms that contribute positively in the decomposition

described by (2.17).

Definition 2.4.2 (Atomic support). The atomic support for a point x ∈ Rd with

respect to the set A is defined to be the set SA(x) that satisfies

γA(x) = ∑
a∈SA(x)

ca, x = ∑
a∈SA(x)

caa, and ca > 0 ∀a ∈ SA(x).

The atomic set of signed 1-hot unit vectors A = {±eeei | i = 1,2, . . . ,d}, for
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Atomic sparsity A γA(x) SA(x) σA(z)

non-negative cone({eee1, . . . ,eeed }) δ≥0 cone({eeei | xi > 0}) δ≤0
element-wise {±eee1, . . . ,±eeed } ‖ · ‖1 {sign(xi)eeei | xi 6= 0} ‖ · ‖∞

low rank {uvT | ‖u‖2 = ‖v‖2 = 1} nuclear-norm singular vectors of x spectral norm
PSD & low rank {uuT | ‖u‖2 = 1} tr+δ�0 eigenvectors of x max{λmax,0}

Table 2.2: Commonly used sets atom sets and the corresponding gauge and support
functions. The indicator function δC(x) is zero if x is in the set C and
+∞ otherwise. The commonly used group-norm is also an atomic norm;
see Fan et al. (2020, Example 4.7).

example, the support SA(x) coincides with the nonzero elements of x with the

corresponding sign. The support function, defined below, is dual to the gauge

function, and provides a key tool for identifying atoms associated with the support

of a vector.

Definition 2.4.3 (Exposed faces and ε-exposed faces). The exposed face and ε-

exposed face for a point z ∈ Rd with respect to the set A is defined by

FA(z) = {a ∈ A | 〈a,z〉= σA(z)} , FA(z,ε) = {a ∈ A | 〈a,z〉 ≥ σA(z)− ε }
(2.18)

where σA(z) = supa∈A〈a,z〉 is the support function with respect to A.

Note that when ε = 0, the ε-exposed face coincides with the exposed face. We

list in Table 2.2 some commonly used atomic sets, their corresponding gauge and

support functions, and atomic supports.

2.4.3 Problem setup

We consider the gauge regularized problem

minimize
x∈Rd

f (Mx) subject to γA(x)≤ τ, (P)

where f is an L-smooth and convex function, M : Rd → Rm is a linear operator

and τ > 0 is a given constant can control the sparsity level. The gauge function

constraint in (P) can generate a solution that is sparse with respect to the atomic set

A, and a wide range of application including LASSO and matrix completion can be

formulated as (P) (with an appropriate choice of the atomic set).
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The dual problem of (P) is

minimize
y∈Rm

d(y) := f ∗(y)+ τσA(M∗y), (D)

where f ∗(y) = supw∈Rm 〈y,w〉− f (w) is the convex conjugate function of f , and

M∗ : Rm→ Rd is the adjoint operator of M, which satisfies 〈Mx,y〉= 〈x,M∗y〉 for

all x ∈ Rd and y ∈ Rm. The dual problem plays an important role in safe-screening

rules. Most safe-screening rules including the very first one proposed by Ghaoui

et al. (2012) rely on dual variables to discard redundant features.

2.4.4 The gap-based safe-screening rule

Next, we extend the gap-based safe-screening rule from Ndiaye et al. (2017) to

general atomic sets with the language of atomic sparsity. Note that a similar analysis

can be found in a recent work from Sun and Bach (2020).

Given a feasible solution x of (P), safe-screening rule aims to infer the atoms

with nonzero coefficients at solution based on x. We know that SA(x) could be

different from SA(x∗) even for feasible solution x that is arbitrarily close to x∗.

Fortunately, the following support-face relationship from Fan et al. (2020) allow us

to constrain SA(x∗) by constructing a superset of FA(M
∗y∗) from the dual problem.

Lemma 2.4.1 (Fan et al., 2020, Proposition 4.5 and Theorem 5.1). Let x∗ and y∗ be

optimal primal-dual solutions for problem (P) and (D). Then

SA(x∗)⊆FA(M
∗y∗).

Define the atomic operator norm by ‖M‖A := maxa∈A ‖Ma‖2, we can get the

following result based on Lemma 2.4.1.

Theorem 2.4.1 (Generalized gap-based safe-screening rule). Given a primal feasi-

ble point x and a dual feasible point y, we have

SA(x∗)⊆FA(M
∗y,ε), (2.19)

where ε = 2‖M‖A
√

2L( f (Mx)+d(y)), and f (Mx)+d(y) is the duality gap.
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Proof of Theorem 2.4.1. We require the following standard technical tool for the

proof of Theorem 2.4.1

Lemma 2.4.2 (Kakade et al., 2009, Theorem 6). If f is L-smooth, then f ∗ is 1/L-

strongly convex.

Let y∗ denote the optimal dual variable for (D). We show that ‖y− y∗‖2 can

be bounded by the duality gap. By Lemma 2.4.2, we know that f ∗ is 1/L-strongly

convex, and it follows that d(y) is also 1/L-strongly convex. Then by the definition

of strongly convexity, we have

∀s ∈ ∂d(y∗), d(y)≥ d(y∗)+ 〈s,y− y∗〉+ 1
2L
‖y− y∗‖2

2.

By the optimality condition, we know that 0 ∈ ∂d(y∗). Therefore, by reordering the

inequality, we can get

‖y− y∗‖2 ≤
√

2L(d(y)−d(y∗))

≤
√

2L( f (Mx)+d(y)) ∀x s.t. γA(x)≤ τ. (2.20)

Next, we show that FA(M
∗y∗)⊆FA(M

∗y,ε). For any a ∈ FA(M
∗y∗),

〈a,M∗y〉= 〈a,M∗y∗〉+ 〈a,M∗y−M∗y∗〉

≥ σA(M∗y∗)−
(

max
a∈A
‖Ma‖

)
‖y− y∗‖2

= σA(M∗y)− (σA(M∗y)−σA(M∗y∗))−‖M‖A‖y− y∗‖2

≥ σA(M∗y)−2‖M‖A‖y− y∗‖2

≥ σA(M∗y)−2‖M‖A
√

2L( f (Mx)+d(y))

≥ σA(M∗y)− ε.

The last line is true by the definition of ε . Combining above result with Lemma 2.4.1,

the proof is finished.

The proof of Theorem 2.4.1 mirrors the original proof of the gap-based safe-

screening rule for 1-norm regularization (Ndiaye et al., 2017) — redundant atoms

(or coordinates) can be identified by bounding ‖y− y∗‖ with the duality gap. By
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using the support-face relationship described in Lemma 2.4.1 instead of the first-

order optimality condition with 1-norm regularization, we can generalize their proof

to atomic sets.

Next we characterize the atom identification property of the generalized gap-

based safe-screening rule.

Proposition 2.4.1 (Atomic identification). Let {x(t)}∞
t=1 and {y(t)}∞

t=1 be sequences

that converge to optimal primal and dual solutions x∗ and y∗ respectively. Let

{ε(t)}∞
t=1 be the gaps defined in Theorem 2.4.1 evaluated at x(t) and y(t). Then the set

A(t) := ∩t
j=1FA(M

∗y( j),ε( j)) has the Painleveé-Kuratowski set limit (Rockafellar

and Wets, 2009, p. 111)

lim
t→∞
A(t) = FA(M

∗y∗). (2.21)

Proposition 2.4.1 ensures that the safe-screening rule (2.19) is guaranteed to

eventually discard superfluous atoms as long as we have available an iterative

solver that can generate primal iterates that converge to a solution. For polyhedral

atomic set, e.g., atomic set with finite elements, it is straightforward to verify that

Proposition 2.4.1 implies the following finite-time atom identification property:

∃ T > 0 such that A(t) = FA(M
∗y∗) ∀t > T.

The implementation of the generalized gap-based safe-screening rule for poly-

hedral atomic sets is also straightforward. One can store all atoms in memory during

computation, and the gap-based safe-screening rule offers a computable way to

discard redundant atoms periodically during the optimization. When FA(M
∗y,ε)

is small enough, let Â := FA(M
∗y,ε) := {âi}r

i=1, we can solve the reduced low-

dimensional problem

minimize
x∈Rr,x≥0

f

(
M

r

∑
i=1

âixi

)
subject to

r

∑
i=1

xi ≤ τ

instead of the original high-dimensional problem efficiently using algorithm such as

accelerated projected gradient descent.

A remarkable aspect of the generalized gap-based safe-screening rule (and also
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the original gap safe-screening rule) is that it depends solely on the duality gap, and

hence is algorithm agnostic. As long as we have an algorithm that guarantees duality

gap converges to 0, the gap-based safe-screening rule will recover FA(M
∗y∗) within

a finite number of iterations (for finite atomic sets). The gap-based safe-screening

rule has been successfully applied to algorithms such as conditional gradient descent

and projected coordinate descent to achieve promising performance.

2.4.5 Gap-based safe-screening rule for nuclear norm

We explore a key question whether the generalized safe-screening rule can provide

any computational advantage for atomic sets A with infinite number of atoms. In

particular we consider the nuclear-norm regularized problems whose atomic set is

the set of rank-one matrices, i.e.,

A= {uvT | u ∈ Rn,v ∈ Rm,‖u‖2 = ‖v‖2 = 1} .

In the following proposition, we show that the ε-exposed face of M∗y contains all

the singular vectors of M∗y when ε is strictly positive.

Proposition 2.4.2 (Limitation of ε-Face). Let M∗y =UΣV T be the full SVD decom-

position of M∗y, where Σ = diag(σ1,σ2, . . . ,σmin{n,m}),σi ≥ 0 ∀ 0 < i≤min{n,m}.
For any ε ≥ 0, the ε-exposed face can be explicitly expressed as

FA(M
∗y,ε) =

{
U p(V q)T

∣∣∣∣∣ min{n,m}

∑
i=1

σi piqi ≥ σ1− ε,‖p‖2 = ‖q‖2 = 1

}
.

Then for any ε > 0, there exist p,q with all entries being nonzero, such that

U p(V q)T ∈ FA(M
∗y,ε).

Proof of Proposition 2.4.2. By the definition of FA(M
∗y,ε),

FA(M
∗y,ε) = {uvT | 〈uvT ,M∗y〉 ≥ σ1− ε, ‖u‖2 = ‖v‖2 = 1}

= {uvT | 〈uvT ,UΣV T 〉 ≥ σ1− ε, ‖u‖2 = ‖v‖2 = 1} .

We know that U,V are orthonormal matrices, by setting u = U p and v = V p for
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some p,q ∈ Rmin{n,m} such that ‖p‖2 = ‖q‖2 = 1, we obtain

FA(M
∗y,ε) = {U p(V q)T | 〈U p(V q)T ,UΣV T 〉 ≥ σ1− ε, ‖p‖2 = ‖q‖2 = 1}

= {U p(V q)T | pT
Σq≥ σ1− ε, ‖p‖2 = ‖q‖2 = 1}

=

{
U p(V q)T

∣∣∣∣∣ min{n,m}

∑
i=1

σi piqi ≥ σ1− ε,‖p‖2 = ‖q‖2 = 1

}
.

The above finishes the proof.

Proposition 2.4.2 indicates that FA(M
∗y,ε) contains not only the top singular

vectors of M∗y but also the bottom singular vectors—even if ε is arbitrarily close

to 0. This result is unfortunate since the gap-based safe-screening rule stated in

Theorem 2.4.1 does not allow us to discard any singular vectors of M∗y and thus

require a full SVD decomposition of M∗y even if the duality gap is arbitrarily close

to zero.

2.4.6 Approximation with partial SVD

The face of A exposed by the vector M∗y∗ is given by

FA(M
∗y∗) =

{
uvT | uT (M∗y∗)v = σ1(M∗y∗)

}
,

where σ1(M∗y∗) is the largest singular value of M∗y∗. Therefore, when there are

few singular vectors associated with the largest singular value, only the top few

singular vectors of M∗y∗ are actual useful atoms. This property motivates us to

use the partial SVD decomposition of M∗y to extract the reduced atomic set. This

hard-thresholding technique has been widely used as a heuristic. Formally, given a

dual feasible solution y with partial SVD decomposition

M∗y =UrΣrV T
r Ur ∈ Rn×r,Vr ∈ Rm×r,r�min{n,m},

we construct the corresponding reduced atomic set

Â= {Ur pqTV T
r | ‖p‖2 = ‖q‖2 = 1} ,
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and solve the reduced problem over Â.

First, we give a concrete example showing that the partial SVD of M∗y is not

able to give us a safe cover of FA(M
∗y∗) even when FA(M

∗y∗) is a singleton and y

arbitrarily close to y∗.

Example 2.4.1 (Limitation of partial SVD). Consider the problem

minimize
X∈Rn×n

1
2
‖X−Z‖2

F subject to ‖X‖∗ ≤ 1, (2.22)

where

Z =U diag(2,0.1, . . . ,0.1)V T and U =V =


√

1− ε 0 . . . −
√

ε

0 1 . . .
...

. . .
√

ε 0
√

1− ε


n×n

for some ε ∈ (0,1). The dual problem is

minimize
Y∈Rn×n

1
2
‖Y −Z‖2

F −
1
2
‖Z‖2

F +‖Y‖2. (2.23)

The solution for problem (2.22) and problem (2.23) are

X∗ =U diag(1,0, . . . ,0)V T and Y ∗ = Z−X∗ =U diag(1,0.1, . . . ,0.1)V T .

Let U := [u1,u2, . . . ,un],V := [v1,v2, . . . ,vn], then obviously SA(X∗) = FA(Y
∗) =

u1vT
1 is a singleton. We construct the following dual feasible solution

Ŷ = diag(1,0.1, . . . ,0.1).

Let Û ,V̂ be the singular vectors of Ŷ , then Û = V̂ = [eee1,eee2, . . . ,eeen], where eeei is the

n-dimensional vector with 1 at the ith entry and 0 at other entries. In order to

cover u1 = [
√

1− ε,0 . . . ,
√

ε]T , we need both the top singular and bottom singular

vectors eee1 and eeen, and therefore any top-r SVD decomposition of Ŷ with r < n will

end up to be “unsafe”. It is also easy to verify that ‖Ŷ −Y ∗‖F = O(
√

ε). Note

that our argument holds for any ε ∈ (0,1). Therefore, ∀ε ∈ (0,1), ∃y ∈ B(y∗,ε)
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such that only full SVD decomposition of M∗y can guarantee a safe coverage of

FA(M
∗y∗).

This result shows that the screening rule with partial SVD is not safe. Therefore,

we can only resort to an approximate screening rule. We use the one-sided Hausdorff

distance

ρ(A1,A2) := sup
a1∈A1

inf
a2∈A2

‖a1−a2‖F

to measure the similarity between any two subsets A1 and A2 of the atomic set A.

The next result shows that there is a set Â that is close to SA(x∗), then there must

exist a point in Â that is close to x∗.

Proposition 2.4.3 (Hausdorff error bound). Given Â ⊆ A, there exist x ∈ cone(Â)
such that

‖x− x∗‖F ≤ ρ(SA(x∗),Â)
√
|SA(x∗)|‖x∗‖F .

Proof. Proof of Proposition 2.4.3 Let x∗ = ∑a∈SA(x∗) caa,ca > 0. By the definition

of the one-sided Hausdorff distance ρ , for any a ∈ SA(x∗), there exist a correspond-

ing â ∈ Â such that

‖â−a‖F ≤ ρ(SA(x∗),Â).

Let x̂ = ∑a∈SA(x∗) caâ, then it is easy to verity that x̂ ∈ cone(Â) and

‖x− x∗‖F ≤ ρ(SA(x∗),Â) ∑
a∈SA(x∗)

ca
(i)
≤ ρ(SA(x∗),Â)

√
|SA(x∗)|‖x∗‖F ,

(i) is true since the decomposition x∗ = ∑a∈SA(x∗) caa,ca > 0 is an orthonormal

decomposition and ‖x∗‖2
F =∑c2

a when our atomic-set is the set of rank-one matrices.

Next, we study the approximation ability of the partial SVD decomposition of a

given feasible dual solution M∗y to FA(M
∗y∗).

Theorem 2.4.2. Let y be a dual feasible vector. Let M∗y =UrΣrV T
r ,Ur ∈Rn×r,Vr ∈

Rm×r be the top-r SVD decomposition where r < min{n,m}. Denote {σi}min{n,m}
i=1

as the singular values and Â= {Ur pqTV T
r | ‖p‖2 = ‖q‖2 = 1} be the our reduced
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atomic set, assume σ1 > σr+1, then

ρ(FA(M
∗y∗),Â)≤ ρ(FA(M

∗y,ε),Â) =

√
2min

{
ε

σ1−σr+1
,1
}
,

where ε is the same as defined in Theorem 2.4.1.

Proof. Proof for Theorem 2.4.2 By the definition of ρ(·, ·), it is straightforward that

ρ(A,C)≤ ρ(B,C) ∀A,B,C ⊆ Rn×m such that A⊆ B.

We know that FA(M
∗y∗) ⊆ FA(M

∗y,ε) from Theorem 2.4.1, then obviously we

have

ρ(FA(M
∗y∗),Â)≤ ρ(FA(M

∗y,ε),Â).

For any A1,A2 ⊆A,

ρ(A1,A2) =
√

sup
a1∈A1

inf
a2∈A2

‖a1−a2‖2
F =

√√√√2−2

(
inf

a1∈A1

sup
a2∈A2

〈a1,a2〉

)
, (2.24)

where the second equality holds since ‖a1‖F = ‖a2‖F = 1 by the definition of A.

Define A1 = FA(M
∗y,ε) and A2 = Â =

{
Ur pqTV T

r

∣∣ ‖p‖2 = ‖q‖2 = 1
}

, where

Ur,Vr are the top-r singular vectors of M∗y. Let k := min{n,m}, C1 = {(p,q) |
∑

k
i=1 σi piqi ≥ σ1 − ε, ‖p‖2 = ‖q‖2 = 1, p,q ∈ Rk} and C2 = {(p̂, q̂) | ‖ p̂‖2 =

‖q̂‖2 = 1, p̂, q̂ ∈ Rr}, then

ρ(A1,A2) =

√
2−2

(
min

p,q∈C1
max

p̂,q̂∈C2
〈U pqTV T ,Ur p̂q̂TV T

r 〉
)

=

√√√√2−2

(
min

p,q∈C1
max

p̂,q̂∈C2

(
r

∑
i=1

pi p̂i

)(
r

∑
i=1

qiq̂i

))

=

√
2−2

(
min

p,q∈C1
‖p1:r‖2‖q1:r‖2

)
(2.25)
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Now we consider the subproblem in (2.25):

min
p,q
‖p1:r‖2‖q1:r‖2 (P1)

subject to
k

∑
i=1

σi piqi ≥ σ1− ε, ‖p‖2 = ‖q‖2 = 1, p,q ∈ Rk.

If p∗ and q∗ is a solution of the problem (P1), then it is easy to verify that

p̃ =
[
‖p∗1:r‖2,0, . . . ,‖p∗r+1:k‖2,0, . . . ,0

]
and q̃ =

[
‖q∗1:r‖2,0, . . . ,‖q∗r+1:k‖2,0, . . . ,0

]
is also a valid solution. Therefore there must exist solution p∗,q∗ such that pi =

qi = 0 ∀i /∈ {1,r+1}, that is only p∗1,q
∗
1 and p∗r+1 and q∗r+1 are greater or equal than

0. This allow us to further reduce the problem to

min
p1,q1,pr+1,qr+1

p1q1

subject to σ1 p1q1 +σr+1 pr+1qr+1 ≥ σ1− ε,

p2
1 + p2

r+1 = q2
1 +q2

r+1 = 1, p1,q1, pr+1,qr+1 ≥ 0.

It is easy to verify that when σ1−σr+1 ≥ ε , the above problem attains solution at

p1 = q1 =

√
σ1−σr+1− ε

σ1−σr+1
and pr+1 = qr+1 =

√
1− p2

1.

When σ1−σr+1 < ε , the solution is simply p1 = q1 = 0, pr+1 = qr+1 = 1. Therefore

the optimal value of (P1) is max{1−ε/(σ1−σr+1),0}, plug this into eq. (2.25) and

the proof is finished.

Oustry developed a related result based on the two-sided Hausdorff distance (Ous-

try, 2000, Theorem 2.11). Directly applying his Theorem to our context would

end up with a bound O(
√

ε/(σr−σr+1)), which is looser than the bound shown in

Theorem 2.4.2 because σ1 ≥ σr ≥ σr+1.
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2.4.7 Discussion

Our extension of gap-based safe-screening rules to the various forms of atomic-

norm regularization is based on the convex calculus of sublinear functions. Our

proposed screening rules can provide practical computational advantages when the

atomic sets are polyhedral. As demonstrated by Example 2.4.1, however, there

are limitations of the rule when used for non-polyhedral atomic sets. In that case,

Theorem 2.4.2 provides an error bound based on the truncated SVD.

Further research opportunities remain, particularly for designing meaningful

safe-screening rules for non-polyhedral sets. For example, it seems possible to

design safe-screening rules for nuclear-norm regularized problems that are particular

to the search directions generated by the conditional-gradient method.
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Chapter 3

Online mirror descent with
unknown time horizon

In modern big data applications such as recommendation and advertisement, data

usually comes in a stream and one is required to make decisions in an online manner.

From the perspective of optimization, such problems are usually formulated under

the online convex optimization (OCO) framework. In OCO, a player is required to

make a sequence of online decisions over discrete time steps. Each decision incurs

a cost given by a convex function that is only revealed to the player before they

make that decision. The goal of the player is to minimize the total cost.

Formally, let T denote the number of decisions required to make. For each time

step t ∈ {1,2, . . . ,T}, our algorithm proposes a point x(t) from a closed convex set

X ⊆ Rd , and an adversary simultaneously picks a convex cost function ft . This

function penalizes the proposal x(t) by the amount ft(x(t)), and the cost of the

iteration at time t is defined as ft(x(t)). The goal of the algorithm is to minimize the

regret against an unknown comparison point z ∈ X at time T

Regret(T,z) :=
T

∑
t=1

ft(x(t))−
T

∑
t=1

ft(z).

The Regret(T,z) measures the difference between the total cost of the algorithm

and the cost of the competitor z up to time T . Our goal is to develop algorithm that

ensures its regret is sublinear in T against any competitor. In this way, the average
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cost incurred by the algorithm will be guaranteed to be smaller or equal to the cost

from the best competitor as T → ∞.

Online mirror descent (OMD) and dual averaging (DA) are two important algo-

rithm templates for OCO from which many classical online learning algorithms can

be derived as special cases; see works from Shalev-Shwartz (2012) and McMahan

(2017) for examples. For Lipschitz continuous functions { ft}t≥1, when the number

of decisions to be made T is known in advance, the algorithm could use T as an

input and the performance of OMD and DA (with properly chosen stepsize) are

shown to be very similar (Hazan, 2016). That is, they achieve essentially the same

regret bound when using the same stepsize scheduling. However, in the more

challenging setting when T is not known a priori (unknown time horizon), there

is a fundamental difference in the regret rates of OMD and DA with a similar

time-varying stepsize scheduling. While DA can guarantee sublinear regret bound

O(
√

T )1 for any T > 0 (Nesterov, 2009),there are instances such that OMD could

suffer asymptotically linear regret, i.e., Ω(T ) (Orabona and Pál, 2018).

In this chapter, we introduce a stabilization technique to fix OMD in the un-

known time horizon setting and give essentially the same regret bound for stabilized-

OMD and DA. We present our convergence analysis in a careful and modular way

that allows for straightforward and flexible proofs. We also adapt our stabilized-

OMD for composite objective setting.

3.1 Background
We review some standard technical tools used by OMD and briefly describe some

known properties of OMD and DA in the literature of OCO.

3.1.1 Definitions and notations

Both OMD and DA are parameterized by a special convex function Φ, often referred

as a regularizer or a mirror map (for X ), which among other properties needs2 to

be of Legendre type (Rockafellar, 1970, Chapter 26). Formally, throughout the

1This is rate equivalent to the iteration complexity O(ε−2). To keep our notation consistent with
the literature, we describe the rate in terms of T instead of ε in this chapter.

2One may relax this condition in some cases. For a detailed discussion on the conditions needed
on the mirror map, see (Bubeck, 2011, § 5.2).
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chapter we assume that the function Φ : D̄ → R is a closed convex function such

that intD̄ ∩ riX 6= /0 (where riX denotes the relative interior of X ), and whose

conjugate is differentiable on Rd . Moreover, we also assume that Φ is of Legendre

type, which means that Φ is strictly convex on its domain3 and essentially smooth,

that is, for D := intD̄ we have

• D is nonempty,

• Φ is differentiable on D, and

• limx→∂D ‖∇Φ(x)‖=+∞, where ∂D is the boundary of D, i.e., ∂D := clD\
D.

The gradient of the mirror map ∇Φ : D → Rd and the gradient of its conjugate

∇Φ∗ : Rd →D are mutually inverse bijections between the primal space D and the

dual space Rd . We will adopt the following notational convention. Any vector in

the primal space will be written without a hat, such as x ∈D. The same letter with a

hat, namely x̂, will denote the corresponding dual vector:

x̂ := ∇Φ(x) and x := ∇Φ
∗(x̂) for all letters x .

Essential smoothness ensures not only that Φ is differentiable on the interior of

its domain, but also that the slope of Φ increases arbitrarily fast near the boundary

of its domain. The latter guarantees, at least intuitively, that the function to be

increasing near and in the direction of the boundary of its domain. This property

is fundamental for mirror descent to be well-defined (although not essential for

dual averaging) since it ensures that the Bregman Projection onto X is attained by

a point on D where Φ is differentiable, and uniqueness is a consequence of the

strict convexity of Φ. Some mirror maps we shall look are classical cases of the

OCO literature such as the negative entropy x ∈ Rd
+ 7→ ∑

d
i=1 xi lnxi and the squared

2-norm 1
2‖ · ‖

2
2, and details on the reasons they are mirror maps can be found in

the literature (Bubeck, 2011, 2015; Shalev-Shwartz, 2012). In particular, Bubeck

(2011, Section 5.2) discussed the properties of functions of Legendre type and why

3In fact we only need Φ to be strictly convex on some convex subsets of the domain (Rockafellar,
1970, Chapter 26), but for the sake of simplicity we assume that Φ is strictly convex on its entire
domain.
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Algorithm 2 Pseudocode for both online mirror descent and dual averaging with
dynamic stepsize given by ηt on iteration t. These methods differ only in how the
iterate ŷ(t+1) is updated.

Input: x(1) ∈ X ∩D,η : N→ R>0.
for t = 1,2, . . . do

Incur cost ft(x(t)) and receive gt ∈ ∂ ft(x(t))
x̂(t) = ∇Φ(x(t))
[OMD update] ŷ(t+1) = x̂(t)−ηtgt

[DA update] ŷ(t+1) = x̂(1)−ηt ∑i≤t gi

y(t+1) = ∇Φ∗(ŷ(t+1))
x(t+1) = ΠΦ

X (y
(t+1))

end for

requiring the conjugate of the mirror map to be differentiable on the whole space is

not necessary for mirror descent to be well-defined if one restricts the gradient steps

in the dual space in some ways.

Given a mirror map Φ, the Bregman divergence with respect to Φ is defined by

DΦ(x,y) := Φ(x)−Φ(y)−〈∇Φ(y), x− y〉, ∀x ∈ D̄,∀y ∈ D. (3.1)

Throughout this chapter it will be convenient to use the notation

DΦ(
a
b ;c) := DΦ(a,c)−DΦ(b,c) = Φ(a)−Φ(b)−〈∇Φ(c), a−b〉. (3.2)

In the important special case where Φ(x) = 1
2‖x‖

2
2, the Bregman divergence relates

to the Euclidean distance, i.e., DΦ(x,y) = 1
2‖x− y‖2

2. When D = Rd
+ and Φ(x) =

∑
d
i=1 xi logxi, the Bregman divergence becomes the generalized Kullback-Leibler

(KL) divergence. The projection operator induced by the Bregman divergence is

written as ΠΦ
X (y) := argmin{DΦ(x,y) | x ∈ X}.

A general template for optimization in the mirror descent framework is shown in

Algorithm 2. The two classical algorithms, online mirror descent and dual averaging,

are incarnations of this, differing only in how the dual variable ŷ(t) is updated.
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3.1.2 OMD and DA with constant stepsize

When the time horizon T is known in advance, constant stepsize that depends on

T can be adopted to achieve sublinear regret. In particular, as characterized by the

following Theorem, OMD and DA with the same stepsize can obtain exactly the

same regret bound.

Theorem 3.1.1 (Nesterov, 2009, Theorem 1, Hazan, 2016, Theorem 5.6). Suppose

that Φ is ρ-strongly convex with respect to a norm ‖ · ‖ and pick a constant stepsize

ηt := η > 0 for all t ≥ 1. Let {x(t)}t≥1 be the sequence of iterates generated

by Algorithm 2. Then for any sequence of convex functions { ft}t≥1 with each

ft : X → R, the following bound holds for both OMD and DA updates,

Regret(T,z) ≤
T

∑
t=1

η‖gt‖2
∗

2ρ
+

DΦ(z,x(1))
η

. (3.3)

When T is known as a priori, O(
√

T ) regret can be obtained by setting η =

1/
√

T in eq. (3.7). Interestingly, though OMD and DA with constant stepsize have

same regret bound, the proofs used to derive this bound tend to be quite different.

3.1.3 OMD and DA with dynamic stepsize

In the unknown time horizon scenario, a dynamic stepsize with ηt ∝ 1/
√

t is usually

adopted in the literature of online learning (Beck and Teboulle, 2003; Zinkevich,

2003). Moreover, when the domain X is bounded, both OMD and DA with stepsize

ηt ∝ 1/
√

t have O(
√

T ) regret bounds (with differing constants). However, when

we allow the domain X to be unbounded, OMD is shown to be to provably worse

than DA:

Theorem 3.1.2 (Linear regret for OMD, Orabona and Pál, 2018, Theorem 3). Set

ηt = 1/
√

t. Let {x(t)}t≥1 denote the sequence of iterates generated by Algorithm 2

with OMD update. For any T ≥ 3 there exists a sequence of convex 1-Lipschitz

functions { ft}T
t=1 and an initial point x(1) ∈ X such that

sup
z∈X

DΦ(z,x(1)) is bounded and Regret(T,z) = Ω(T ),
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while Algorithm 2 with DA update can always guarantee sublinear regret bound

O(
√

T ) using a similar stepsizes (which differ only by constants).

Moreover, there are examples showing that for offline 1-dimensional gradient

descent (i.e., mirror descent with 2 norm square regularization), a stepsize that is

either asymptotically o(1/
√

t) or ω(1/
√

t) cannot achieve regret bound O(
√

t) for

all t > 0. So OMD with stepsizes of the form t−α with α > 0 cannot obtain optimal

regret when X is unbounded. A natural question is if we can improve OMD to make

it provably work with dynamic stepsizes. In the next section we provide a fix for

OMD with dynamic stepsizes through a stabilization technique and later we show

its connection with dynamic DA.

3.2 Stabilized OMD
The intuition for the idea is as follows. Suppose Z ⊆X is a set of comparison points

with respect to which we wish our algorithm to have low regret. Usually, we assume

supz∈Z DΦ(z,x(1)) is bounded, that is, the initial point is not too far (with respect to

the Bregman divergence) from any comparison point. Since supz∈Z DΦ(z,x(1)) is

bounded (but not necessarily supz∈Z,x∈X DΦ(z,x)), the point x(1) is the only point

in X that is known to be somewhat close (with respect to the Bregman divergence)

to all the other points in X . Thus, iterates computed by the algorithm should remain

reasonably close to x(1) so that no other point z ∈ Z is too far from the iterates. If

there were such a point z, an adversary could later chose functions so that picking

z every round would incur low loss. At the same time, OMD would take many

iterations to converge to z since consecutive OMD iterates tend to be close with

respect to the Bregman divergence. That is, the algorithm would have high regret

against z. To prevent this, the stabilization technique modifies each iterate x(t) to

mix in a small fraction of x(1). This idea is not entirely new: it appears, for example,

in the original Exp3 algorithm (Auer et al., 2002a), although for different reasons.

There are two ways to realize the stabilization idea.

Primal Stabilization. Replace x(t) with a convex combination of x(t) and x(1).

Dual Stabilization. Replace ŷ(t) with a convex combination of ŷ(t) and x̂(1)

(Recall from Algorithm 2 that ŷ(t) is the dual iterate computed by taking a gradient

step). An illustration for dual stabilization is shown in Figure 3.1.
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PrimalDual

}
Figure 3.1: Illustration of the t-th iteration of DS-OMD.

After a draft of this chapter was made publicly available (the preliminary version

released in ICML 2020), we were informed that an idea similar to primal stabiliza-

tion had appeared in the Robust Optimistic Mirror Descent algorithm (Kangarshahi

et al., 2018). Their setting is somewhat different since they perform optimistic steps.

Furthermore, their results are somewhat weaker in terms of constant factors and

since they cannot handle Bregman projections.

Additionally, after the ICML version of this paper was published we were told

about ideas similar to primal stabilization were involved in the Twisted Mirror

Descent(TMD) algorithm (György and Szepesvári, 2016). More specifically, TMD

is a meta-algorithm adds a step at each iteration controlled by some sequence of

functions that may depend on previous iterates and has, as a special case, primal

stabilization. For the case of prediction with expert advice, they showed (György

and Szepesvári, 2016, Example 6) how primal stabilization yields good bounds on

the shifting regret. In our work, we extended the idea of primal stabilization for

cases beyond the one of prediction with expert’s advice.

3.2.1 Dual-stabilized OMD

Algorithm 3 gives pseudocode showing our modification of OMD to incorporate

dual stabilization.

Theorem 3.2.1 (Regret bound for dual-stabilized OMD). Assume that ηt ≥ηt+1 > 0
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Algorithm 3 Dual-stabilized online mirror descent, with dynamic stepsize ηt . The
parameters γt control the amount of stabilization.

Input: x(1) ∈ X , η : N→ R+, γ : N→ (0,1]
for t = 1,2, . . . do

Incur cost ft(x(t)) and receive gt ∈ ∂ ft(x(t))

x̂(t) = ∇Φ(x(t)) B map primal iterate to dual space
ŵ(t+1) = x̂(t)−ηtgt B gradient step in dual space (3.4)
ŷ(t+1) = γtŵ(t+1)+(1− γt)x̂(1) B stabilization in dual space (3.5)
y(t+1) = ∇Φ

∗(ŷ(t+1)) B map dual iterate to primal space
x(t+1) = Π

Φ
X (y

(t+1)) B project onto feasible region (3.6)

end for

for all t ≥ 1. Define γt = ηt+1/ηt ∈ (0,1] for all t ≥ 1. Let {x(t)}t≥1 be the sequence

of iterates generated by Algorithm 3. Then for any sequence of convex functions

{ ft}t≥1 with ft : X → R for each t ≥ 1,

Regret(T,z) ≤
T

∑
t=1

DΦ(
x(t)

x(t+1) ;w(t+1))

ηt
+

DΦ(z,x(1))
ηT+1

∀T > 0. (3.7)

Note that strong convexity of Φ is not assumed. As we will see in Section 3.3.1,

the term DΦ(
x(t)

x(t+1) ;w(t+1)) can be easily bounded when the mirror map is strongly

convex. This yields sublinear regret for ηt ∝ 1/
√

t, which is not the case for the

classical OMD when supx,y∈X DΦ(x,y) = +∞.

Proof (of Theorem 3.2.1).

The first step is the same as in the standard OMD proof. For all z ∈ X ,

ft(x(t))− ft(z)
(i)
≤ 〈gt , x(t)− z〉
(ii)
=

1
ηt
〈 x̂(t)− ŵ(t+1), x(t)− z〉

(iii)
=

1
ηt

(
DΦ(x(t),w(t+1))−DΦ(z,w(t+1))+DΦ(z,x(t))

)
,

(3.8)
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where (i) is from the subgradient inequality, (ii) follows from eq. (3.4) and (iii) is

by Proposition B.1.6.

The next step exhibits the main point of stabilization. Without stabilization we

would have

x(t+1) = Π
Φ
X (w

(t+1)) and DΦ(z,w(t+1))≥ DΦ(z,x(t+1))+DΦ(x(t+1),w(t+1))

by Proposition B.1.8, so eq. (3.8) would lead to a telescoping sum involving DΦ(z, ·)
if the stepsize were fixed. With a dynamic stepsize the analysis is trickier: we need a

claim that leads to telescoping terms by relating DΦ(z,w(t+1)) to DΦ(z,x(t+1)).

Claim 3.2.1. Assume that γt = ηt+1/ηt ∈ (0,1]. Then

(3.8)

≤
DΦ(

x(t)
x(t+1) ;w(t+1))

ηt
+
( 1

ηt+1
− 1

ηt

)
︸ ︷︷ ︸

telescopes

DΦ(z,x(1))+
DΦ(z,x(t))

ηt
− DΦ(z,x(t+1))

ηt+1︸ ︷︷ ︸
telescopes

.

Proof. First we derive the inequality

γt
(
DΦ(z,w(t+1))−DΦ(x(t+1),w(t+1))

)
+ (1− γt)DΦ(z,x(1))

(i)
≥ γtDΦ(

z
x(t+1) ;w(t+1)) + (1− γt)DΦ(

z
x(t+1) ;x(1))

(ii)
= DΦ(

z
x(t+1) ;y(t+1))

(iii)
≥ DΦ(z,x(t+1))

where (i) is from the fact that DΦ(x(t+1),x(1)) ≥ 0 and γt ≤ 1, (ii) follows from

Proposition B.1.7 and eq. (3.5) and (iii) is by Proposition B.1.8 and eq. (3.6).

Rearranging and using γt > 0 yields

DΦ(z,w(t+1)) ≥ DΦ(x(t+1),w(t+1))−
( 1

γt
−1
)

DΦ(z,x(1))+
1
γt

DΦ(z,x(t+1)).

(3.9)
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Plugging this into eq. (3.8) yields

(3.8) =
1
ηt

(
DΦ(x(t),w(t+1))−DΦ(z,w(t+1))+DΦ(z,x(t))

)
≤ 1

ηt

(
DΦ(x(t),w(t+1))−DΦ(x(t+1),w(t+1))+

( 1
γt
−1
)

DΦ(z,x(1))

− 1
γt

DΦ(z,x(t+1))+DΦ(z,x(t))

)
,

by eq. (3.9). The claim follows by the definition of γt .

The final step is very similar to the standard OMD proof. Summing eq. (3.8)

over t and using Claim 3.2.1 leads to the desired telescoping sum.

T

∑
t=1

(
ft(x(t))− ft(z)

)
≤

T

∑
t=1

(
DΦ(

x(t)
x(t+1) ;w(t+1))

ηt
+
( 1

ηt+1
− 1

ηt

)
DΦ(z,x(1))

+
DΦ(z,x(t))

ηt
− DΦ(z,x(t+1))

ηt+1

)

≤
T

∑
t=1

DΦ(
x(t)

x(t+1) ;w(t+1))

ηt
+

(
1

η1
+

T

∑
t=1

(
1

ηt+1
− 1

ηt

))
DΦ(z,x(1))

=
T

∑
t=1

DΦ(
x(t)

x(t+1) ;w(t+1))

ηt
+

DΦ(z,x(1))
ηT+1

.

3.2.2 Primal-stabilized OMD

Algorithm 4 gives pseudocode showing our modification of OMD to incorporate

primal stabilization.

The algorithm is analyzed in the following Theorem.
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Algorithm 4 Online mirror descent with primal stabilization.

Input: x(1) ∈ Rd , η : N→ R, γ : N→ R.
for t = 1,2, . . . do

Incur cost ft(x(t)) and receive gt ∈∂ ft(x(t))

x̂(t) = ∇Φ(x(t)) B map primal iterate to dual space

ŵ(t+1) = x̂(t)−ηtgt B gradient step in dual space (3.12)

w(t+1) = ∇Φ
∗(ŵ(t+1)) B map dual iterate to primal space (3.13)

y(t+1) = Π
Φ
X (w

(t+1)) B project onto feasible region (3.14)

x(t+1) = γty(t+1)+(1− γt)x(1) B stabilization in primal space (3.15)

end for

Theorem 3.2.2 (Regret bound for primal-stabilized OMD). Assume that ηt ≥
ηt+1 > 0 for all t ≥ 1. Define γt = ηt+1/ηt ∈ (0,1] for all t ≥ 1. Let {x(t)}t≥1 be

the sequence of iterates generated by Algorithm 4. Furthermore, assume that

for all z ∈ X , the map x 7→ DΦ(z,x) is convex on X . (3.10)

Then for any sequence of convex functions { ft}t≥1 with each ft : X → R,

Regret(T,z) ≤
T

∑
t=1

DΦ(
x(t)

y(t+1) ;w(t+1))

ηt
+

DΦ(z,x(1))
ηT+1

∀T > 0. (3.11)

Proof (of Theorem 3.2.2).

Let z ∈ X . The first step is identical to the proof of Theorem 3.2.1 since the

update rule in (3.12) is exactly the same as (3.4). Therefore, we have that (3.8)

holds, that is,

ft(x(t))− ft(z) ≤
1
ηt

(
DΦ(x(t),w(t+1))−DΦ(z,w(t+1))+DΦ(z,x(t))

)
.
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Claim 3.2.2. Assume that γt = ηt+1/ηt ∈ (0,1]. Then

(3.8)

≤
DΦ(

x(t)
y(t+1) ;w(t+1))

ηt
+
( 1

ηt+1
− 1

ηt

)
︸ ︷︷ ︸

telescopes

DΦ(z,x(1))+
DΦ(z,x(t))

ηt
− DΦ(z,x(t+1))

ηt+1︸ ︷︷ ︸
telescopes

.

Proof. First, we derive the inequality

γt
(
DΦ(z,w(t+1))−DΦ(y(t+1),w(t+1))

)
+ (1− γt)DΦ(z,x(1))

= γtDΦ(
z

y(t+1) ;w(t+1)) + (1− γt)DΦ(z,x(1))

≥ γtDΦ(z,y(t+1))+(1− γt)DΦ(z,x(1)) (by Proposition B.1.8 and eq. (3.14))

≥ DΦ(z,x(t+1)) (by eq. (3.15), (3.10) and γt ∈ (0,1]) .

Rearranging and using γt > 0 yields

DΦ(z,w(t+1)) ≥ DΦ(y(t+1),w(t+1))−
( 1

γt
−1
)

DΦ(z,x(1))+
1
γt

DΦ(z,x(t+1)).

(3.16)

Plugging this into eq. (3.8) yields

(3.8) =
1
ηt

(
DΦ(x(t),w(t+1))−DΦ(z,w(t+1))+DΦ(z,x(t))

)
≤ 1

ηt

(
DΦ(x(t),w(t+1))−DΦ(y(t+1),w(t+1))+

( 1
γt
−1
)

DΦ(z,x(1))

− 1
γt

DΦ(z,x(t+1))+DΦ(z,x(t))

)
,

by eq. (3.16). The claim follows by the definition of γt .

The final step is very similar to the proof of Theorem 3.2.1. The only differ-

ence is that we are using Claim 3.2.2 instead of Claim 3.2.1 and we replace

DΦ(
x(t)

x(t+1) ;w(t+1)) with DΦ(
x(t)

y(t+1) ;w(t+1)). Formally, summing (3.8) over t and
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using Claim 3.2.2 leads to the desired telescoping sum, that is,

T

∑
t=1

(
ft(x(t))− ft(z)

)
≤

T

∑
t=1

(
DΦ(

x(t)
y(t+1) ;w(t+1))

ηt
+
( 1

ηt+1
− 1

ηt

)
DΦ(z,x(1))+

DΦ(z,x(t))
ηt

− DΦ(z,xt+1)

ηt+1

)

≤
T

∑
t=1

DΦ(
x(t)

y(t+1) ;w(t+1))

ηt
+

(
1

η1
+

T

∑
t=1

(
1

ηt+1
− 1

ηt

))
DΦ(z,x(1))

=
T

∑
t=1

DΦ(
x(t)

y(t+1) ;w(t+1))

ηt
+

DΦ(z,x(1))
ηT+1

.

3.2.3 Dual averaging

In this section, we show that Nesterov’s dual averaging algorithm can be obtained

from a small modification to dual-stabilized online mirror descent. Furthermore our

proof of Theorem 3.2.1 can be adapted to analyze this algorithm.

The main difference between DS-OMD and dual averaging is in the gradient

step, as we now explain. In iteration t +1 of DS-OMD, the gradient step is taken

from x̂(t), the dual counterpart of the iterate x(t):

DS-OMD gradient step: ŵ(t+1) = x̂(t)−ηtgt .

Suppose that the algorithm is modified so that the gradient step is taken from ŷ(t),

the dual point from iteration t before projection onto the feasible region. (Here ŷ(1)

is defined to be x̂(1).) The resulting gradient step is:

Lazy gradient step: ŵ(t+1) = ŷ(t)−ηtgt . (3.17)

As before, we set

ŷ(t+1) = γtŵ(t+1)+(1− γt)x̂(1) (3.18)
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Algorithm 5 Dual averaging with stepsize re-indexed as η2,η3, . . .

Input: x(1) ∈ X , η : N→ R+, γ : N→ (0,1]
ŷ(1) = ∇Φ(x(1))
for t = 1,2, . . . do

Incur cost ft(x(t)) and receive gt ∈ ∂ ft(x(t))
ŷ(t+1) = x̂(1)−ηt+1 ∑i≤t gi B dual averaging update
y(t+1) = ∇Φ∗(ŷ(t+1)) B map dual iterate to primal space
x(t+1) = ΠΦ

X (y
(t+1)) B project onto feasible region

end for

where γt = ηt+1/ηt . Then a simple inductive proof yields the following claim.

Claim 3.2.3. ŵ(t) = x̂(1)−ηt−1 ∑i<t gi and ŷ(t) = x̂(1)−ηt ∑i<t gi for all t > 1.

Thus, the algorithm with the lazy gradient step can be written as in Algorithm 5.

This is equivalent to Algorithm 2 with the DA update, except that ηt in Algorithm 2

corresponds to ηt+1 in Algorithm 5.

Theorem 3.2.3 (Regret bound for dual averaging). Assume that ηt ≥ ηt+1 > 0 for

all t > 1. Let {x(t)}t≥1 be the sequence of iterates generated by Algorithm 5. Then

for any sequence of convex functions { ft}t≥1 with each ft : X → R,

Regret(T,z) ≤
T

∑
t=1

DΦ(
x(t)

x(t+1) ;∇Φ∗(x̂(t)−ηtgt))

ηt
+

DΦ(z,x(1))
ηT+1

∀T > 0.

(3.19)

The proof parallels the proof of Theorem 3.2.1.

Proof (of Theorem 3.2.3).

The first step is very similar to the proof of Theorem 3.2.1. For all z ∈ X ,

ft(x(t))− ft(z) (3.20)

≤ 〈gt , x(t)− z〉 (subgradient inequality)

=
1
ηt
〈 ŷ(t)− ŵ(t+1), x(t)− z〉 (by eq. (3.17))

=
1
ηt

(
DΦ(x(t),w(t+1))−DΦ(z,w(t+1))+DΦ(

z
x(t) ;y(t))

)
, (3.21)
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where we have used Proposition B.1.5 instead of Proposition B.1.6.

As in the proof of Theorem 3.2.1, the next step is to relate DΦ(z,w(t+1)) to

DΦ(z,y(t+1)) so that eq. (3.21) can be bounded using a telescoping sum. The

following claim is similar to Claim 3.2.1.

Claim 3.2.4. Assume that γt = ηt+1/ηt ∈ (0,1]. Then

(3.21)

≤
DΦ(

x(t)
x(t+1) ;w(t+1))

ηt
+
( 1

ηt+1
− 1

ηt

)
︸ ︷︷ ︸

telescopes

DΦ(z,x(1))+
DΦ(

z
x(t) ;y(t))
ηt

−
DΦ(

z
x(t+1) ;y(t+1))

ηt+1︸ ︷︷ ︸
telescopes

.

Proof. The first two steps are identical to the proof of Claim 3.2.1.

γt
(
DΦ(z,w(t+1))−DΦ(x(t+1),w(t+1))

)
+ (1− γt)DΦ(z,x(1))

(i)
≥ γtDΦ(

z
x(t+1) ;w(t+1)) + (1− γt)DΦ(

z
x(t+1) ;x(1))

(ii)
= DΦ(

z
x(t+1) ;y(t+1)).

where (i) is from the fact that DΦ(x(t+1),x(1)) ≥ 0 and γt ≤ 1, (ii) is by Proposi-

tion B.1.7 and eq. (3.18). Rearranging and using γt > 0 yields

DΦ(z,w(t+1)) ≥ DΦ(x(t+1),w(t+1))−
( 1

γt
−1
)

DΦ(z,x(1))+
DΦ(

z
x(t+1) ;y(t+1))

γt
.

(3.22)

Plugging this into eq. (3.21) yields

(3.21) =
1
ηt

(
DΦ(x(t),w(t+1))−DΦ(z,w(t+1))+DΦ(

z
x(t) ;y(t))

)
≤ 1

ηt

(
DΦ(x(t),w(t+1))−DΦ(x(t+1),w(t+1))+

( 1
γt
−1
)

DΦ(z,x(1))

−
DΦ(

z
x(t+1) ;y(t+1))

γt
+DΦ(

z
x(t) ;y(t))

)
,

by eq. (3.22). The claim follows by the definition of γt .
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The final step is very similar to the proof of Theorem 3.2.1. Summing eq. (3.21)

over t and using Claim 3.2.4 leads to the desired telescoping sum.

T

∑
t=1

(
ft(x(t))− ft(z)

)
≤

T

∑
t=1

(
DΦ(

x(t)
x(t+1) ;w(t+1))

ηt
+
( 1

ηt+1
− 1

ηt

)
DΦ(z,x(1))

+
DΦ(

z
x(t) ;y(t))
ηt

−
DΦ(

z
x(t+1) ;y(t+1))

ηt+1

)

≤
T

∑
t=1

DΦ(
x(t)

x(t+1) ;w(t+1))

ηt
+

(
1

η1
+

T

∑
t=1

(
1

ηt+1
− 1

ηt

))
DΦ(z,x(1))

=
T

∑
t=1

DΦ(
x(t)

x(t+1) ;w(t+1))

ηt
+

DΦ(z,x(1))
ηT+1

. (3.23)

For the second inequality we have also used that DΦ(
z

x(1) ;y(1)) = DΦ(z,x(1))

since x(1) = y(1).

Notice that eq. (3.23) is syntactically identical to eq. (3.7); the only difference

is the definition of w(t+1) in these two settings. It turns out to be more useful

for applications to provide a convenient upper bound on eq. (3.23), which is

the conclusion of this theorem. Referring to eq. (3.17), we see that w(t+1) is

closely related to y(t), but less closely related to x(t). To control DΦ(
x(t)

x(t+1) ;w(t+1)), it

turns out to be convenient to apply Proposition B.1.9 as follows. Taking p = y(t),

π = x(t) = ΠΦ
X (y

(t)), v = x(t+1) and q̂ = ηtgt , we obtain

DΦ(
x(t)

x(t+1) ;w(t+1))
(i)
= −DΦ(

v
π

;∇Φ
∗(p̂− q̂))

(ii)
≤ −DΦ(

v
π

;∇Φ
∗(π̂− q̂))

= DΦ(
x(t)

x(t+1) ;∇Φ
∗(x̂(t)−ηtgt)),

where (i) is from the fact that ŵ(t+1) = ŷ(t)−ηtgt = p̂− q̂ and (ii) is by Proposi-

tion B.1.9. Plugging this into (3.23) completes the proof.
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3.2.4 Remarks

Interestingly, the doubling trick (Shalev-Shwartz, 2012) on OMD can be viewed

as an incarnation of stabilization. To see this, set ηt := 1/
√

2blg tc and γt :=

1{t is a power of 2}. Then, for each dyadic interval of length 2`, the first iterate is x(1)

and a fixed learning rate 1/
√

2` is used. Thus, with these parameters, Algorithm 3

reduces to the doubling trick.

One should note that in Theorem 3.2.1 the stabilization parameter γt used in

round t ≥ 1 depends on the stepsizes for rounds t and t + 1, need to “peek into

the future”. Thus, to use stabilization as in Theorem 3.2.1 the stepsize for round t

can depend on information available only up to round t−1. This will come into

play, for example, when we derive first-order regret bounds on Section 3.3.2 where

the stepsize is based on the subgradients of the past functions (instead of simply

depending on the count of rounds). Reindexing the stepsizes could fix the problem,

but then the proof of Theorem 3.2.1 would look syntactically odd. Although this

dependence on the future may seem unnatural, in Section 3.4 we shall see that under

some mild conditions, stabilized OMD coincides exactly with DA with dynamic

stepsizes after reindexing. This extends the same behavior observed between OMD

and DA when the stepsizes are fixed. In this sense, stabilization may seem as a

natural way to fix OMD for dynamic stepsizes.

3.3 Applications

3.3.1 Strongly-convex mirror maps

We now analyze the algorithms of the previous section in the scenario that the mirror

map is strongly convex. Let ηt ,γt , ft be as above. The following result is a corollary

of Theorems 3.2.1, 3.2.2 and 3.2.3.

Corollary 3.3.1 (Regret bound for dual-stabilized OMD). Suppose that Φ is ρ-

strongly convex on X with respect to a norm ‖ · ‖. Let {x(t)}∞
t=1 be the iterates

produced by Algorithms 3, 4 or 5. (For Algorithm 4, the additional assumption
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(3.10) is required.) Then

Regret(T,z) ≤
T

∑
t=1

ηt‖gt‖2
∗

2ρ
+

DΦ(z,x(1))
ηT+1

∀T > 0.

This is identical to Nesterov’s bound for dual averaging (Nesterov, 2009,

eq. 2.15) (taking his λi = 1 and his βi = 1/ηi). The proof is based on the fol-

lowing simple proposition, which bounds the Bregman divergence when Φ is

strongly convex. See, e.g., Bubeck (Bubeck, 2015, pp. 300). A proof is given in

Appendix B.2.

Proposition 3.3.1. Suppose that Φ is ρ-strongly convex on X with respect to ‖ · ‖.
Consider any x,x′ ∈ X and q̂ ∈ Rd . Then

DΦ(
x
x′ ;∇Φ

∗(x̂− q̂)) ≤ ‖q̂‖2
∗/2ρ.

Proof (of Corollary 3.3.1). The regret bounds proven by Theorems 3.2.1, 3.2.2

and 3.2.3 all involve a summation with terms of the form

3.2.1 : DΦ(
x(t)

x(t+1) ;w(t+1))

3.2.2 : DΦ(
x(t)

y(t+1) ;w(t+1))

3.2.3 : DΦ(
x(t)

x(t+1) ;∇Φ
∗(x̂(t)−ηtgt)).

For Theorems 3.2.1 and 3.2.3, we have x(t+1) ∈ X , whereas for Theorem 3.2.2

we also have y(t+1) ∈ X by eq. (3.14). For Theorems 3.2.1 and 3.2.2 we have

w(t+1) = ∇Φ∗(x̂(t)−ηtgt) by eq. (3.4) and eq. (3.10). Therefore all of these terms

may be bounded using Proposition 3.3.1 with x = x(t) and q̂ = ηtgt . This yields the

claimed bound.

3.3.2 Prediction with expert advice

Next, we consider the setting of “prediction with expert advice”. In this setting, D
is Rd

>0, X is the simplex ∆d ⊂ Rd , and the mirror map is Φ(x) = ∑
d
i=1 xi logxi. (On

X , Φ is the negative of the entropy function.) The gradient of the mirror map and
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its conjugate are

∇Φ(x)i = ln(xi)+1 and ∇Φ
∗(x̂)i = exp(x̂i−1). (3.24)

For any two points a ∈ D̄, b ∈ D, a small calculation shows that DΦ(a,b) is the

generalized KL-divergence

DKL(a,b) =
d

∑
i=1

ai ln(ai/bi)−‖a‖1 +‖b‖1.

Note that the KL-divergence is convex on its second argument for any a ∈ D̄ =Rd
≥0

since the functions − ln(·) and absolute value are both convex. This means that the

general regret bounds for all algorithms discussed in Section 3.2, including primal

stabilized OMD, hold in this setting.

In this section, we will use the theorems in Section 3.2 to derive regret bounds

for this setting without much extra-work. As an intermediate step, we will derive

bounds that use the following function:

Λ(a,b) := DKL(a,b)+‖a‖1−‖b‖1 + ln‖b‖1 =
d

∑
i=1

ai ln(ai/bi)+ ln‖b‖1,

which is a useful tool in the analysis of algorithms for the experts’ problem. For

examples, see works from de Rooij et al. (2014, §2.1) and Cesa-Bianchi et al. (2007,

Lemma 4). An initial observation shows that Λ is non-negative in the experts’

setting.

Proposition 3.3.2. Λ(a,b)≥ 0 for all a ∈ X , b ∈ D.

Proof. Let us write Λ(a,b) =−∑
d
i=1 ai ln bi

ai
+ ln

(
∑

d
i=1 bi

)
. Since a is a probability

distribution, we may apply Jensen’s inequality to show that this expression is

non-negative.

The following result is a corollary of Theorems 3.2.1, 3.2.2 and 3.2.3.

Corollary 3.3.2. Assume that ηt ≥ ηt+1 > 0 for all t ≥ 1. Define γt = ηt+1/ηt ∈
(0,1]. Let x(1) be the uniform distribution 1/d and let x(2),x(3), . . . be the iterates
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produced by Algorithms 3, 4 or 5. Then

Regret(T,z) ≤
T

∑
t=1

Λ(x(t),∇Φ∗(x̂(t)−ηtgt))

ηt
+

lnd
ηT+1

∀T > 0. (3.25)

The proof is a direct consequence of the following proposition, which is proven

in Appendix B.3.

Proposition 3.3.3. Let a,b ∈ X and c ∈ D. Then DΦ(
a
b ;c)≤ Λ(a,c).

Proof (of Corollary 3.3.2). First of all, recall that the DKL is convex on its second

argument, which allows us to use the bound from eq. (3.11) for primal stabilized

OMD. As in the proof of Corollary 3.3.1, we first observe that the regret bounds (3.7),

(3.11) and (3.19) all have sums with terms of the form DΦ(
x(t)
u(t) ;∇Φ∗(x̂(t)−ηtgt))

for some u(t) ∈ X . These terms may be bounded using Proposition 3.3.3. Finally,

the standard inequality supz∈X DKL(z,x(1))≤ lnd completes the proof.

Anytime regret

As another corollary of Corollary 3.3.2 we now derive an anytime regret bound in

the case of bounded costs. This matches the best known bound appearing in the

literature (Bubeck, 2011, Theorem 2.4) (Gerchinovitz, 2011, Proposition 2.1).

Corollary 3.3.3. Suppose that gt ∈ [0,1]d for all t. Define ηt = 2
√

ln(d)/t and

γt = ηt+1/ηt . Let x(1) be the uniform distribution 1/d and let x(2),x(3), . . . be the

iterates produced by Algorithms 3, 4 or 5. Then

Regret(T,z) ≤
√

T lnd ∀T ≥ 1, z ∈ X . (3.26)

The proof follows from Corollary 3.3.2 and Hoeffding’s Lemma, as shown

below.

Lemma 3.3.1 (Hoeffding’s Lemma (Cesa-Bianchi and Lugosi, 2006, Lemma 2.2)).
Let X be a random variable with a≤ X ≤ b. Then for any s ∈ R,

lnE[esX ]− sEX ≤ s2(b−a)2

8
.
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Proof (of Corollary 3.3.3). Denote gti to be the ith entry of the vector gt . By

eq. (3.24) we have ∇Φ∗(x̂(t)−ηtgt)i = x(t)i exp(−ηtgti) for each i ∈ [d]. This to-

gether with Lemma 3.3.1 for s =−ηt yields

Λ(x(t),∇Φ
∗(x̂(t)−ηtgt)) = ηt〈x(t), gt 〉+ ln

(
d

∑
j=1

x(t)j e−ηt gt j

)
≤ η2

t

8
. (3.27)

Plugging this and ηt = 2
√

lnd/t into eq. (3.25), we obtain the bound

Regret(T,z) ≤
√

lnd

(
1
4

T

∑
t=1

1√
t
+

√
T +1
2

)
(3.28)

≤
√

lnd

(
2
√

T −1
4

+

√
T +0.5

2

)
≤
√

T lnd (3.29)

by Fact B.1.3 and sub-additivity of square root.

First-order regret bound

The regret bound presented in previous section depends on
√

T ; this is known as

the “zeroth-order” regret bound. In some scenarios the cost of the best expert up to

time T can be far less than T . This makes the problem somewhat easier, and it is

possible to improve the regret bound. Formally, let L∗T denote the cost of the best

expert at time T . Then L∗T ≤ T due to our assumption that all costs are at most 1. A

“first-order” regret bound depends on
√

L∗T instead of
√

T . See, for example, the

book from Cesa-Bianchi and Lugosi (2006, §2.4).

The only modification to the algorithm is to change the stepsize. If the costs

are “smaller than expected”, then intuitively time is progressing “slower than

expected”. We will adopt an elegant idea from Auer et al. (2002b), which is to use

the algorithm’s cost itself as a measure of the progression of time, and to incorporate

this into the stepsize. They call this a “self-confident” stepsize.

Corollary 3.3.4. Assume that gt ∈ [0,1]d . Set ηt =
√

ln(d)/(1+∑i<t〈gi, xi 〉) and

γt = ηt+1/ηt . Denote the minimum total cost of any expert up to time T as L∗T :=
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min j∈[d] ∑
T
t=1 gt j. Then

Regret(T,z) ≤ 2
√

ln(d)L∗T +8lnd ∀T ≥ 1.

The main ingredients are the following alternative bound on Λ, which is proven

in Appendix B.3, and some standard scalar inequalities.

Proposition 3.3.4. Let a ∈ X , q̂ ∈ [0,1]d and η > 0. Then Λ(a,∇Φ∗(â−η q̂)) ≤
η2〈a, q̂〉/2.

Proof (of Corollary 3.3.4). From Corollary 3.3.2 and Proposition 3.3.4, we have

T

∑
t=1

(
〈gt , x(t) 〉−〈gt , z〉

)
≤

T

∑
t=1

ηt〈gt , x(t) 〉
2

+
lnd

ηT+1
. (3.30)

The algorithm’s total cost at time t is denoted At = ∑i≤t〈gi, x(i) 〉. Recall that the

total cost of the best expert at time T is L∗T = minz∈∆d ∑
T
t=1〈gt , z〉 and the stepsize

is ηt =
√

ln(d)/(1+At−1). Substituting these into eq. (3.30),

AT −L∗T ≤
√

lnd

(
1
2

T

∑
t=1

〈gt , x(t) 〉√
1+At−1

+
√

1+AT

)
≤
√

lnd
(√

AT +
√

AT +1
)

by Proposition B.1.1 with ai = 〈gi, x(i) 〉 and u = 1. Rewriting the previous inequal-

ity, we have shown that

AT −L∗T ≤ 2
√

ln(d)AT +
√

lnd.

By Proposition B.1.2 we obtain

AT −L∗T ≤ 2
√

ln(d)L∗T +
√

lnd +2(lnd)3/4 +4lnd.

Since the left-hand side equals Regret(T,z), the result follows.

Now we compare our bound with some existing results in the literature: our

constant term of 2 obtained in Corollary 3.3.4 is better than the constant (
√

2/(
√

2−
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1)) obtained by the doubling trick (Cesa-Bianchi and Lugosi, 2006, Exercise 2.8),

and the constant (2
√

2) in Auer et al. (2002b)’s work but worse than the constant

(
√

2) of the best known first-order regret bound (Yaroshinsky et al., 2004), which is

obtained by a sophisticated algorithm. We also match the constant 2 of the Hedge

algorithm from de Rooij et al. (2014, Theorem 8). Their result is actually more

general; we could similarly generalize our analysis, but that would deviate too far

from the main purpose of this chapter.

3.4 Comparing DS-OMD and DA
In this section we shall write the iterates of dual-stabilized OMD in two equivalent

forms. First we shall write it in a proximal-like formulation similar to the mirror

descent formulation in Beck and Teboulle (2003), shedding some light into the

intuition behind dual-stabilization. We then write the iterates from DS-OMD in a

form very similar to the original definition of DA in Nesterov (2009). The later

will allow us to intuitively understand why OMD does not play well with dynamic

step-size and to derive simple sufficient conditions under which DS-OMD and DA

generate the same iterates, mimicking the relation between OMD and DA for a fixed

stepsize.

Beck and Teboulle (2003) showed that the iterate x(t+1) for round t +1 from

OMD is the unique minimizer over X of ηt〈gt , · 〉+DΦ(·,x(t)), where gt ∈ ∂ ft(x(t)).

The next proposition extends this formulation to DS-OMD, recovering the result

from Beck and Teboulle when γt = 1. The proof, which can be found in Ap-

pendix B.4, is a simple application of the optimality conditions of eq. (3.31).

Proposition 3.4.1. Let { ft}t≥1 be a sequence of convex functions with ft : X → R
for each t ≥ 1. Let η : N→R>0 and γ : N→ [0,1]. Let {x(t)}t≥1 and {gt}t≥1 be as

in Algorithm 3. Then, for any t ≥ 1,

{x(t+1)}= argmin
x∈X

(
γt
(
ηt〈gt , x〉+DΦ(x,x(t))

)
+(1− γt)DΦ(x,x(1))

)
. (3.31)

In spite of their similar descriptions, Orabona and Pál (2018) showed that OMD

and DA may behave in extremely different ways even on the well-studied experts’

problem with similar choices of stepsizes. This extreme difference in behavior is not
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clear from the classical algorithmic description of these methods as in Algorithm 2.

In the case of DA, it is well-known that DA can be seen as an instance of the FTRL

algorithm; see Bubeck (2015, §4.4) or Hazan (2016, §5.3.1). More specifically,

if {x(t)}t≥1 and {gt}t≥1 are as in Algorithm 2 with the DA update, then for every

t ≥ 0, 4

{x(t+1)}= argmin
x∈X

(
ηt+1

t

∑
i=1
〈gi, x〉−〈 x̂(1), x〉+Φ(x)

)
. (3.32)

In the next theorem, proven in Appendix B.4, we write DS-OMD in a similar form,

but with vectors from the normal cone of X creeping into the formula due to the

back and forth between the primal and dual spaces. Recall that the normal cone of

X at a point x ∈ X is the set

NX (x) := { p ∈ Rd | 〈 p, z− x〉 ≤ 0 ∀ z ∈ X } .

The result in McMahan (2017, Theorem 11) is similar but slightly more intricate

due to the use of time-varying mirror maps. Moreover, this result does not directly

apply when we have stabilization.

Theorem 3.4.1. Let { ft}t≥1 with ft :X →R be a sequence of convex functions and

let η : N→ R>0 be non-increasing. Let {x(t)}t≥1 and {gt}t≥1 be as in Algorithm 3.

Then, there are {pt}t≥1 with pt ∈ NX (x(t)) for all t ≥ 1 such that, if γi = 1 for all

i≥ 1, then for all t ≥ 0

{x(t+1)}= argmin
x∈X

( t

∑
i=1
〈ηigi + pi, x〉−〈 x̂(1), x〉+Φ(x)

)
(3.33)

and if γi =
ηi+1
ηi

for all i≥ 1, then for all t ≥ 0

{x(t+1)}= argmin
x∈X

(
ηt+1

t

∑
i=1
〈gi + p′i, x〉−〈 x̂(1), x〉+Φ(x)

)
. (3.34)

where p′t := 1
ηt

pt ∈ NX (x(t)) for every t ≥ 1.

With the above theorem, we may compare the iterates generated from DA, OMD,

and DS-OMD by comparing the formulas eq. (3.32), eq. (3.33), and eq. (3.34). For
4The 〈∇Φ(x(1)), x〉 term disappears if x(1) minimizes Φ on X .
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the simple unconstrained case where X = Rd we have NX (x(t)) = {0} for each

t ≥ 1 and DA and DS-OMD are identical. However, if the stepsize is not constant,

OMD is not equivalent to the latter methods. In particular, if ηt ∝ 1/
√

t, eq. (3.33)

shows that the subgradients of the earlier-seen functions have a bigger weight on

the iterates if compared to the subgradients of functions from later rounds. In other

words, OMD may be sensitive to the ordering of the functions, and adversarial

orderings may affect its performance.

When X is an arbitrary convex set, DA and DS-OMD are not necessarily

equivalent anymore due to the vectors from the normal cone of X . If we know that

the iterates live in the relative interior of X , the next lemma shows that these vectors

do not affect the set of minimizers from eq. (3.34).

Lemma 3.4.1. For any x̊∈ riX , we have NX (x̊) = (−NX (x̊))∩NX (x̊). In particular,

for any p ∈ NX (x̊) we have 〈 p, x〉= 〈 p, x̊〉 for every x ∈ X .

With this lemma, we can easily derive simple and intuitive conditions under

which DS-OMD and DA are equivalent.

Corollary 3.4.1. Let D ⊆ Rd be the interior of the domain of Φ, let {x(t)}t≥1 be

the DS-OMD iterates as in Algorithm 3 and let {x(t)′}t≥1 be the DA iterates as in

Algorithm 2 with DA updates. If D∩X ⊆ riX , then x(t) = x(t)
′
for each t ≥ 1.

Proof. Let t ≥ 1. Since x(t)=ΠΦ
X (y

(t)), where y(t) is as in Algorithm 3, Lemma B.4.2

implies x(t) ∈D∩X ⊆ riX . By Lemma 3.4.1 we have that the vectors on the normal

cone in eq. (3.34) do not affect the set of minimizers, which implies that eq. (3.32)

and eq. (3.34) are equivalent.

An important special case of the above corollary is the prediction with expert

advice setting as in Section 3.3.2, where D = Rd
>0 and X is the simplex ∆d . In

this setting, X ∩D = {x ∈ (0,1)d | ∑d
i=1 xi = 1}= riX . By the previous corollary

DS-OMD and DA produce the same iterates in this case even for dynamic stepsizes.

Classical OMD and DA were already known to be equivalent in the experts’ setting

for a fixed learning rate (Hazan, 2016, §5.4.2). In contrast, with a dynamic stepsize,

the DA and OMD iterates are certainly different, since OMD with a dynamic

learning rate may have linear regret (Orabona and Pál, 2018), whereas DA has

sublinear regret.
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3.5 Discussion
In this chapter we modified OMD via stabilization in order to guarantee sublinear

regret even when using the method with a dynamic stepsize. We showed that (primal

and dual) stabilized-OMD recover the regret bounds enjoyed by DA in the anytime

setting, presented some applications of our results, and analyzed the similarities and

differences between DS-OMD, OMD, and DA.

Our bounds for the problem of prediction with expert advice nearly match

the current state-of-the-art. A distinctive feature of our proofs are their relative

simplicity if compared to other results from the literature. It is our hope that the

simplicity of our analysis framework allows it to be extended to other problems.

Moreover, the modularity of our proofs allowed us to extend this analysis for DA, a

fact interesting on its own since drastically different analysis techniques are usually

used to analyze DA in the literature (such as the Follow the Leader-Be the Leader

Lemma and optimality conditions of eq. (3.32), see Section 2.3 from Shalev-Shwartz

(2012) for an example). This together with our analysis from Section 3.4 helps

demystify the connections between DA and OMD, since in spite of having similar

descriptions they had extremely different analyses and behaved wildly differently

in some scenarios. We believe that a better understanding between the differences

between DA and OMD will be helpful in future applications and in the design of

new algorithms.
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Chapter 4

Fast convergence of stochastic
subgradient descent under
interpolation

4.1 Background and motivation
We consider the empirical-risk minimization problem:

min
x∈Rd

f (x) :=
1
n

n

∑
i=1

fi(x), (P)

where n is the number of data points, and fi’s are continuous functions that measures

how well our model x fit the data. The empirical-risk minimization formulation is

prevalent in data-fitting problems—from problems that as simple as linear regression

to complicated modern applications such as using deep neural networks for image

classification and language modeling.

Stochastic (sub)gradient descent (SGD) is an simple first-order algorithm with

the update rule1:

x(t+1) = x(t)−ηtgt gt ∈ ∂ fi(x(t)),

1One could also update the iterate based on a small batch of data points, which is known as the
mini-batch SGD. In this thesis, we consider the single sample case for simplicity.
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objective f (x) smooth nonsmooth strongly cvx

GD O(ε−1) O(ε−2) O(log(ε−1))
SGD O(ε−2) O(ε−2) O(ε−1)

Table 4.1: Iteration complexity of deterministic gradient and stochastic gradi-
ent methods.

where i is uniform randomly sampled from {1,2, . . . ,n} in each iteration. The itera-

tion complexities of SGD and GD for convex objective functions are summarized in

Table 4.1. Although in general SGD converges slower than GD, a remarkable prop-

erty of SGD is that both the per iteration cost and the convergence rate of SGD are

independent from n. This property makes SGD particularly effective for (P) when

n is large. In fact, SGD and its variants are indeed the most popular algorithms for

modern big data applications including image classification and language modeling.

Given the empirical success and popularity of SGD, a huge line of works have

been devoted into

• designing new variants of SGD to improve its convergence either theoretically

or empirically;

• refining the classical analysis of SGD in various settings e.g., convex and

nonconvex , and thus better understand SGD from a theoretical point of view.

This chapter belongs to the latter category. Next, we will briefly review some

milestones in the recent development of SGD and describe the motivation for this

chapter.

4.1.1 Practical algorithms based on SGD

SGD is the state-of-the-art algorithm for big data problems. Many practical algo-

rithms developed for a wide range of applications are related to SGD. For example,

the randomized Kaczmarz algorithm (Kaczmarz, 1937; Needell et al., 2014) for

solving linear systems and the Pegasos algorithm (Shalev-Shwartz et al., 2007)

for solving linear support vector machines. In the field of deep learning and re-

inforcement learning, specialized algorithms such as ADAM (Kingma and Ba,

2015), RMSprop (Tieleman and Hinton, 2012), TRPO (Schulman et al., 2015) and
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PPO (Schulman et al., 2017), etc. are developed to adapt SGD to different problem

structures. Beside efficiency, SGD and its variants are believed to exhibit implicit

regularization (Gunasekar et al., 2017), which is another factor that makes SGD the

dominate algorithm for training machine learning models.

4.1.2 Parallel and distributed SGD

The computation performance of single processor is reaching its limit due to en-

ergy dissipation. Designing scalable algorithms that obtain near-linear speed up

with multiple computing cores to address real-world huge scale problems becomes

an important research topic. Under such background, many parallel SGD algo-

rithms (Goyal et al., 2017; Li et al., 2014; Lian et al., 2015; Liu et al., 2015; Recht

et al., 2011; You et al., 2018) are proposed to adapt SGD to multi-CPUs, multi-

GPUs or multi-machines setting. Both synchronous and asynchronous parallel

SGD algorithms have been studied heavily in both theory and practice. On the

theory side, Bertsekas and Tsitsiklis first formally brought optimization and parallel

computation together, their seminal work (Bertsekas and Tsitsiklis, 1989) estab-

lished the theoretical foundations of parallel optimization and the theoretical tools

therein are still being used nowadays (the book from Bertsekas and Tsitsiklis is very

forward-thinking in 1989 since parallel computing is less of interest at that time).

More recently, HOGWILD! (Recht et al., 2011), an asynchronous parallel SGD with

theoretical guarantees and empirical success, brought resurged interest in parallel

SGD for machine learning tasks; the convergence of asynchronous parallel SGD in

various settings are also studied by subsequent works (Lian et al., 2015; Liu et al.,

2015). On the practical side, researchers are keeping decreasing the training time of

neural networks on the imagenet dataset by scaling SGD to hundreds or even thou-

sands of GPUs. The training time is reduced from the original 6 days (Krizhevsky

et al., 2012) to 1 hour in 2017 (Goyal et al., 2017), around 10 minutes in 2018 (You

et al., 2018) and less than 5 minutes by the time of the completion of this thesis2.

2Benchmark on imagenet training: https://dawn.cs.stanford.edu/benchmark/ImageNet/train.html,
last access time 07/02/2021.
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4.1.3 Variance reduction

The variance reduction technique that originates from Schmidt et al. (2017) is

certainly an exciting advancement of SGD in the last decade. The resulting variance-

reduced SGD algorithms including SAG (Schmidt et al., 2017), SVRG (Johnson

and Zhang, 2013), SAGA (Defazio et al., 2014) and SARAH (Nguyen et al., 2017)

improved the iteration complexities of SGD from O(ε−2) to O(ε−1) for convex

and smooth objectives and O(ε−1) to O(log(ε−1)) for strongly convex and smooth

objectives while maintaining the cheap per iteration cost. These rates matches the

rates of deterministic GD.

4.1.4 SGD with the interpolation condition

Although variance-reduced SGD theoretically attains a faster convergence rate than

vanilla SGD, however practitioners find that it cannot outperform vanilla SGD

in the practice of training modern machine learning models. This discrepancy

between theory and practice was recently filled by Ma et al. (2018), who showed

that for over-parameterized models that satisfy the interpolation condition, vanilla

SGD has an inherent variance reduction functionality as iterates converging to the

solution. The interpolation condition means that our model has the ability to fit

all training data perfectly; we will give a more formal description of this concept

in Section 4.2. Therefore, in the practice of training over-parameterized models,

vanilla SGD already has the fast convergence rate that similar to the deterministic

GD, and further explicitly adding the variance reduction step to SGD will not give

us a better convergence.

The detailed convergence rate of SGD for convex objective functions under the

interpolation condition is summarized in Table 4.2. As we can see from the table,

there is a gap between the convergence rate of SGD for smooth and nonsmooth

objectives under interpolation. However, in the practice of training machine learning

models, the nonsmootheness from the model does not cause much trouble (Glorot

et al., 2011; Goodfellow et al., 2016). Neural networks with nonsmooth activation

function such as ReLU activation can usually be trained as fast as (or even faster

than) the one with smooth activation function such as softplus. Therefore there is a

discrepancy between theory and practice in the nonsmooth world.
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objective f (x) smooth nonsmooth SC + smooth SC + nonsmooth

SGD O(ε−2) O(ε−2) O(ε−1) O(ε−1)
SGD + interpolation O(ε−1) O(ε−2) O(log(ε−1)) O(ε−1)

Table 4.2: Iteration complexity of SGD with and without the interpolation
condition. SC stands for strongly convex.

In this chapter, we aim to fill the gap between the convergence rates of SGD

for smooth and nonsmooth objectives under the interpolation condition. We will

describe some semi-smoothness properties of the empirical-risk minimization prob-

lem. These properties, together with the interpolation condition, allow us to prove

that stochastic subgradient method has iteration complexity O(ε−1) for convex

objectives, and O(log(ε−1)) for strongly-convex objectives. These rates improved

the classic bounds O(ε−2) and O(ε−1) for convex and strongly-convex objectives

and match the convergence rates of SGD for convex and smooth objectives under

interpolation. We also prove that the iteration bound O(ε−1) is optimal in the

convex and interpolation setting. In contrast to the case with a smooth objective

function, subgradient-based methods cannot be further accelerated for nonsmooth

model—even with the interpolation assumption.

4.2 Preliminaries
First, we introduce a terminology used in this chapter. We use SSGD to denote the

stochastic subgradient descent, which is widely used when the objective function is

nonsmooth.

We consider our objective to be the unconstrained empirical risk-minimization

problem

minimize
x∈Rd

f (x) :=
1
n

n

∑
i=1

fi(x) where each fi(x) := `(hi(x)) (4.1)

and n is the number of data points. Throughout the paper, we use x∗ to denote any

solution of eq. (4.1), and thus f ∗ := f (x∗) is the optimal objective value. We assume

that the loss function ` : R→ R≥0 is 1-dimensional function that is nonnegative
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with inf`= 0, convex and 1-smooth, i.e.,

|`′(α)− `′(β )| ≤ |α−β | ∀α,β ∈ R.

Without loss of generality, we also assume `(0) = 0. Common examples for the

loss function include

• 2-norm loss: `(x) = x2;

• logistic loss: `(x) = log(1+ exp(x));

• 2-norm hinge loss: `(x) = (max{0,x})2.

The n functions hi’s are Lipschitz continuous with respect to a fixed parameter L:

|hi(x)−hi(y)| ≤ L‖x− y‖ ∀x,y ∈ Rd , ∀i ∈ [n].

We make no assumption on their smoothness properties. Many key machine learning

tasks can be formulated as (4.1), including training deep neural networks with

nonsmooth activations, such as the ReLU function. Here and throughout, the

function ‖ · ‖ is the 2-norm of a vector, unless otherwise specified.

Our analysis relies on the Clark generalized gradient (Clarke, 1990) of the

nonconvex and nonsmooth function h, defined as the convex hull of all valid limiting

gradients:

∂h(x) := conv{u | u = lim
k→∞

∇h(xk), xk→ x} ,

This definition additionally requires h to be almost everywhere differentiable by

Rademacher’s theorem. We refer readers to Clarke (1990), and more recently, to

Zhang et al. (2020), who use this generalized gradient in a related analysis. These

properties of the generalized gradient are needed for our analysis:

(chain rule) ∂ fi(x) = `′(h(x)) ·∂h(x),

(gradient bound) ‖∂hi(x)‖ ≤ L, ∀x ∈ Rd , ∀i ∈ [n].

The second property follows from the L-Lipschitz continuity of each function hi.

We define the norm of the generalized gradient at a vector x as

‖∂hi(x)‖= sup{‖z‖ | z ∈ ∂hi(x)}.
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Algorithm 6 Stochastic subgradient descent. The learning rate function ηt :N→R+

returns the learning rate at iteration t.

1: Initialize: x(1) ∈ Rd

2: for t = 1,2, . . . do
3: select i ∈ {1,2, . . . ,n} uniformly at random
4: compute g(t) ∈ ∂ fi(x(t))
5: x(t+1) = x(t)−ηtg(t)

6: end for

Algorithm 6 describes the SSGD method.

The interpolation condition

By our assumption on fi’s, we can immediately conclude that f ≥ 0. The inter-

polation condition means that our model has the ability to fit all training samples

perfectly and therefore achieve zero training loss at the solution. Formally, the

interpolation condition is defined as f ∗ = 0. It has been shown that the interpolation

condition holds for overparameterized neural networks (Jacot et al., 2018), and the

interpolation condition is gaining increasing interest in recent years. Note that we

do not make interpolation as an assumption here and most of our analysis in the

following sections holds in general without assuming interpolation. We will high-

light the interpolation condition when the presented results require the interpolation

condition.

4.3 Main results
We present some semi-smoothness properties and the convergence analysis in this

section.

4.3.1 Bounds and Lipschitz properties of the generalized gradient

Our analysis hinges on establishing that the objective function f is “almost” dif-

ferentiable at points with small objective value. This is implied by the following

proposition, which holds even without the interpolation condition.

Proposition 4.3.1 (Generalized growth condition). Assume that the assumptions
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stated in Section 4.2 hold. Then for all d-vectors x,

‖∂ fi(x)‖2 ≤ 2L2 fi(x) ∀i ∈ [n]. (4.2)

Consequently,

‖∂ f (x)‖2 ≤ 1
n

n

∑
i=1
‖∂ fi(x)‖2 ≤ 2L2 f (x). (4.3)

Eq. (4.3) implies that if the objective value f (x) = 0, then the generalized

gradient contains only the origin: ∂ f (x) = {0}. It thus follows from (Clarke, 1981,

Property 10) that f is differentiable at any point with zero objective value. This

means that if there is a solution with a zero value, then it must be a fixed point of the

subgradient method. This property does not hold for functions that are nonsmooth at

solution (for example the absolute value function f (x) = |x|) and makes it possible

for the subgradient method to converge to solution with constant learning rate.

Proof of Proposition 4.3.1. Fix an arbitrary d-vector x. The subdifferential ∂ fi(x)=

`′(hi(x)) ·∂hi(x). Because each function hi is L-Lipschitz continuous, we can then

deduce that

‖∂ fi(x)‖2 ≤ L2 [`′(hi(x)) ]2

(i)
= L2(`′(hi(x))− `′(0))2

(ii)
≤ 2L2(`(hi(x))− `(0)) (4.4)

= 2L2 fi(x).

Step (i) follows from the assumption that `(0) = minλ∈R `(λ ) = 0, which implies

`′(0) = 0. Step (ii) follows from the fact that any convex L-smooth function u :

Rn→ R satisfies the bound

u(a)−u(b)−〈∇u(b),a−b〉 ≥ 1
2L
‖∇u(a)−∇u(b)‖2;
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see Nesterov (2014, Theorem 2.1.5). Make the identifications

u = `, a = hi(x), b = 0

to immediately obtain eq. (4.4) and thus the proof for eq. 4.2.

Eq. (4.3) can be obtained directly from Jensen’s inequality:

‖∂ f (x)‖2 =
∥∥∥1

n

n

∑
i=1

∂ fi(x)
∥∥∥2
≤ 1

n

n

∑
i=1
‖∂ fi(x)‖2 ≤ 1

n

n

∑
i=1

2L2 fi(x) = 2L2 f (x).

The composite structure of the functions fi allows us to develop a semi-Lipschitz

bound on their generalized gradients. Moreover, we show that it is possible to obtain

a global convex majorant for each function fi, which holds without assuming

convexity. Interestingly, eq. (4.6) overlaps with the “semi-smoothness” property of

over-parameterized neural networks derived by Allen-Zhu et al. (2019, Theorem 4).

In contrast to the result from Allen-Zhu et al. (2019), however, our result does not

use any special properties of over-parameterized neural networks. Proposition 4.3.2

may thus be of more general interest.

Proposition 4.3.2 (Semi-smoothness). Assume that the assumptions stated in Sec-

tion 4.2 hold. Then for all vectors x1 and x2, and each i ∈ [n],

‖∂ fi(x2)−∂ fi(x1)‖ ≤ L2‖x2− x1‖+2L
√

2min{ fi(x1), fi(x2)}, (4.5)

and

fi(x2)≤ fi(x1)+ 〈∂ fi(x1),x2− x1〉+
L2

2
‖x2− x1‖2 +2L‖x2− x1‖

√
2 fi(x1).

(4.6)

The proof of Proposition 4.3.2 is rather tedious, interested readers can find it in

Appendix C.
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4.3.2 Convergence rate of stochastic subgradient descent

We now present a global convergence analysis for the SSGD algorithm under the

additional assumption that the objective f of eq. (4.1) is convex. We develop a

bound on the expected progress of the objective value that depends on the optimal

value f ∗, rather than on the Lipschitz bound on the function itself, which is the

usual bound in the literature. Our proof is based on a simple modification of the

classical proof of subgradient descent method.

Theorem 4.3.1 (Global convergence rate of SSGD). Assume f is convex. Then for

any positive integer T and any learning rate function ηt that satisfies ∑
T
t=1(ηt −

L2η2
t )> 0,

min
t∈[T ]

E[ f (x(t))− f ∗]≤ ‖x
(1)− x∗‖2 +2L2 f ∗∑

T
t=1 η2

t

2∑
T
t=1(ηt −L2η2

t )
. (4.7)

Proof. Let g(t)i ∈ ∂ fi(x(t)). Then each iterate x(t) satisfies the bound

E
[
‖x(t+1)− x∗‖2

∣∣∣ x(t)
]

=
1
n

n

∑
i=1
‖x(t)−ηtg

(t)
i − x∗‖2

= ‖x(t)− x∗‖2−2ηt

〈
1
n

n

∑
i=1

g(t)i ,x(t)− x∗
〉
+

1
n

n

∑
i=1

η
2
t ‖g

(t)
i ‖

2

(i)
≤ ‖x(t)− x∗‖2−2ηt( f (x(t))− f (x∗))+

1
n

n

∑
i=1

η
2
t ‖g

(t)
i ‖

2 (4.8)

(ii)
≤ ‖x(t)− x∗‖2−2ηt( f (x(t))− f (x∗))+2η

2
t L2 f (x(t)), (4.9)

where (i) follows from the convexity of f , and (ii) follows from Proposition 4.3.1.

Take expectations on both sides of the inequality (4.9) and rearrange to obtain

(2ηt −2L2
η

2
t ) ·E[( f (x(t))− f ∗)]≤ E[‖x(t)− x∗‖2]−E[‖x(t+1)− x∗‖2]+2L2

η
2
t f ∗.

(4.10)
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Summing inequality (4.10) over t ∈ {1,2, . . . ,T} yields

T

∑
t=1

(2ηt −2L2
η

2
t )E[ f (x(t))− f ∗]≤ ‖x(1)− x∗‖2 +2L2 f ∗

T

∑
t=1

η
2
t .

Divide both sides by 2∑
T
t=1(ηt −L2η2

t )> 0, we obtain the desired result.

This proof mirrors closely the classical proof of SSGD, which assumes that the

subdifferential of each fi is bounded, i.e., ‖∂ fi(x)‖≤G for some constant G. We use

Proposition 4.3.1 in eq. (4.8) to avoid the bounded subgradient assumption and to

express the convergence rate using the minimal value f ∗. This modification allows

us to leverage the interpolation assumption that f ∗ = 0. We use Theorem 4.3.1 to

immediately deduce the following convergence rate result.

Corollary 4.3.1 (Global convergence rate of SSGD with constant learning rate).
Assume that f is convex and that the learning rate ηt = 1/(2L2) is constant for all

t > 0. Then for any positive integer T , the SSGD iterates x(t) satisfy

min
t∈[T ]

E[ f (x(t))− f ∗]≤ (2L2/T )‖x(1)− x∗‖2 + f ∗.

Furthermore, when f ∗ = 0 (interpolation holds),

min
t∈[T ]

E[ f (x(t))]− f ∗]≤ (2L2/T )‖x(1)− x∗‖2.

Theorem 4.3.1 indicates that the SSGD method converges at rate O(ε−1) when

interpolation holds. This rate matches the convergence rate of SGD for smooth

objective functions under interpolation (Schmidt and Le Roux, 2013). When inter-

polation does not hold, Theorem 4.3.1 implies that SSGD, on expectation, could

obtain objective value lower than 2 f ∗+ ε in O(ε−1) time, which could be close to

f ∗ when f ∗ is close to 0 (interpolation nearly holds).

Next, we derive convergence rate under the stronger assumption that f is strongly

convex, which means that

f (x1)≥ f (x2)+ 〈g,x1− x2〉+
µ

2
‖x1− x2‖2 ∀x1,x2 ∈ Rd , ∀g ∈ ∂ f (x2) (4.11)
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for some constant µ > 0. Note that recent works indicated that in order to prove

linear convergence rate, the strong convexity assumption can be relaxed to other

weaker assumptions that could hold even for some nonconvex functions (Karimi

et al., 2016; Qian et al., 2019). For simplicity, we assume strong convexity in our

analysis.

Theorem 4.3.2 (Global convergence rate of SSGD under strong convexity). Assume

that f is µ-strongly convex and that the learning rate ηt = 1/L2 is constant for all

t > 0. Then for any positive integer T , the SSGD iterates x(t) satisfy

E[‖x(T )− x∗‖2]≤
(

1− µ

L2

)T−1
‖x(1)− x∗‖2 +

2
µ

f ∗. (4.12)

Proof. Use the definition of the SSGD iteration to obtain

E
[
‖x(t+1)− x∗‖2

∣∣∣ x(t)
]

(i)
= ‖x(t)− x∗‖2−2ηt

〈
1
n

n

∑
i=1

g(t)i ,x(t)− x∗
〉
+

1
n

n

∑
i=1

η
2
t ‖g

(t)
i ‖

2

(ii)
≤ ‖x(t)− x∗‖2−2ηt( f (x(t))− f ∗)−µηt‖x∗− x(t)‖2 +

1
n

n

∑
i=1

η
2
t ‖g

(t)
i ‖

2

(iii)
≤ (1−µηt)‖x(t)− x∗‖2−2ηt( f (x(t))− f ∗)+2η

2
t L2 f (x(t)) (4.13)

(iv)
=
(

1− µ

L2

)
‖x(t)− x∗‖2 +

2
L2 f ∗, (4.14)

where (i) follows from the same argument of the proof of Theorem 4.3.1; (ii) follows

from the µ-strong convexity of f (see eq. (4.12)); (iii) follows from eq. (4.2); and

(iv) follows from the definition of the learning rate ηt = 1/L2.

Taking expectation to both sides of eq. (4.14) and recursively apply it to t ∈
{1,2, . . . ,T} to deduce

E[‖x(T )− x∗‖2]≤
(

1− µ

L2

)T−1
‖x(1)− x∗‖2 +

T−2

∑
t=0

(
1− µ

L2

)t 2
L2 f ∗

(i)
≤
(

1− µ

L2

)T−1
‖x(1)− x∗‖2 +

2
µ

f ∗,
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where (i) follows from the fact that ∑
∞
t=0
(
1− µ

L2

)t
= L2/µ .

Theorem 4.3.2 indicates that the SSGD converges to the ball centered at x∗

with radius
√

2 f ∗/µ at a linear rate. If interpolation also holds, SSGD converges

to the solution linearly. Again, this rate matches the convergence rate of SGD for

smooth and strongly convex objectives in the interpolation setting (Ma et al., 2018;

Schmidt and Le Roux, 2013). Similar to Corollary 4.3.1, when interpolation is

nearly satisfied, SSGD converges linearly to an
√

2 f ∗/µ-approximate solution.

Corollary 4.3.1 and Theorem 4.3.2 also provide insight into the effect of learning

rate schedules on the performance of SSGD. A learning rate schedule ηt that decays

as t−1/2 is optimal because it causes the algorithm to exhibit a complexity bound

of O(ε−2), which is the theoretical lower bound (Nemirovski and Yudin, 1983).

However, the learning rate scheduleO(t−1/2) is slow in practice. Corollary 4.3.1 and

Theorem 4.3.2 partially explain the discrepancy between the theory and practice:

many machine learning models exhibit interpolation or near interpolation, and

an aggressive constant learning-rate schedule works better than the conservative

worst-case optimal learning rate ηt =O(t−1/2).

Other than the learning rate scheduling ηt = 1/L2, we can adopt a more carefully

tuned learning rate scheduling (Stich, 2019) to obtain a refined convergence rate.

We start with eq. (4.13), by setting ηt ≤ 1/(2L2), we obtain

E[‖x(T )− x∗‖2]≤ (1−µηt)‖x(t)− x∗‖2−2ηt( f (x(t))− f ∗)+2η
2
t L2 f (x(t))

≤ (1−µηt)‖x(t)− x∗‖2−2(ηt −η
2
t L2)( f (x(t))− f ∗)+2η

2
t L2 f ∗

≤ (1−µηt)‖x(t)− x∗‖2−ηt( f (x(t))− f ∗)+2η
2
t L2 f ∗. (4.15)

The last line is true by the condition ηt ≤ 1/(2L2). Eq. (4.15) coincides with Stich

(2019, Lemma 1) by setting his γt = ηt , σ2 = 2L2 f ∗. Then we can directly apply

Stich (2019, Theorem 5) to get the following corollary.

Corollary 4.3.2. Assume that f is µ-strongly convex for some µ ≥ 0. For all

positive integer T , there exist a constant learning rate scheduling ηt :=α ≤ 1/(2L2),
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such that the SSGD iterates x(t) satisfy

min
t∈[T+1]

E[ f (x(t))− f ∗]≤ 64L2‖x(1)− x∗‖2 exp
(
− µT

4L2

)
+

72L2 f ∗

µT

for µ > 0, and

min
t∈[T ]

E[ f (x(t))− f ∗]≤ 4L2‖x(1)− x∗‖2

T
+

4L2 f ∗‖x(1)− x∗‖√
T

for µ = 0.

4.3.3 Lower bounds

We have proven that, under interpolation, SGD for smooth problems and SSGD for

nonsmooth problems exhibit the same convergence rates. This causes us to consider

the following questions:

• Is it possible to induce momentum-type acceleration for SSGD under interpo-

lation? Vaswani et al. (2019) and Liu and Belkin (2020) showed recently that

acceleration is possible for SGD under interpolation. It seems plausible that

similar techniques could be used for nonsmooth problems.

• Can the composite structure fi = `◦hi, which is central to our analysis, be used

to establish an improved convergence rate for SSGD without interpolation?

In other words, we know the lower bound on the iteration complexity for any

subgradient method for nonsmooth functions is Ω(ε−2). What, then, is the

lower bound for minimizing the structured nonsmooth function `◦h?

Unfortunately, the answer to these questions is “no”, as we show below. First, we

disprove the first conjecture by deriving the lower iteration bound for any algorithm

with access only to a subgradient oracle in the interpolation setting.

Theorem 4.3.3 (Lower bound with interpolation). Given t < d and positive con-

stants L and R, and an initial vector x(1). Let ` = 1
2(·)

2. Then there exists an L-

Lipschitz function h such that f := l ◦h is convex, f ∗ = minx f (x) = 0, ‖x(1)−x∗‖ ≤

83



R such that

min
1≤s≤t

f (x(s))− f ∗ ≥ L2R2

2(t +1)
. (4.16)

Proof. With out loss of generality, we assume the initial point x(1) = 0. Let h(x) =

L‖x− x∗‖∞, and

x∗ =
[ R√

t +1
+ ε,

R√
t +1

+
ε

2
, . . . ,

R√
t +1

+
ε

2t︸ ︷︷ ︸
t +1 entries

, 0, . . . ,0︸ ︷︷ ︸
(d− t−1) entries

]
,

where ε is some arbitrary constant greater than 0. It is easy to check that ` is

1-smooth, h is L-Lipschitz, f = `◦h is convex, and f ∗ = 0.

We follow the proof template from Nemirovski and Yudin (1983) and assume

that any algorithm that uses only subgradient information generates iterates

x(s) ∈ span{∂ f (x(1)), . . . ,∂ f (x(t))}

for all s≤ t. By our construction, we can further obtain x(s) ∈ span{eee1,eee2, . . . ,eeet}
for all s≤ t. Therefore, for all s≤ t,

f (x(s))− f ∗ ≥ 1
2

(
LR√
t +1

+
Lε

2s−1

)2

.

Note that the above holds ∀ε > 0. Taking ε → 0+, we completes the proof.

Theorem 4.3.3 established Ω(ε−1) iteration complexity for subgradient method

under interpolation. Combining this result with the O(ε−1) iteration complexity in

Corollary 4.3.1, we can conclude that the rateO(ε−1) is optimal in the interpolation

setting and no acceleration is possible for subgradient-based methods. Then we

proceed to the lower bound without assuming interpolation.

Theorem 4.3.4 (Lower bound without interpolation). Given t < d,L,R > 0 and

an initial point x(1). Let `(·) = 1
2(·)

2. Then there exist an L-Lipschitz function h
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satisfying f := l ◦h is convex, ‖x(1)− x∗‖ ≤ R such that

min
1≤s≤t

f (x(s))− f ∗ ≥ L2R2
√

t +1
. (4.17)

Proof. Similar to the proof of Theorem 4.3.3, we set x(1) = 0. But we change the

construction of h(x) to h(x) = L(‖x− x∗‖∞ +R), and x∗ is defined in the same way

as in the proof of Theorem 4.3.3:

x∗ =
[ R√

t +1
+ ε,

R√
t +1

+
ε

2
, . . . ,

R√
t +1

+
ε

2t︸ ︷︷ ︸
t +1 entries

, 0, . . . ,0︸ ︷︷ ︸
(d− t−1) entries

]
,

where ε is some arbitrary constant greater than 0. Following the same analysis of

the proof of Theorem 4.3.3. x(s) ∈ span{eee1,eee2, . . . ,eeet} ∀s≤ t and

f (x(s))− f ∗ ≥ L2

2

(
R√
t +1

+
ε

2s−1 +R
)2

− L2R2

2
≥ L2R2
√

t +1
∀s≤ t,

By taking ε → 0+, we have ‖x(1)− x∗‖ ≤ R and completes the proof.

Theorem 4.3.4 provides an Ω(ε−2) iteration complexity for subgradient-based

methods for solving the structured function ` ◦ h. This matches the lower bound

for solving general nonsmooth objective function with subgradient-based method,

and implies that the structure ` ◦ h itself without interpolation cannot give us an

improved iteration complexity of subgradient-based methods.

4.4 Numerical experiments
The smoothness of the loss function ` is crucial to our analysis. We now present some

numerical experiments to compare the convergence of SSGD for training ReLU

neural networks with smooth and nonsmooth loss functions. We denote {xi}n
i=1 as

training samples and {yi}n
i=1 as training labels. ŷi stands for the prediction of the

i-th sample xi from the trained model. Note that we use the letter x to represent the

model in previous sections, to be consistent to convention, we use it to denote data

points in this section.
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4.4.1 Teacher-student setup

We randomly generate a small neural network with one hidden layer (16 neurons and

ReLU activation) as the teacher network. The network takes 16 dimensional vectors

as inputs and outputs a scalar. Then we generate 128 random vectors from the

Gaussian distribution as our training data {xi}128
i=1 ⊂R16 and get their corresponding

labels {yi}128
i=1 as the output of the teacher network. In order to ease the training

and satisfy the interpolation assumption, we overparameterize the student neural

network and set it to be a one hidden layer network with 512 neurons and ReLU

activation. We train the student network with different loss functions: squared loss

e.g., (yi− ŷi)
2 and absolute loss e.g., |yi− ŷi| with different learning rates. The

training curves are shown in Figure 4.1a. We can observe that the training curve with

squared loss is smoother than the curve with absolute loss. For absolute loss, the

performance of SSGD is more sensitive to the change of learning rate and we need

to decrease the learning rate to obtain a lower objective value. These observations

validate the importance of the smoothness of loss function under the interpolation

setting.

4.4.2 Classify 4’s and 9’s on MNIST dataset

We train the LeNet (Lecun et al., 1998) on the MNIST dataset to classify 4’s

and 9’s. To convert this task to a binary classification problem, we transform

the labels {yi}n
i=1 to {−1,+1}n. Then we run SSGD to train the model with

difference loss functions: logistic loss e.g., log(1+ exp(−yiŷi)) and L1-hinge loss

e.g., max{0,1− yiŷi} and with different learning rates. The training curves are

presented in Figure 4.1b. Different from the teacher-student experiment, SSGD

in this task perform similarly with smooth and nonsmooth loss functions. We

conjecture that this is because the objective function with L1-hinge loss almost

satisfies Proposition 4.3.1 locally at the solution, namely eq. 4.2 holds for most

training samples in a neighbourhood of the solution. Our observation supports this

conjecture. We observe that more that 95% of our final predictions ŷi’s satisfy the

condition |ŷi|> 2. Since the L1-hinge loss is locally smooth when |ŷi|> 2, we can

thus say that most training samples satisfy eq. 4.2 locally at the solution. While for

the teacher-student training problem, its objective is nonsmooth at solution (when
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(a) Teacher-student training (b) Classify 4’s and 9’s on MINST.

Figure 4.1: The performance of SSGD with smooth and nonsmooth loss func-
tions.

zero residual is attained) since the absolute value function `(x) := |x| is nonsmooth

at 0. Therefore the objective of the teacher-student training problem does not satisfy

Proposition 4.3.1 locally as solution and running SSGD to solve it could suffer from

slow convergence.

4.5 Discussion
An empirical-risk minimization problem based on composite functions has sufficient

structure to allow for a tight convergence analysis that explains the effectiveness of

stochastic subgradient descent methods on nonsmooth problems with interpolation.

Surprisingly, the complexity bounds O(ε−1) and O(log(ε−1)) that we prove under

interpolation match those of stochastic gradient descent for smooth functions.
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Chapter 5

Conclusion and future work

This thesis contributes to a better understanding of the theory behind some widely

used first-order optimization algorithms for problems that satisfy specific structures.

We must admit that the progress described in this thesis is just a small step towards

understanding first-order methods thoroughly. There are still a lot of interesting and

important open problems on first-order optimization algorithms unsolved. Next, we

summarize some of the results obtained in this thesis and discuss possible future

directions.

5.1 Coordinate optimization
In Chapter 2, we provided theoretical justification for the implicit screening func-

tionality of GCD. However, our analysis only works for composite problems with

1-norm regularization or non-negative constraints. Whether it is possible to extend

our analysis to general regularizers that are nonsmooth at origin is left unanswered.

In Chapter 2, we also established the fast convergence rate of GCD, but the ex-

pensive greedy selection rule is still the bottleneck for GCD’s implementation in

practice. Developing a reliable approximate greedy selection rule that could reduce

the overhead while preserving the fast convergence rate is a possible direction to

explore.

In the literature of coordinate descent, it is often assumed that the objective is

unconstrained or the constraint set is separable. Specialized analysis of CD with
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simple nonseparable constraint set such as the linear constraint {x | ∑d
i=1 aixi = b}

has also appeared in the literature (Tseng and Yun, 2010). Developing a general

framework to analyze CD’s convergence (if possible) for a more general nonsepara-

ble constraint set is an important topic from the perspective of theory and algorithm

design.

5.2 Mirror descent
In Chapter 3, we provided a careful study of OMD when using dynamic stepsize.

By modifying the OMD via a stabilization technique, we obtain the O(
√

T ) regret

and therefore fixed the divergence issue of OMD under unknown time horizon and

unbounded domain. Through the stabilization technique, we are also able to analyze

the similarities and difference between stabilized-OMD, OMD and DA.

Here we post one possible future direction. We know that the theory of OMD

and DA works for any mirror map that satisfies the basic assumptions listed in

Section 3.1.1. However, to the author’s knowledge, the only examples that can

demonstrate the advantage of OMD and DA over vanilla projected subgradient

descent (PGD) are the experts’ problem and the bandit problem (when negative

entropy mirror map is used). It is of interest to identify new applications and the

corresponding new mirror maps that could enjoy faster convergence rate with OMD

and DA than PGD.

5.3 Stochastic subgradient descent
In Chapter 4, we identified a convex-composite structure and develop some semi-

smoothness properties of the empirical-risk minimization problem. The semi-

smoothness properties allow us to derive improved convergence rates of SSGD

when the interpolation holds.

Our convergence analysis is based on the convexity properties of f . As we

mention in connection with Theorem 4.3.2, the strong convexity assumption can be

relaxed to weaker conditions, but even these exclude important nonconvex models

that appear in neural networks. It is still an open problem as to whether a linear

convergence rate for subgradient methods under a weaker assumptions, such as the

restricted secant inequality (RSI). In Section 4.3.3 we proved that the rate O(ε−1)
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is optimal for subgradient-based methods under interpolation. However, this lower

bound holds only for subgradient-based algorithms. Smoothing techniques based

on Moreau envelopes (Nesterov, 2005) can sometimes lead to acceleration for

nonsmooth optimization, which may be further avenue to explore for obtaining an

accelerated SSGD method.
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Meinshausen, N. and Bühlmann, P. (2006). High dimensional graphs and variable
selection with the lasso. The Annals of Statistics, 34. → page 31

Ndiaye, E., Fercoq, O., Gramfort, A., and Salmon, J. (2017). Gap safe screening
rules for sparsity enforcing penalties. Journal of Machine Learning Research,
18:128:1–128:33. → pages 10, 31, 34, 35

Needell, D., Ward, R., and Srebro, N. (2014). Stochastic gradient descent, weighted
sampling, and the randomized kaczmarz algorithm. In Proceeding of NeurIPS,
volume 27. → page 71

Negahban, S. N. and Wainwright, M. J. (2012). Restricted strong convexity and
weighted matrix completion: Optimal bounds with noise. Journal of Machine
Learning Research, 13:1665–1697. → page 21

Nemirovski, A., Juditsky, A. B., Lan, G., and Shapiro, A. (2009). Robust stochastic
approximation approach to stochastic programming. SIAM Journal on
Optimization, 19(4):1574–1609. → page 8

Nemirovski, A. and Yudin, D. (1983). Problem Complexity and Method Efficiency
in Optimization. Wiley Interscience. → pages 4, 9, 82, 84

Nesterov, Y. (2009). Primal-dual subgradient methods for convex problems.
Mathematical Programming, 120(1):221–259. → pages 45, 48, 61, 66

Nesterov, Y. (2012). Efficiency of coordinate descent methods on huge-scale
optimization problems. SIAM Journal on Optimization, 22(2):341–362. → pages
6, 12, 13, 22, 25

Nesterov, Y. (2014). Introductory Lectures on Convex Optimization: A Basic
Course. Springer Publishing Company, Incorporated, 1 edition. → page 78

Nesterov, Y. E. (1983). A method for solving the convex programming problem
with convergence rate o(1/k2). Dokl. Akad. Nauk SSSR, 269:543–547. → page 4

Nesterov, Y. E. (2004). Introductory Lectures on Convex Optimization - A Basic
Course, volume 87 of Applied Optimization. Springer. → pages 4, 16

Nesterov, Y. E. (2005). Smooth minimization of non-smooth functions.
Mathematical Programming, 103(1):127–152. → page 90

Nguyen, L. M., Liu, J., Scheinberg, K., and Takáč, M. (2017). SARAH: A novel
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Appendix A

Appendix for Chapter 2

A.1 Proofs for Section 2.3

Preliminaries

We introduce some notations and Lemmas that appear in works from Nutini et al.

(2015) and Karimireddy et al. (2019).

We say that a coordinate gradient step is bad if the iterate crosses origin or end

at origin, i.e., x(t+1)
i x(t)i < 0 or x(t+1)

i = 0, otherwise we call this step a good step,

see more details in Karimireddy et al. (2019). We denote the set of good steps until

the t-th iteration as Gt . Because a bad step always follows by a good step, it is easy

to verify that

|Gt | ≤
⌈ t

2

⌉
. (A.1)

Recall the selection rule in Section 2.3:

Selection rule A.1 (GS-s rule). Select i ∈ argmax j Q j(x(t)) where

Qi(x) = min
s∈∂gi

|∇i f (x)+ s|. (A.2)

Lemma A.1.1 (Karimireddy et al., 2019, Theorem 1). Assume f is µ1-strongly

convex with respect to 1-norm, then the iterates generated from Algorithm 1 with
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GS-s rule (selection rule A.2) satisfy

F(x(t))−F(x∗)≤
(

1− µ1

Lmax

)dt/2e
(F(0)−F(x∗)) .

Lemma A.1.2 (Karimireddy et al., 2019, Lemma 2). Consider g to be 1-norm

regularization or non-negative constraint. If the t-th iteration is a good step, then

we have

F(x(t+1))≤ F(x(t))− 1
2Lmax

max
i∈[d]

Qi(x(t))2, (A.3)

where Qi is defined in the GS-s rule (selection rule A.2).

The above two Lemmas due to the work from Karimireddy et al. (2019). The sec-

ond Lemma comes from the ‘proof sketch’ of (Karimireddy et al., 2019, Lemma 2,

page 5).

Proof of Lemma 2.3.1

Proof. If i is not select by Algorithm 1 at the t-th iteration, then x(t+1)
i = 0 trivially

remains at 0.

If i is selected at the t-th iteration, by assuming |∇i f (x(t))−∇i f (x∗)| ≤ δi, we

know that

−δi +∇i f (x∗)≤ ∇i f (x(t))≤ δi +∇i f (x∗)
(i)⇒−ui ≤ ∇i f (x(t))≤−li, (A.4)

where (i) follows directly from the definition of δi :=min{−∇i f (x∗)− li,ui +∇i f (x∗)}.
Next we show that proxgi/Li

(
0− 1

Li
∇i f (x(t))

)
= 0. By the definition of the

proximal operator

proxgi/Li

(
0− 1

Li
∇i f (x(t))

)
= argmin

y∈R

{
1
2

(
y−
(
− 1

Li
∇ fi(x(t))

))2

+
1
Li

gi(y)

}
.

This minimization problem is strongly convex and thus attains a unique solution
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that satisfies

0 ∈ y+
1
Li

∇i f (x(t))+
1
Li

∂gi(y). (A.5)

Knowing that −ui ≤ ∇i f (x(t))≤−li from (A.4) and int∂gi(0) = (li,ui) by the

definition of li and ui. We can easily conclude that y = 0 satisfies (A.5) and therefore

x(t+1)
i = proxgi/Li

(
0− 1

Li
∇i f (x(t))

)
= 0.

Proof of Theorem 2.3.1

Proof. Let t ≤ d− τ and recall the definition of good steps until the t-th iteration

from section A.1: let Gt = {i1, i2, . . . , ik}, where k = |Gt | ≥ dt/2e.
At iteration im for m ∈ [k], we know x(im) is guaranteed to be m− 1–sparse

because the number of non-zeros of the iterate at most can increase by one for

one good step and will not increase for bad steps. By assuming f is µ
(τ+m−1)
1

strongly convex w.r.t. 1-norm and τ +m−1–sparse vectors, we know that F is also

µ
(τ+m−1)
1 strongly convex w.r.t. 1-norm and τ +m−1–sparse vectors. Moreover

|supp(y)∪ supp(x(im))| ≤ τ +m− 1 is true ∀y ∈ Rd that is τ-sparse. Then by the

definition of µ
(τ+m−1)
1 , we have

F(y)≥ F(x(im))+ 〈∂F(x(im)),y− x(im)〉+
µ
(τ+m−1)
1

2
‖y− x(im)‖2

1 (A.6)

for any τ-sparse vectors y (with a little bit abuse of notation, we use ∂F(x(t)) to

denote any vectors in the subdifferential of F(x(t))). Minimize both sides of (A.6)
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w.r.t. y that is τ-sparse, we get

F(x∗)≥ F(x(im))− sup
‖y‖0≤τ

(
〈−∂F(x(im)),y− x(im)〉−

µ
(τ+m−1)
1

2
‖y− x(im)‖2

1

)

≥ F(x(im))− sup
y∈Rd

(
〈−∂F(x(im)),y− x(im)〉−

µ
(τ+m−1)
1

2
‖y− x(im)‖2

1

)
(i)
= F(x(im))−

(
µ
(τ+m−1)
1

2
‖ · ‖2

1

)∗
(−∂F(x(im)))

(ii)
= F(x(im))− 1

2µ
(τ+m−1)
1

‖∂F(x(im))‖2
∞,

where (i) is from the definition of conjugate function, and (ii) is from the fact that(1
2‖ · ‖

2
1
)∗

= 1
2‖ · ‖

2
∞ (Boyd and Vandenberghe, 2004).

More specifically,

F(x∗)≥ F(x(im))− 1

2µ
(τ+m−1)
1

‖∇ f (x(im))+u‖2
∞ ∀u ∈ ∂g(x(im)).

By the definition of Qi(·) in the GS-s rule (selection rule 2.3), we further have

F(x∗)≥ F(x(im))− 1

2µ
(τ+m−1)
1

max
i∈[d]

Qi(x(im))2. (A.7)

Recall Lemma A.1.2, we have

F(x(im+1))≤ F(x(im))− 1
2Lmax

max
i∈[d]

Qi(x(im))2.

Plug the above equation into (A.7)

F(x∗)≥ F(x(im))− Lmax

µ
(τ+m−1)
1

(F(x(im+1))−F(x(im)))

⇒ F(x(im+1))−F∗ ≤

(
1−

µ
(τ+m)
1
Lmax

)
(F(x(im))−F∗).

107



By applying the above inequality recursively, we get

F(x(t))−F∗ ≤
k

∏
m=1

(
1−

µ
(τ+m−1)
1
Lmax

)
(F(0)−F∗)

≤
d t

2e
∏
i=1

(
1−

µ
(τ+i−1)
1
Lmax

)
(F(0)−F∗),

which completes the proof.

Proof of Theorem 2.3.3

Proof. This proof is essentially the same as Theorem 2.3.1. The difference is that,

by the definition of the ∆-GS-s rule (selection rule 2.2), the Lemma A.1.2 becomes

F(x(t+1))−F(x(t))≤− ∆

2Lmax
max
i∈[d]

Qi(x(t))2

at each good step t.

Knowing that supp(x(t))⊂W∆, we have |supp(x∗)∪ supp(x(t))| ≤ |W∆| ∀t > 0.

Then we can incorporate the new Lemma into the analysis of Theorem 2.3.1 and get

F(x(t))−F∗ ≤

(
1−

∆µ
(|W∆|)
1

Lmax

)d t
2 e

(F(0)−F∗)

≤
(

1− ∆µ2

|W∆|Lmax

)d t
2 e
(F(0)−F∗) .

Proposition A.1.1. Let

x̃( j) := argmin
supp(x)⊆Wj

f (x)+g(x),

and Qi defined as (A.2) (the GS-s rule). Then Qi’s are continuous at x̃( j) on the

support Wj for all i, j ∈ [d].
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Proof. Given i, j ∈ [d]. By the optimality condition, we know that

Qi(x̃( j)) = 0 ∀i ∈Wj.

We consider 2 cases — i∈Wj and i /∈Wj. For i∈Wj, following Nutini et al. (2017)’s

analysis, we know that as x→ x̃( j), Qi(x)→ 0 since x̃( j) is the optimal solution on

the support Wj.

For i /∈Wj, denote ∂gi(0) = [li,ui], then Qi(x) = min{|∇i f (x)+δ | | δ ∈ [li,ui]}
since xi = 0 (supp(x) = Wj). We know that ∇i f (x)’s are continuous functions,

therefore it is easy to conclude that Qi(x) is continuous on Wj for i /∈Wj.

To sum up, we finish the proof.

Proof of Theorem 2.3.4

Proof. Preliminaries:
Given ∆ > 0, we sort the elements of W∆ = {i1, i2, ..., im} by the time they first

enter the working set W∆ ,i.e., i1 is the first coordinate being selected and i2 is the

second coordinate being included in W∆, etc.

We denote the t-th iterate from the ∆-GCD algorithm as x(t) and the t-th iterate

from the totally corrective greedy algorithm (TCGA) as x̃(t). Let W ] = {ĩ1, ĩ2, . . . , ĩk},
its elements are also sorted by the time when they enter the working set.

A claim: for any j ≤ k, there exist ε j > 0 such that ∀∆ < ε j, the first j elements

in W∆ is the same as the first j elements in W ].

Proof. We prove this claim by induction, when j = 1, ∀∆ ≤ 1, ∆-GCD and the

TCGA both select the coordinate argmaxi∈[d] Qi(0) in the first iteration, thus the

claim is trivially true in the base case.

Assume that the claim is true with some j > 0, then for j+1:

By Proposition A.1.1, we know that Qi is continuous on Wj at x̃( j), further we

assumed that argmaxi∈[d] Qi(x̃( j)) is singleton. Therefore there exist ε ′ > 0 such

that ∀‖x− x̃( j)‖ ≤ ε ′,argmaxi∈[d] Qi(x) = ĩ j+1.

By the uniqueness (recall that F is strongly convex) of x̃( j):

x̃( j) := argmin
supp(x)⊆W j

f (x)+g(x)
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and the optimality condition, we also know that ∃ δ > 0 such that ∀x ∈ Rd satisfy

supp(x)⊆Wj and maxi∈Wj Qi(x)≤ δ , we have ‖x− x( j)‖ ≤ ε ′.

Denote Qi(x(t)) ( recall x(t) is generated from ∆-GCD) is bounded by some

constant B ∀t > 0.

Then, by setting ∆≤ (min{ε j,δ/B})2, when i j+1 first enter W∆ at some iteration

t, we have

argmax
i∈Wj

Qi(x(t))≤
√

∆argmax
i∈[d]

Qi(x(t))≤
δ

B
B = δ ,

also by the induction assumption, we know that supp(x(t))⊆Wj. Putting these two

conditions together, we get ‖x(t)− x j‖ ≤ ε ′ and thus argmaxi∈[d] Qi(x(t)) = ĩ j+1,

which implies that i j+1 = ĩ j+1. This completes the proof of this claim.

Back to the proof:
Following the claim, we know that ∃ εk > 0 such that for ∀∆ < εk, the first k

elements in W∆ is just W ].

By the nondegeneracy assumption i.e., δi > 0 ∀x∗i = 0 and continuity of Qi,∇ f ,

we know that ∃ ε ′′ > 0 such that ∀‖x− x∗‖ < ε ′′ (note that x̃(k) = x∗), |∇i f (x)−
∇i f (x∗)| ≤ δi ∀x∗i = 0 and this further implies Qi(x)= 0 ∀i /∈W ] (note that supp(x∗)∈
W ]).

Again, there exist δ ′′> 0 such that ∀x∈Rd satisfy suppW ](x) and maxi∈W ] Qi(x)≤
δ ′′, we have ‖x− x∗‖ ≤ ε ′′.

Thus for ∆ ≤ min{εk,δ
′′}, the first k elements in W∆ will be W ], and any

coordinate i /∈W ] can not be included in W∆. Therefore W∆ =W ].

Proof of Theorem 2.3.2

Proof. Given the number of iteration t, denote Zt = {i ∈ [d] | x(t
′)

i = 0 ∀t ′ <
t}, which is the entries of x(t) that filled with 0’s. and Vt = {i ∈ [d] | x∗i =

0 and |∇i f (x(t
′))−∇i f (x∗)| ≤ δi ∀t ′ ≥ t}.

From Lemma 2.3.1 (in the main text), we know that any coordinates in Zt ∩Vt
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will always stay at 0 and thus cannot be in W , that is

W ⊂ [d]\(Zt ∩Vt) ∀t > 0

⇒|W | ≤min
t∈[d]
{d−|Zt ∩Vt |} . (A.8)

Recall the definition of the set of good steps until the t-th iteration Gt ⊂ [t]:

|Vt |=
d

∑
i=1

1{x∗i = 0 and |∇i f (x(t
′))−∇i f (x∗)| ≤ δi ∀t ′ ≥ t}

≥
d

∑
i=1

1{‖∇ f (x(t
′))−∇ f (x∗)‖∞ ≤ δi ∀t ′ ≥ t}− τ

(i)
≥

d

∑
i=1

1{L∞‖x(t
′)− x∗‖1 ≤ δi ∀t ′ ≥ t}− τ

≥
d

∑
i=1

1
{

L∞ sup
t ′≥t
‖x(t)− x∗‖1 ≤ δi

}
− τ, (A.9)

where (i) follows from the definition ∞-norm smoothness.

By the definition of Gt in section A.1, we also have |Zt | ≥ d−|Gt |, and further

|Zt ∩Vt |= |Zt |+ |Vt |− |Zt ∪Vt |

≥ d−|Gt |+ |Vt |−d

≥ |Vt |− |Gt |. (A.10)

Plug the above result in (A.8), we get

|W | ≤min
t>0
{d−|Vt |+ |Gt |}

≤min
t>0

{
d + τ−

d

∑
i=1

1{L∞ sup
t ′≥t
‖x(t ′)− x∗‖1 ≤ δi}+ |Gt |

}

≤min
t∈[d]

{
d + τ−

d

∑
i=1

1{L∞ sup
t ′≥t
‖x(t ′)− x∗‖1 ≤ δi}+ t

}
= min

t∈[d]
Bt + t, (A.11)
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where Bt is defined as Bt := d+τ− pδ

(
L∞ supi≥t

{
‖x(i)− x∗‖1

})
in Theorem 2.3.2.

Proof of Corollary 2.3.1

Proof. Similar to the proof of Theorem 2.3.2, denoteZt = {i∈ [d] | x(t
′)

i = 0 ∀t ′< t},
which is the entries of x(t) that filled with 0’s. and Vt = {i ∈ [d] | |∇i f (x(t

′))−
∇i f (x∗)| ≤ δi ∀t ′ ≥ t}.

From Lemma 2.3.1 (in the main text), we know that any coordinates in Zt ∩Vt

will always stay at 0 and thus cannot be in W , that is

W ⊂ [d]\(Zt ∩Vt) ∀t > 0

⇒|W | ≤min
t∈[d]
{d−|Zt ∩Vt |} . (A.12)

Recall the definition of the set of good steps until the t-th iteration Gt ⊂ [t].

|Vt |=
d

∑
i=1

1{x∗i = 0 and |∇i f (x(t
′))−∇i f (x∗)| ≤ δi ∀t ′ ≥ t}

≥
d

∑
i=1

1{‖∇ f (x(t
′))−∇ f (x∗)‖∞ ≤ δi ∀t ′ ≥ t}− τ

(i)
≥

d

∑
i=1

1{L∞‖x(t
′)− x∗‖1 ≤ δi ∀t ′ ≥ t}− τ

(ii)
≥

d

∑
i=1

1

{
L∞

√
2
µ1

(
F(x(t))−F(x∗)

)
≤ δi ∀t ′ ≥ t

}
− τ

(iii)
=

d

∑
i=1

1

{
L∞

√
2
µ1

(
F(x(t))−F(x∗)

)
≤ δi

}
− τ

(iv)
= pδ

(
L∞

√
2
µ1

(
F(x(t))−F(x∗)

))
− τ

(v)
≥ pδ

L∞

√√√√ 2
µ1

|Gt |

∏
i=1

(
1−

µ
(τ+i−1)
1

L

)
(F(0)−F∗)

− τ, (A.13)

where (i) follows from the ∞-norm smoothness assumption, (ii) is from µ1 strongly
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convex, (iii) is true since F(x(t)) is a decreasing sequence, (iv) is by the definition

of pδ (·), (v) directly follows from Theorem 2.3.1.

By the definition of Gt , we also have |Zt | ≥ d−|Gt |, and further

|Zt ∩Vt |= |Zt |+ |Vt |− |Zt ∪Vt |

≥ d−|Gt |+ |Vt |−d

≥ |Vt |− |Gt |. (A.14)

Plug the above result in (A.12), we get

|W | ≤min
t>0
{d−|Vt |+ |Gt |}

≤min
t>0

d + τ−

L∞

√√√√ 2
µ1

|Gt |

∏
i=1

(
1−

µ
(τ+i−1)
1

L

)
(F(0)−F∗)

+ |Gt |


≤min

t∈[d]

d + τ−

L∞

√√√√ 2
µ1

t

∏
i=1

(
1−

µ
(τ+i−1)
1

L

)
(F(0)−F∗)

+ t


= min

t∈[d]
Bt + t, (A.15)

where Bt is defined as Bt := d+τ− pδ

(√
2L2

∞

µ1
∏

t−1
i=0

(
1− µ

(τ+i)
1
L

)
(F(0)−F∗)

)
in

Theorem 2.3.2.

A.2 Proofs for Section 2.4

Proof of Proposition 2.4.1

Proof. From the construction of sets A(t), it is straightforward to see that

A(1) ⊇A(2) ⊇ . . . ,
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which shows that {A(t) }∞

t=1 is a monotone sequence. By Rockafellar and Wets

(2009, Exercise 4.3), the Painleveé-Kuratowski set limit

A(∞) = lim
t→∞
A(t)

is well-defined.

First, we show that FA(M
∗y∗) ⊆ A(∞). By Theorem 2.4.1, we know that

FA(M
∗y∗)⊆A(t) for all t. Therefore, it follows that FA(M

∗y∗)⊆A(∞).

Next, we show that A(∞) ⊆FA(M
∗y∗). Consider a ∈ A(∞). Since {A(t) }∞

t=1 is

a monotone sequence, there exist T > 0 such that

a ∈ A(t), ∀t ≥ T.

By the construction of A(t), we know that A(t) ⊆FA(M
∗y(t),ε) for all t, and thus

we can conclude that

〈a,M∗y(t)〉 ≥ σA(M∗y(t))− ε, ∀t ≥ T.

Now by taking limits with respect to t to both sides of the inequality, we can

conclude that

〈a,M∗y∗〉 ≥ σA(M∗y∗),

which implies that a ∈ FA(M
∗y∗).
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Appendix B

Appendix for Chapter 3

B.1 Standard facts

B.1.1 Scalar inequalities

Fact B.1.1. For any a > 0 and b,x ∈ R, we have −ax2 +bx≤ b2/4a.

Fact B.1.2. e−x ≤ 1− x+ x2

2 for x≥ 0.

Fact B.1.3. ∑
t
i=1

1√
i
≤ 2
√

t−1 for t ≥ 1.

Fact B.1.4. log(x)≤ x−1 for x≥ 0.

The following proposition is a variant of an inequality that is frequently used in

online learning; see, e.g., Auer et al. (2002b, Lemma 3.5), McMahan (2017, Lemma

4).

Proposition B.1.1. Let u > 0 and a1,a2, . . . ,aT ∈ [0,u]. Then

T

∑
t=1

at√
u+∑i<t ai

≤ 2

√
T

∑
t=1

at .

Although it is easy to prove this inequality by induction, the following proof may

provide more intuition. The proof is based on a generic lemma on approximating

sums by integrals.
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Lemma B.1.1 (Sums with chain rule). Let S⊆ R be an interval. Let F : S→ R be

concave and differentiable on the interior of S. Let u≥ 0 and let A : {0,1, . . . ,T}→ S

satisfy A(i)−A(i−1) ∈ [0,u] for each 1≤ i≤ T . Then

T

∑
i=1

F ′
(
u+A(i−1)

)
· (A(i)−A(i−1)) ≤ F(A(T ))−F(A(0)).

As u→ 0, the left-hand side becomes comparable to
∫ T

0 F ′(A(x))A′(x)dx, an

expression that has no formal meaning since A is only defined on integers. If this

expression existed, it would equal the right-hand side by the chain rule.

Proof of Lemma B.1.1. Since F is concave, f := F ′ is non-increasing. Fix any

1≤ i≤ T and observe that f (x)≥ f (A(i))≥ f (u+A(i−1)) for all x≤ A(i). Thus

f (u+A(i−1)) · (A(i)−A(i−1)) ≤
∫ A(i)

A(i−1)
f (x)dx = F(A(i))−F(A(i−1)).

Summing over i, the right-hand side telescopes, which yields the result.

Proof of Proposition B.1.1. Apply Lemma B.1.1 with S = R≥0, F(x) = 2
√

x and

A(i) = ∑1≤ j≤i a j.

Proposition B.1.2. Let x,y,α,β > 0.

If x− y ≤ α
√

x+β

then x− y ≤ α
√

y+β +α
√

β +α
2.

Proof. The proposition’s hypothesis yields

y+β +
α2

4
≥ x−α

√
x+

α2

4
=
(√

x− α

2

)2
.

Taking the square root and rearranging,

√
x ≤

√
y+β +

α2

4
+

α

2
.
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Squaring both sides and rearranging,

x ≤ y+α

√
y+β +

α2

4
+β +

α2

2
≤ y+α

√
y+α

√
β +β +α

2,

by subadditivity of the square root.

B.1.2 Bregman divergence properties

The following lemma collects basic facts regarding the Bregman divergence induced

by a mirror map of the Legendre type. See Zhang (2013).

Lemma B.1.2. The Bregman divergence induced by Φ satisfies the following prop-

erties:

• DΦ(x,y) is convex in x;

• ∇Φ(∇Φ∗(z)) = z and ∇∗Φ(∇Φ(x)) = x for all x and z;

• DΦ(x,y) = DΦ∗(∇Φ(y),∇Φ(x)) for all x and y.

Proposition B.1.3. If Φ is ρ-strongly convex with respect to ‖ · ‖ then DΦ(x,y)≥
ρ

2 ‖x− y‖2.

Differences of Bregman divergences

Recall that in (3.2) we defined the notation

DΦ(
a
b ;c) := DΦ(a,c)−DΦ(b,c) = Φ(a)−Φ(b)−〈∇Φ(c), a−b〉.

This has several useful properties, which we now discuss.

Proposition B.1.4. DΦ(
a
b ; p) is linear in p̂. In particular,

DΦ(
a
b ;∇Φ

∗(p̂− q̂)) = DΦ(
a
b ; p)+ 〈 q̂, a−b〉 ∀q̂ ∈ Rd .

Proof. Immediate from the definition.
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Proposition B.1.5. For all a,b,c,d ∈ D,

DΦ(
a
b ;d)−DΦ(

a
b ;c) = 〈 ĉ− d̂, a−b〉 = DΦ(

a
b ;d)+DΦ(

b
a ;c).

Proof. The first equality holds from Proposition B.1.4 with p̂ = ĉ and q̂ = ĉ− d̂.

The second equality holds since DΦ(
b
a ;c) =−DΦ(

a
b ;c).

An immediate consequence is the “generalized triangle inequality for Bregman

divergence”. See Bubeck (2015, eq. (4.1)), Beck and Teboulle (2003, Lemma 4.1)

or Zhang (2013, eq. (3)).

Proposition B.1.6. For all a,b,d ∈ D,

DΦ(a,d)−DΦ(b,d)+DΦ(b,a) = 〈 â− d̂, a−b〉

Proof. Apply Proposition B.1.5 with c = a and use DΦ(a,a) = 0.

Proposition B.1.7. Let a,b,c,u,v ∈ Rd satisfy γ â+(1− γ)b̂ = ĉ for some γ ∈ R.

Then

γDΦ(
u
v ;a) + (1− γ)DΦ(

u
v ;b) = DΦ(

u
v ;c).

Proof. By definition of DΦ, the claimed identity is equivalent to

(1− γ)
(
Φ(u)−Φ(v)−〈∇Φ(a), u− v〉

)
+ γ
(
Φ(u)−Φ(v)−〈∇Φ(b), u− v〉

)
=
(
Φ(u)−Φ(v)−〈∇Φ(c), u− v〉

)
.

This equality holds by canceling Φ(u)−Φ(v) and by the assumption that ∇Φ(c) =

(1− γ)∇Φ(a)+ γ∇Φ(b).

The following proposition is the “Pythagorean theorem for Bregman diver-

gence”. Recall that ΠΦ
X (y) = argmin

u∈X
DΦ(u,y). Proofs may be found in Bubeck

(2015, Lemma 4.1) or Zhang (2013, eq. (17)).

Proposition B.1.8. Let X ⊂Rd be a convex set. Let p ∈Rd and π = ΠΦ
X (p). Then

DΦ(
z
π

; p) ≥ DΦ(
z
π

;π) = DΦ(z,π) ∀z ∈ X .
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A generalization of the previous proposition can be obtained by using the

linearity property.

Proposition B.1.9. Let X ⊂Rd be a convex set. Let p ∈Rd and π = ΠΦ
X (p). Then

DΦ(
v
π

;∇Φ
∗(p̂− q̂)) ≥ DΦ(

v
π

;Φ
∗(π̂− q̂)) ∀v ∈ X , q̂ ∈ Rd .

Proof.

DΦ(
v
π

;∇Φ
∗(p̂− q̂)) = DΦ(

v
π

; p)+ 〈 q̂, v−π 〉 (by Proposition B.1.4)

≥ DΦ(
v
π

;π)+ 〈 q̂, v−π 〉 (by Proposition B.1.8)

= DΦ(
v
π

;∇Φ
∗(π̂− q̂)) (by Proposition B.1.4).

B.2 Proofs for Section 3.3.1

Proof of Proposition 3.3.1

Proof. First we apply Proposition B.1.6 with a = x, b = x′ and d = ∇Φ∗(x̂− q̂) to

obtain

DΦ(
x
x′ ;w) = 〈 x̂− d̂, x− x′ 〉−DΦ(x′,x)

= 〈 q̂, x− x′ 〉−DΦ(x′,x)
(i)
≤ ‖q̂‖∗‖x− x′‖− ρ

2
‖x− x′‖2

(ii)
≤ ‖q̂‖2

∗/2ρ,

where (i) is from the definition of dual norm and Proposition B.1.3, (ii) is by

Fact B.1.1.

B.3 Proofs for Section 3.3.2
Proposition 3.3.3. Let a,b ∈ X and c ∈ D. Then DΦ(

a
b ;c)≤ Λ(a,c).
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Proof of Proposition 3.3.3

Proof. Since a,b ∈ X we have ‖a‖1 = ‖b‖1 = 1. Then

DΦ(
a
b ;c) = DKL(a,c)−DKL(b,c)

=
(
DKL(a,c)+1−‖c‖1 + ln‖c‖1

)
−
(
DKL(b,c)+1−‖c‖1 + ln‖c‖1

)
= Λ(a,c)−Λ(b,c) (by definition of Λ)

≤ Λ(a,c) (by Proposition 3.3.2).

Proposition 3.3.4. Let a ∈ X , q̂ ∈ [0,1]d and η > 0. Then Λ(a,∇Φ∗(â−η q̂)) ≤
η2〈a, q̂〉/2.

Proof. Let b = ∇Φ∗(â−η q̂). By (3.24), bi = ai exp(−η q̂i). Then

Λ(a,∇Φ
∗(â−η q̂)) =

d

∑
i=1

ai ln(ai/bi)+ ln‖b‖1

=
d

∑
i=1

ηaiq̂i + ln
( d

∑
i=1

ai exp(−η q̂i)
)

≤
d

∑
i=1

ηaiq̂i +
d

∑
i=1

ai exp(−η q̂i)−1 (by Fact B.1.4)

≤
d

∑
i=1

ηaiq̂i +
d

∑
i=1

ai

(
1−η q̂i +

η2q̂2
i

2

)
−1 (byFact B.1.2)

≤ η
2

d

∑
i=1

aiq̂i/2,

using ∑
d
i=1 ai = 1 (since a ∈ X ) and q̂2

i ≤ q̂i (since q̂ ∈ [0,1]d).

B.4 Proofs for Section 3.4
At many points throughout this section we will need to talk about optimality condi-

tion for problems where we minimize a convex function over a convex set. Such

conditions depend on the normal cone of the set on which the optimization is taking

place.
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Definition B.4.1. The normal cone to C ⊆ Rd at x ∈ Rd is the set NC(x) := {s ∈
Rd | 〈s,y− x〉 ≤ 0 ∀y ∈C}.

Lemma B.4.1 (Rockafellar, 1970, Theorem 27.4). Let h : C →R be a closed convex

function such that (riC)∩ (riX ) 6= /0. Then, x ∈ argminz∈X h(z) if and only if there

is g ∈ ∂h(x) such that −g ∈ NX (x).

Using the above result allows us to derive a useful characterization of points

that realize the Bregman projections.

Lemma B.4.2. Let y ∈D and x ∈ D̄. Then x = ΠΦ
X (y) if and only if x ∈D∩X and

∇Φ(y)−∇Φ(x) ∈ NX (x).

Proof. Suppose x ∈D∩X and ∇Φ(y)−∇Φ(x) ∈ NX (x). Since ∇Φ(y)−∇Φ(x) =

−∇(DΦ(·,y))(x), by Lemma B.4.1 we conclude that x ∈ argminz∈X D(z,y). Now

suppose x = ΠΦ
X (y). By Lemma B.4.1 together with the definition of Bregman

divergence, this is the case if and only if there is −g ∈ ∂Φ(x) such that −(g−
∇Φ(y)) ∈ NX (x). Since Φ is of Legendre type we have ∂Φ(z) = /0 for any z 6∈ D
(see Rockafellar, 1970, Theorem 26.1). Thus, x ∈ D and g = ∇Φ(x) since Φ is

differentiable. Finally, x ∈ X by the definition of Bregman projection.

Before proceeding to the proof of the results from Section 3.4, we need to state

on last result about the relation of subgradients and conjugate functions.

Lemma B.4.3 (Rockafellar, 1970, Theorem 23.5). Let f : X → R, let x ∈ X and

let ŷ ∈ Rd . Then ŷ ∈ ∂ f (x) if and only if x attains supx∈Rd (〈 ŷ, x〉− f (x)) = f ∗(ŷ).

Proof of Proposition 3.4.1

Proof. Let t ≥ 1 and let Ft : D→ R be the function being minimized on the right-

hand side of (3.31). By definition we have x(t+1) =ΠΦ
X (y

(t+1)). Using the optimality

conditions of the Bregman projection, we have

x(t+1) = Π
Φ
X (y

(t+1)) ⇐⇒ ŷ(t+1)− x̂(t+1) ∈ NX (x(t+1)), (by Lemma B.4.2)
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By further using the definitions from Algorithm 3 we get

ŷ(t+1)− x̂(t+1) = γt(x̂(t)−ηtgt)+(1− γt)x̂(1)− x̂(t+1)

= γt(x̂(t)− x̂(t+1)−ηtgt)+(1− γt)(x̂(1)− x̂(t+1))

=−γt
(
∇(DΦ(·,x(t)))(x(t+1))+ηtgt

)
− (1− γt)∇(DΦ(·,x(1)))(x(t+1))

=−∇Ft(x(t+1))

Thus, we have −∇Ft(x(t+1)) ∈ NX (x(t+1)). By the optimality conditions from

Lemma B.4.1 we conclude that x(t+1) ∈ argminx∈X Ft(x), as desired.

Proof of Theorem 3.4.1

Theorem 3.4.1 is an easy consequence of the following proposition.

Proposition B.4.1. Let { ft}t≥1 with ft : X → R be a sequence of convex functions

and let η : N→ R>0 be non-increasing. Let {x(t)}t≥1 and {gt}t≥1 be as in Algo-

rithm 3. Define γ [i,t] := ∏
t
j=i γ j for every i, t ∈ N. Then, there are {pt}t≥1 with

pt ∈ NX(x(t)) for each t ≥ 1 such that ∀t ≥ 0,

{x(t+1)}= argmin
x∈X

( t

∑
i=1

γ
[i,t]〈ηigi+ pi, x〉−

(
γ
[1,t]+

t

∑
i=1

γ
[i+1,t](1−γi)

)
〈 x̂(1), x〉+Φ(x)

)
.

(B.1)

Proof. First of all, in order to prove (B.1) we claim it suffices to prove that there

are {pt}t≥1 with pt ∈ NX(x(t)) for each t ≥ 1 such that

ŷ(t+1) =−
t

∑
i=1

γ
[i,t](ηigi + pi)+

(
γ
[1,t]+

t

∑
i=1

γ
[i+1,t](1− γi)

)
x̂(1), ∀t ≥ 0. (B.2)
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To see the sufficiency of this claim, note that

x(t+1) = Π
Φ
X (y

(t+1)))

⇐⇒ ŷ(t+1)− x̂(t+1) ∈ NX (x(t+1)) (Lemma B.4.2)

⇐⇒ ŷ(t+1) ∈ ∂ (Φ+δ (· |X ))(x(t+1)) (∂ (δ (· |X ))(x) = NX (x))

⇐⇒ x(t+1) ∈ argmax
x∈Rd

(
〈 ŷ(t+1), x〉−Φ(x)−δ (x |X )

)
(Lemma B.4.3)

⇐⇒ x(t+1) ∈ argmin
x∈X

(
−〈 ŷ(t+1), x〉+Φ(x)

)
.

The above together with eq. (B.2) yields eq. (B.1). Let us now prove eq. (B.2) by

induction on t ≥ 0.

For t = 0, eq. (B.2) holds trivially. Let t > 0. By definition, we have ŷ(t+1) =

(1− γt)(x̂(t)−ηtgt) + γt x̂(1). At this point, to use the induction hypothesis, we

need to write x̂(t) in function of ŷ(t). From the definition of Algorithm 3, we have

x(t) = ΠΦ
X (yt). By Lemma B.4.2, the latter holds if and only if ŷ(t)− x̂(t) ∈ NX (x(t)).

That is, there is pt ∈NX (x(t)) such that x̂(t) = ŷ(t)− pt . Plugging these facts together

and using our induction hypothesis we have

ŷ(t+1)

=γt(x̂(t)−ηtgt)+(1− γt)x̂(1) = γt(ŷ(t)−ηtgt − pt)+(1− γt)x̂(1)

I.H.
= γt

(
−

t−1

∑
i=1

γ
[i,t−1](ηigi + pi)−ηtgt − pt +

(
γ
[1,t−1]+

t−1

∑
i=1

γ
[i+1,t−1](1− γi)

)
x̂(1)
)

+(1− γt)x̂(1)

=−
t

∑
i=1

γ
[i,t](ηigi + pi)+

(
γ
[1,t]+

t

∑
i=1

γ
[i+1,t](1− γi)

)
x̂(1),

and this finishes the proof of eq. (B.2).

Proof (of Theorem 3.4.1). Define γ [i,t] for every i, t ∈ N as in Proposition B.4.1.

If γt = 1 for all t ≥ 1, then γ [i,t] = 1 for any t, i ≥ 1. Moreover, if γt =
ηt+1
ηt

for

every t ≥ 1, then for every t, i ∈ N with t ≥ i we have γ [i,t] = ηt+1
ηi

, which yields
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γ [i,t](ηigi + pi) = ηtgi +
1
ηi

pi and

γ
[1,t]+

t

∑
i=1

γ
[i+1,t](1− γi) =

ηt+1

η1
+

t

∑
i=1

ηt+1

ηi+1

(
1− ηi+1

ηi

)
=

ηt+1

η1
+ηt+1

t

∑
i=1

( 1
ηi+1

− 1
ηi

)
= 1.
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Appendix C

Appendix for Chapter 4

C.1 Proofs for Section 4.3

Proof of Proposition 4.3.2

Proof. Given x1,x2 ∈ Rd , ∀i ∈ [n],

‖∂ fi(x2)−∂ fi(x1)‖

≤ ‖`′(hi(x2))∂hi(x2)− `′(hi(x1))∂hi(x1)‖

≤ ‖`′(hi(x2))∂hi(x2)− `′(hi(x2))∂hi(x1)+ `′(hi(x2))∂hi(x1)− `′(hi(x1))∂hi(x1)‖

≤ ‖`′(hi(x2))∂hi(x2)− `′(hi(x2))∂hi(x1)‖+‖`′(hi(x2))∂hi(x1)− `′(hi(x1))∂hi(x1)‖

≤ ‖`′(hi(x2))(∂hi(x2)−∂hi(x1))‖+‖(`′(hi(x2))− `′(hi(x1)))∂hi(x1)‖

≤ |`′(hi(x2))|‖∂hi(x2)−∂hi(x1))‖+ |`′(hi(x2))− `′(hi(x1))|‖∂hi(x1)‖

≤ 2L|`′(hi(x2))|+ |hi(x2)−hi(x1)|×L
(i)
≤ 2L

√
2 fi(x2)+L2‖x2− x1‖, (C.1)

where (i) follows the same argument as the proof of Proposition 4.3.1:

|`′(hi(x2))|= |`′(hi(x2))− `′(0)| ≤
√

2(`(hi(x2))− `(0)) =
√

2 fi(x2).
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Exchange x1 and x2, we can also get

‖∂ fi(x2)−∂ fi(x1)‖ ≤ 2L
√

2 fi(x1)+L2‖x2− x1‖. (C.2)

Combining eq. (C.2) and eq. (C.1), we finished the proof for eq.(4.5).

Given x1,x2 ∈Rd , note that fi(x) is almost every differentiable by Rademacher’s

Theorem, thus

fi(x2) = fi(x1)+
∫ 1

0
〈∂ fi(x1 + τ(x2− x1)),x2− x1〉dτ

= fi(x1)+ 〈∂ fi(x1),x2− x1〉+
∫ 1

0
〈∂ fi(x1 + τ(x2− x1))−∂ fi(x1),x2− x1〉dτ

(C.3)

Note that ∫ 1

0
〈∂ fi(x1 + τ(x2− x1))−∂ fi(x1),x2− x1〉dτ

≤
∫ 1

0
‖∂ fi(x1 + τ(x2− x1))−∂ fi(x1)‖‖x2− x1‖dτ

≤
∫ 1

0

(
2L
√

2 fi(x1)+L2‖τ(x2− x1)‖
)
‖x2− x1‖dτ

≤ 2L‖x2− x1‖
√

2 fi(x1)+
L2

2
‖x2− x1‖2. (C.4)

Plug eq. (C.4) into eq. (C.3), we finished the proof for eq. (4.6).
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