
MLN4KB: an efficient Markov logic network engine for
large-scale knowledge bases and structured logic rules

Huang Fang

Cognitive Computing Lab, Baidu Research

No.10 Xibeiwang East Road, Beijing 100193, China

fanghuang@baidu.com

Yang Liu

Cognitive Computing Lab, Baidu Research

No.10 Xibeiwang East Road, Beijing 100193, China

liuyang173@baidu.com

Yunfeng Cai

Cognitive Computing Lab, Baidu Research

No.10 Xibeiwang East Road, Beijing 100193, China

caiyunfeng@baidu.com

Mingming Sun

Cognitive Computing Lab, Baidu Research

No.10 Xibeiwang East Road, Beijing 100193, China

sunmingming01@baidu.com

ABSTRACT
Markov logic network (MLN) is a powerful statistical modeling

framework for probabilistic logic reasoning. Despite the elegancy

and effectiveness of MLN, the inference of MLN is known to suffer

from an efficiency issue. Even the state-of-the-art MLN engines

can not scale to medium-size real-world knowledge bases in the

open-world setting, i.e., all unobserved facts in the knowledge base

need predictions. In this work, by focusing on a certain class of

first-order logic rules that are sufficiently expressive, we develop

a highly efficient MLN inference engine calledMLN4KB that can

leverage the sparsity of knowledge bases. MLN4KB enjoys quite

strong theoretical properties; its space and time complexities can

be exponentially smaller than existing MLN engines. Experiments

on both synthetic and real-world knowledge bases demonstrate

the effectiveness of the proposed method. MLN4KB is orders of

magnitudes faster (more than 10
3
times faster on some datasets)

than existing MLN engines in the open-world setting. Without

any approximation tricks, MLN4KB can scale to real-world knowl-

edge bases including WN-18 and YAGO3-10 and achieve decent

prediction accuracy without bells and whistles.

We implement MLN4KB as a Julia package called MLN4KB.jl.
The package supports both maximum a posteriori (MAP) inference

and learning the weights of rules. MLN4KB.jl is public available at
https://github.com/baidu-research/MLN4KB.

KEYWORDS
Markov logic network, knowledge graph completion.

ACM Reference Format:
Huang Fang, Yang Liu, Yunfeng Cai, and Mingming Sun. 2023. MLN4KB:

an efficient Markov logic network engine for large-scale knowledge bases

and structured logic rules. In Proceedings of the ACM Web Conference 2023
(WWW ’23), May 1–5, 2023, Austin, TX, USA. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3543507.3583248

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WWW ’23, May 1–5, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00

https://doi.org/10.1145/3543507.3583248

1 INTRODUCTION
Relational data and knowledge bases link real-world entities such

as people, events, and words with diverse relations. Nowadays,

almost all institutes, companies, websites, and mobile apps generate

and manipulate relational data everyday. Discovering values from

massive relational data stays at the core of data science and has

been an active research topic in both industry and academia.

Due to the prevalence of relational data, logic and probabilistic

reasoning over relational data and knowledge bases has been an

important subfield of artificial intelligence (AI). Many modern AI

applications such as question answering, information extraction,

semantic parsing, and social network analysis all rely on reasoning

over relational data in large knowledge bases. Some communities

even believe that building a proper relation (concepts) framework

and logical reasoning system is the key to imitating human recog-

nition. Among many logic reasoning approaches, the Markov logic

network (MLN) is a simple and flexible reasoning framework that

unifies the classic first-order logic and probabilistic graphical model;

see Figure 1 for an illustration of an MLN. In short, MLN defines

a probability distribution over a set of relational data via some

first-order logic rules; MLN assigns higher probability to worlds

that satisfy more grounded rules, and vice versa (c.f. Section 3).

MLN has received substantial interest over the last two decades

since its first appearance. On the theory side, MLN enjoys simple

formulation (eq. (3)) and has the ability to express all probability

distribution over discrete or finite-precision random variables [8,

Theorem 2.5]. On the empirical side, MLN has reported state-of-the-

art performance for a wide range of applications such as collective

classification [34], link prediction [31], semantic parsing [35], etc.

Harvard University

Emory Leon

 Chaffee

G.W.Pierce

hasAcademicAdvisor

graduatedFrom

worksAt

graduatedFrom

Rules
worksAt(A, B) graduatedFrom(A, B)
graduatedFrom(C, B) hasAcademicAdvisor(A, C) worksAt(A, B)

Edward Mills
Purcell

John
Hasbrouck
Van Vleck

hasAcademicAdvisor

graduatedFrom

graduatedFrom
worksAt

Figure 1: An illustration of MLN, the knowledge graph is a
subset extracted from the YAGO3-10 dataset

https://github.com/baidu-research/MLN4KB
https://doi.org/10.1145/3543507.3583248
https://doi.org/10.1145/3543507.3583248

WWW ’23, May 1–5, 2023, Austin, TX, USA Huang Fang, Yang Liu, Yunfeng Cai, and Mingming Sun

Despite the elegancy and empirical success of MLN, MLN has

an efficiency issue; both the inference and learning of MLN are

intractable in general. Huge efforts have been devoted to increasing

the scalability of MLN either from the engineering or algorith-

mic perspectives. For examples, Tuffy [32] and DeepDive [40, 42]
leverage techniques from relational database management systems

(RDBMS) and develop efficient local searching and sampling meth-

ods using a RDBMS; PSL [1] adopts continuous relaxation and

borrows techniques from continuous optimization to speedup the

inference and learning of MLN. Despite the notable progress made

by pioneering researchers, current MLN software still cannot scale

to knowledge bases with hundreds of thousands of entities.

The state-of-the-art MLN software almost exclusively divide

the inference (or learning) into two phases: the grounding and

searching phases. The grounding phase grounds given first-order

logic rules into clauses and forms a large weighted SAT problem;

the searching phase then solves the constructed SAT problem via

some optimization subroutines. For medium and large datasets, the

grounding phase is usually more computationally intensive than

the searching phase and is the bottleneck of existing MLN software.

In this work, we argue that the flexibility of the current MLN solvers
limits their scalability. By narrowing down the scope of first-order

logic rules and considering logic rules with certain structures (c.f.

Assumption 3.1), we develop an efficient MLN inference engine

termedMLN4KB that can exploit the sparsity of large knowledge

bases and mitigate the computational overhead from the grounding

phase. We show that MLN4KB is more time and space efficient

than the existing MLN inference algorithms both theoretically and

empirically. Formally, we summarize our contributions as follows.

• By exploiting the structure of a certain class of logic rules, we

develop an efficient MLN inference engine called MLN4KB.
MLN4KB is designed for large-scale knowledge bases under

the open-world setting (Assumption 3.3), it stores only violated

clauses in memory and can circumvent the efficiency issue of

the grounding phase. The theoretical properties of MLN4KB
are given in Section 5.

• To foster future research of MLN, we open-source our imple-

mentation of MLN4KB as a Julia packageMLN4KB.jl.MLN4KB.jl
supports both the inference and learning of MLN.

• Extensive experiments on both synthetic and real-world knowl-

edge bases demonstrate the efficiency of MLN4KB.jl.

2 RELATEDWORK
Logic and AI. Whether logic is the fundamental of AI has been

a controversial topic from time to time, but most AI researchers

would agree that first-order logic and knowledge representation

play an important role in at least some central subfields of AI [48].

A huge line of works has been carried on in the second half of the

20th century to study computational logic [14, 23–26, 28]. Various

inductive logic programming methods such as Prolog has been

developed to perform logic reasoning efficiently [52, 53].

Markov logic network. The success of AI in the past two decades is
indispensable to the emergence of statistical learning. Markov logic

network [8] is an elegant logic reasoning framework that combines

the classic first-order logic and the more advanced probabilistic

graphical model. MLN has been extensively studied in the past two

decades both theoretically and empirically [3, 8, 9, 27, 55]; we refer

interested readers to the review article from Lowd and Domingos

[10] for more details. Despite the success of MLN on many real-

world applications, both the inference and learning of MLN are NP-

hard in general, and therefore MLN cannot scale to large datasets,

especially in the open-world setting. Many techniques have been

developed in the past two decades to speedup the inference of

MLN, including lazy grounding, lifted belief propagation, smart

sampling techniques, etc [33, 36, 39, 41, 43, 44, 47]. Based on these

techniques, a number of highly-engineered MLN solvers such as

Alchemy [22], Tuffy [32],DeepDive [40] and PSL [1] were developed
for practitioners to deploy MLN more efficiently. This work also

aims at developing a high-performance MLN solver by exploiting

the structure of a certain class of first-order logic rules and the

sparsity of large knowledge base. At first glance, our method may

seems related to the lazy grounding technique [43]. We note that

the technique developed in this work is fundamentally different

from lazy grounding; see the detailed discussion in Remark 5.1.

Besides MLN, there are other probabilistic logic reasoning frame-

works such as the knowledge-based model construction [51], sto-

chastic logic programming [29], probabilistic relational models [12],

etc. We focus on MLN in this work and do not include the above

reasoning frameworks in the following content.

Embedding-based method. Embedding-based methods have revo-

lutionized certain fields of natural language processing and have

achieved state-of-the-art performance for some knowledge graph

applications [6, 7, 30, 46, 50]. There are some recent interests in

combining knowledge graph embedding and graph neural networks

with first-order logic rules to speedup the inference and reduce

the storage of MLN [37, 56]. These recent works can be viewed

as extensions and approximations of the classic MLN and are tan-

gential to the purpose of this work. Although embedding-based

methods such as GNNs have achieved promising performance in

many real-world applications. Purely logic-based methods such as

MLN still have their unique advantages. For example, logic-based

methods can better leverages the knowledge from human experts

and are more sample efficient when high-quality rules are provided.

3 PROBLEM SETUP
3.1 Preliminaries
We introduce some basic concepts about knowledge bases and

Markov logic networks in this section.

Knowledge base. A knowledge baseK consists of a set of entities
E and a set of relations (aka. predicates) R. Given any pair of entities
(𝑒1, 𝑒2) ∈ E × E, and a relation 𝑟 ∈ R, the relation maps the pair

of entities to either 1 or 0, i.e., r : E × E → {0, 1} ∀r ∈ R, with
the meaning that the head entity 𝑒1 has the relation 𝑟 with the tail

entity 𝑒2 or not. For example, father(𝐵𝑜𝑏,𝐴𝑛𝑛𝑎) = 1 indicates that

Bob is Anna’s father.

In the knowledge base completion problem, people observe a

set of triplets (aka. facts) O = {(ℎ𝑖 , r𝑖 , 𝑡𝑖)}𝑛𝑖=1 along with their true

assignments O = {r(ℎ, 𝑡) | (ℎ, r, 𝑡) ∈ O} (aka. evidences). Denote
the unobserved facts asH = E × R × E\O. The knowledge graph
completion task aims to infer the assignments of all unobserved

facts H = {r(ℎ, 𝑡) | (ℎ, r, 𝑡) ∈ H}.

MLN4KB: an efficient Markov logic network engine for large-scale knowledge bases and structured logic rules WWW ’23, May 1–5, 2023, Austin, TX, USA

First-order logic rule. A first-order logic rule 𝐹 associated with a

knowledge baseK is a logic expression based on the relations inK .

Such a logic expression is a disjunction of literals and each literal

can be negated. And in this paper, we only consider the literal of

the form r(ℎ, 𝑡). Specifically, the logic rules considered in this paper

are all of the form(
∨𝑖∈I−

𝐹
!r𝑖 (𝐴𝑖 , 𝐵𝑖)

)
∨

(
∨𝑖∈I+

𝐹
r𝑖 (𝐴𝑖 , 𝐵𝑖)

)
, (1)

where I−
𝐹

and I+
𝐹

are two index sets containing the indices of

literals that are negated or not, respectively.

Logic rules in the form (1) are quite expressive. They can be

equivalently taken as implications from conditions to consequences:

∧𝑖∈I−
𝐹
r𝑖 (𝐴𝑖 , 𝐵𝑖) =⇒ ∨𝑖∈I+

𝐹
r𝑖 (𝐴𝑖 , 𝐵𝑖). (2)

For example, the first order logic rule !husband(𝑋,𝑌) ∨wife(𝑌,𝑋)
is equivalent to husband(𝑋,𝑌) =⇒ wife(𝑌,𝑋), meaning that if 𝑋

is𝑌 ’s husband, then𝑌 is𝑋 ’s wife; !father(𝑋,𝑌)∨!brother(𝑌, 𝑍)∨
father(𝑋,𝑍) is equivalent to father(𝑋,𝑌) ∧ brother(𝑌, 𝑍) =⇒
father(𝑋,𝑍), meaning that if𝑋 is𝑌 ’s father and𝑌 is𝑍 ’s is brother,

then 𝑋 is 𝑍 ’s father. In addition, using the equivalence between

the logic expression (1) and the implication (2), it is easy to see

that some commonly used types of logic rules can be written in

the form (1): Composition rules. r𝑘 is the composition of r𝑖 and
r𝑗 if r𝑖 (𝑋,𝑌) ∧ r𝑗 (𝑌, 𝑍) =⇒ r𝑘 (𝑋,𝑍) ∀𝑋,𝑌, 𝑍 ∈ E; Inverse rules.
r−1 is the inverse of r if r(𝑋,𝑌) =⇒ r−1 (𝑌,𝑋) ∀𝑋,𝑌 ∈ E; Sym-
metric rules. r is symmetric if r(𝑋,𝑌) ⇐⇒ r(𝑌,𝑋) ∀𝑋,𝑌 ∈ E;
Subrelation rules r′ is a subrelation of r if r(𝑋,𝑌) =⇒ r′(𝑋,𝑌)
∀𝑋,𝑌 ∈ E.

Markov logic network. A full assignment (aka. grounding or in-

stantiation) to all facts {r(ℎ, 𝑡) | ∀r ∈ R, ℎ, 𝑡 ∈ E} is called a possible
world; the assignment to both the observed facts and the unobserved

facts O ∪ H determines a possible world. Given𝑚 first-order logic

rules F = {𝐹𝑖 }𝑚𝑖=1, the Markov logic network encodes the possible

world O ∪ H as a random variable and defines its distribution as

Pr[O,H] ∝ exp

(
𝑚∑︁
𝑖=1

𝑤𝑖𝑙𝑖 (O,H)
)
∝ exp

(
−

𝑚∑︁
𝑖=1

𝑤𝑖𝑛𝑖 (O,H)
)
, (3)

where 𝑤𝑖 ∈ R is the weight associated with the 𝑖-th logic rule,

𝑙𝑖 (O,H) and 𝑛𝑖 (O,H) are the number of times that the 𝑖-th logic

rule is satisfied and violated under the world O ∪ H respectively.

We refer interested readers to Domingos and Lowd [8] for more

details about the definition of MLNs.

3.2 Assumptions and Notations
We state the key assumptions we made in this work.

Assumption 3.1 (Structured logic rules). Given a rule 𝐹 ∈ F of
the form (1), we assume that ∪𝑖∈I−

𝐹
{𝐴𝑖 , 𝐵𝑖 } ⊇ ∪𝑖∈I+

𝐹
{𝐴𝑖 , 𝐵𝑖 }.

The above assumption narrows the scope of logic rules consid-

ered by this work. However, we note that Assumption 3.1 is very

natural and all rules in the form of

∧𝑘𝑖=1r𝑖 (𝐴𝑖 , 𝐵𝑖) =⇒ r𝑘+1 (𝐴𝑘 , 𝐵𝑘)
satisfy Assumption 3.1. In fact, most commonly used logic rules such

as the symmetric rules, inverse rules, subrelation rules and compo-

sition rules are covered by Assumption 3.1. For example, the rules

BornIn(𝐴, 𝐵) =⇒ LiveIn(𝐴, 𝐵) and BornIn(𝐴, 𝐵) ∧ CityOf(𝐵,𝐶)
=⇒ Nationality(𝐴,𝐶) all satisfy Assumption 3.1.

Based on Assumption 3.1, we define the effective length of a logic

rule, which is a key quantity in our analysis.

Definition 1. Given a logic rule 𝐹 that satisfies Assumption 3.1,

we define the effective length of 𝐹 as its number of negated literals.

That is the cardinality of I−
𝐹
, i.e., |I−

𝐹
|.

For example, the effective length of the rule !r1 (𝐴, 𝐵) ∨ r2 (𝐵,𝐴)
is 1 and the effective length of the rule !r1 (𝐴, 𝐵) ∨ !r2 (𝐵,𝐶) ∨
r3 (𝐴,𝐶) is 2.

Assumption 3.2. We assume that𝑤𝑖 ≥ 0 for all 𝑖 ∈ [𝑚], where𝑤𝑖

is the weight of the 𝑖-th rule.

The requirement of positive weights stems from theWalkSAT al-

gorithm, and existingMLN engines usually handle negative weights

by flipping the corresponding rules and assigning positive weights

to them. However, in our case, the flipped rules may no longer

satisfy Assumption 3.1, and this can further break the sparsity

of violated clauses (Theorem 5.1). Consequently, we constrain the

weights of all rules to be non-negative. We note that Assumption 3.2

does not hinder the practical use of MLN4KB as widely used rule

mining systems such as Neural LP [54] and amie [13] all produce
logic rules with only positive weights. Next we introduce the open-

world assumption, which is standard in the literature of MLN [8].

Assumption 3.3 (Open-world assumption). The assignments to all
unobserved facts are undecided boolean variables.

The open-world assumption requires us to make predictions for

all unobserved facts H during inference. Contrary to the open-

world assumption, close-world assumption assumes that some re-

lations are closed, namely the unobserved facts associated with

these relations are treated as false, i.e., r(ℎ, 𝑡) = 0 ∀(ℎ, r, 𝑡) ∈ H .

Closed relations already made assignments for all associated un-

observed facts and thus do not need further prediction for them.

The close-world assumption can significantly reduce the number of

undecided variables but with an obvious cost of losing expressive-

ness. Most existing MLN inference software such as Alchemy, Tuffy,
DeepDive, and PSL are essentially designed under the close-world

assumption and are often slow under the open-world assumption

due to a large number of undecided variables. Different from the

classic MLN software,MLN4KB is designed to handle the more chal-

lenging open-world assumption; inference under the close-world

assumption is also included as a trivial extension.

For the ease of reference, we summarize the notations in Table 1.

4 THE MAP INFERENCE OF MLN
Given the assignment of observed factsO, themaximum a posteriori

(MAP) inference for the unobserved facts is to solve the following

optimization problem:

H = argmax

H∈{0,1} |H|

𝑚∑︁
𝑖=1

𝑤𝑖𝑙𝑖 (O,H) = argmin

H∈{0,1} |H|

𝑚∑︁
𝑖=1

𝑤𝑖𝑛𝑖 (O,H). (4)

TheMAP inference (4) is essentially a binary programming problem.

Specifically, it is well-established that (4) can be formulated as a

weighted maximum satisfiability (weighted MAX-SAT) problem

[8], which is a classic NP-hard problem. As a result, classic MLN

WWW ’23, May 1–5, 2023, Austin, TX, USA Huang Fang, Yang Liu, Yunfeng Cai, and Mingming Sun

Notation Description

𝑚 Number of rules

E The set of entities

R The set of relations

{𝐹𝑖 ,𝑤𝑖 }𝑚𝑖=1 The set of logic rules and their weights

O,O Observed facts and their assignments

H ,H Unobserved facts and their assignments

𝑛𝑖 (O,H) The number of times that the 𝑖-th rule is violated

given the assignment O ∪ H
𝐾r (O,H) The number of positive facts associated with

relation r under the assignment O ∪ H
𝐴, 𝐵, . . . Variables in rules

𝑎, 𝑏, . . . Grounding of variables (entities)

Table 1: Notations

inference software such as Alchemy and Tuffy are both built on

local-search-basedMAX-SAT solver such as theWalkSAT algorithm

[17]. The MAP inference of MLN poses the following challenges:

(a) Problem (4) has |H | binary variables, which can be in the order

of Θ(|E |2 |R |) under the open-world assumption. Consequently,

even storing such a large number of variables is prohibitive for

large-scale knowledge bases.

(b) Formulating (4) as a MAX-SAT problem requires grounding (or

instantiating) first-order logic rules into clauses. It is known that

the grounding of rules is #P-complete in the length of the logic rules

[8, Proposition 4.1]. Therefore the number of grounded clauses is

usually much larger than the number of binary variables. Indeed,

the grounding phase is usually both the computational and storage

bottleneck of existing MLN inference software and prevents them

from scaling up to large-scale knowledge bases.

(c) Solving the weighted MAX-SAT problem is in general NP-

hard, thus it is not realistic to target for an exact solution of (4) on

current computing devices. Fortunately, existing local-search-based

algorithms, such as the MaxWalkSAT algorithm, are able to give

us an approximate solution of a medium-size MAX-SAT in a short

period of time. We consider (a) and (b) as the main computational

bottlenecks of existing MLN engines.

Motivated by the above challenges of MLN inference, we propose

MLN4KB, an efficient MLN inference engine that can circumvent

forming most variables and grounded clauses by exploiting the

structure of logic rules and the sparsity of knowledge bases.

5 MLN4KB
In this section, we describe the main ideas behind the design of

MLN4KB. Before proceeding to the details of MLN4KB, we first
review the classic WalkSAT algorithm, which is a simple and ef-

fective stochastic search method to solve the MAX-SAT problem.

The detailed WalkSAT algorithm under the scenario of MLN in-

ference is shown in Algorithm 1. The major issue of Algorithm 1

is that the number of grounded clauses, i.e., |C| can be enormous

for large-scale knowledge bases. Classic MLN inference engines

such as Alchemy, Tuffy and PSL usually get stuck at the construc-

tion of C and cannot even reach theWalkSAT algorithm (or other

optimization subroutines).

Algorithm 1 TheWalkSAT algorithm for MLN inference

1: Input: A set of grounded clauses C, a set of unobserved facts

H , the max iteration number maxIter and a threshold 𝜏 .

2: Initialize an assignment H(0) for unobserved facts;

3: Set bestCost = +∞, H∗ = H(0) ;
4: for 𝑡 ← 0, 1, . . . , maxIter do
5: Uniformly random sample a clause that is violated 𝑐 ∈ C;
6: Skip this iteration if all facts associated with 𝑐 are observed;

7: Uniformly random generate a scalar 𝜎 ∈ [0, 1];
8: if 𝜎 ≥ 𝜏 then
9: Randomly flip the assignment of an unobserved fact that

appears in 𝑐;

10: else
11: Greedily flip the assignment of an unobserved fact in 𝑐

such that can mostly decrease the cost;

12: end if
13: Update H(𝑡) → H(𝑡+1) and compute the cost curCost;
14: if curCost < bestCost then
15: bestCost = curCost, H∗ = H(𝑡+1) ;
16: end if
17: end for
18: Output: the best assignment found H∗.

The key insight of MLN4KB is that the construction and storage

of all grounded clauses are not really necessary for the implemen-

tation of WalkSAT. WalkSAT only requires

• a subroutine to randomly generate a violated clause;

• a subroutine to select a fact in the chosen violated clause;

• a subroutine to efficiently compute the cost.

Instead of storing all grounded clauses (or some grounded clauses

via lazy grounding), we can only maintain the clauses that are vio-

lated in memory and keep updating the violated clauses during the

random flipping procedure. By exploiting the sparsity of knowledge

bases and the structure of first-order logic rules, we can show that

the number of violated clauses is far less than the total number of

grounded clauses. The following theorem makes this precise.

Theorem 5.1 (Sparse violation). Suppose that Assumption 3.1
and Assumption 3.3 hold. Follow the notations in Table 1 and denote
the effective length of the 𝑖-th rule as 𝐿𝑖 . Given an assignment of all
facts O ∪ H, it holds that

𝑚∑︁
𝑖=1

𝑛𝑖 (O,H) ≤
𝑚∑︁
𝑖=1

(
max

r∈𝐹𝑖
𝐾r (O,H)

)𝐿𝑖
.

Note that the total number of clauses generated with {𝐹𝑖 }𝑚𝑖=1 can
be in the order of Θ(𝑚(|E |2𝐿𝑖). Therefore Theorem 5.1 suggests

that the total number of violated clauses is far less than the total

number of clauses if most relations observe sparse positive facts

with the assignment O ∪ H, i.e.,
max

𝑟 ∈R
𝐾r (O,H) ≪ |E|2 . (5)

Consider setting all unobserved facts to false as our initialization,

i.e., H(0) = {r(ℎ, 𝑡) = 0 | (ℎ, r, 𝑡) ∈ H}, then the condition (5)

holds for most real-world datasets as the number of observed facts

is usually far less than the total number of facts |R | |E |2. Moreover,

if theWalkSAT algorithm can produce an almost decreasing cost,

MLN4KB: an efficient Markov logic network engine for large-scale knowledge bases and structured logic rules WWW ’23, May 1–5, 2023, Austin, TX, USA

Algorithm 2 The MAP inference of MLN4KB

1: Input: A set of rules F = {𝐹𝑖 }𝑚𝑖=1, a set of observed assign-

ment O, a set of unobserved factsH , the max iteration number

maxIter, a threshold 𝜏 and a sparsity parameter 𝐾 > 0.

2: Initialize the assignment for the unobserved facts H(0) =

{r(ℎ, 𝑡) = 0 | (ℎ, r, 𝑡) ∈ H};
3: Construct all clauses that are violated violatedClauses;
4: Set bestCost = +∞, H∗ = H(0) ;
5: for 𝑡 ← 0, 1, . . . , maxIter do
6: Randomly sample a clause 𝑐 from violatedClauses;
7: Skip this iteration if all facts associated with 𝑐 are observed;

8: Uniformly random generate a scalar 𝜎 ∈ [0, 1];
9: if 𝜎 ≥ 𝜏 then
10: Randomly flip the assignment of an unobserved fact

(ℎ, r, 𝑡) that appears in 𝑐;
11: else
12: Greedily flip the assignment of an unobserved fact (ℎ, r, 𝑡)

in 𝑐 such that can mostly decrease the cost;

13: end if
14: (optional) Flip back the fact (ℎ, r, 𝑡) and skip this iteration if

the constraint 𝐾r (O,H) ≤ 𝐾 is violated;

15: Loop over clauses in violatedClauses that are related to

(ℎ, r, 𝑡), remove the clause if it is satisfied;

16: Construct violated clauses that involves (ℎ, r, 𝑡) and insert

them into violatedClauses;
17: Update H(𝑡) → H(𝑡+1) and compute the cost curCost;
18: if curCost < bestCost then
19: bestCost = curCost, H∗ = H(𝑡+1) ;
20: end if
21: end for
22: Output: the best assignment found H∗.

which is usually the case in practice, then we can further bound

the number of violated clauses among all iterations of Algorithm 2.

Formally, we have the following corollary.

Corollary 5.2. Follow the notations in Table 1 and denote the effec-
tive length of the 𝑖-th rule as 𝐿𝑖 . Let {H(𝑡) }𝑇𝑡=0 be the iterates generated
from Algorithm 2, where 𝑇 is the total number of iterations. Denote
𝑓 (O,H(𝑡)) = ∑𝑚

𝑖=1𝑤𝑖𝑛𝑖 (O,H(𝑡)) as the cost at the 𝑡-th iteration. If
𝑓 (O,H(𝑡)) ≤ 𝐶𝑓 (O,H(0)) ∀𝑡 ∈ [𝑇] for some 𝐶 > 0, then

𝑚∑︁
𝑖=1

𝑛𝑖 (O,H(𝑡)) ≤ 𝐶𝑤−1
min

𝑚∑︁
𝑖=1

(
max

r∈R

∑︁
(ℎ,r,𝑡) ∈O

r(ℎ, 𝑡)
)𝐿𝑖

for any 𝑡 ∈ [𝑇], where𝑤min = min𝑖∈[𝑚] 𝑤𝑖 .

In Section 7, we empirically verify that Algorithm 2 can yield

bounded cost and thus maintain a reasonable amount of violated

clauses during the inference phase. Another possible strategy to

control the memory usage of Algorithm 2 is to directly impose

additional cardinality constraints on the number of positive facts,

for example 𝐾r (O,H) ≤ 𝐾 for some 𝐾 > 0, then the inequality

stated in Theorem 5.1 reduces to

𝑚∑︁
𝑖=1

𝑛𝑖 (O,H) ≤
𝑚∑︁
𝑖=1

𝐾𝐿𝑖 .

It is easy to modify Algorithm 2 to incoporate the above constraint.

Motivated by Theorem 5.1, MLN4KB does not ground out all

clauses but stores only the clauses that are violated under the cur-

rent assignment in memory, we name the variable that stores vi-

olated clauses as violatedClauses. In order to support efficient

sampling, insertion, deletion, and look-up operations for violated

clauses,MLN4KB uses a combination of vector and dictionary as

the data structure for violatedClauses. In every iteration of the

WalkSAT algorithm,MLN4KB performs the following steps:

(1) MLN4KB first uniform randomly selects a clause that is violated

under the current assignment, i.e., uniform randomly sample

an element from violatedClauses;
(2) then MLN4KB either randomly or greedily selects a fact and

flip its assignment (either 0→ 1 or 1→ 0);

(3) after flipping the assignment of the selected fact, some clauses

in violatedClauses become satisfied and some previously sat-

isfied clauses become violated now,MLN4KB removes satisfied

clauses and inserts new violated clauses to violatedClauses
by checking all clauses that are related to the flipped fact;

(4) MLN4KB computes the cost of the new assignment and updates

the solution if the new cost is better than the best record.

The detailed algorithm of the inference subroutine of MLN4KB is

given in Algorithm 2. The time complexities of steps (1), (2) are

obviously O(1); step (3) can be realized by back-tracking depth-

first-search; the cost of step (4) is decided by the number of removal

and insertion from step (3). Formally, the time and space complexity

of Algorithm 2 is characterized by the following theorem.

Theorem 5.3 (Space and time complexities). Assume that the
constraint 𝐾r (O,H) ≤ 𝐾 for some 𝐾 > 0 is imposed ∀ r ∈ R. Then
the worst-case space complexity and per iteration time complexity of
Algorithm 2 is O(𝐾 |R | +∑𝑚

𝑖=1 𝐾
𝐿𝑖) and O(∑𝑚

𝑖=1 𝐾
𝐿𝑖) respectively.

According to Theorem 5.3, when 𝐾 and maxIter are small, the

time and space complexities of the MAP inference of MLN4KB can

be far less than the grounding phase in classic MLN engines. The

efficiency of MLN4KB on large-scale knowledge bases is demon-

strated in Section 7.

Remark 5.1 (Difference to lazy inference). MLN4KB stores only

violated clauses in memory and circumvents the efficiency issue of

the grounding phase required by existing MLN engines. This design

is different from the lazy inference or lazy grounding technique

[8, 36, 43] used in existing MLN engines such as Alchemy, Tuffy and
DeepDive. Lazy inference also exploits the sparseness of positive

facts; it stores clauses that can be violated by flipping some active
fact (active facts are facts that have been flipped during execution).

Lazy inference can also reduce the number of stored clauses, but its

storage is still far more than the number of violated clauses. This

difference is also demonstrated in Section 7 as MLN4KB is more

time and space efficient than existing MLN engines equipped with

lazy inference.

5.1 Weight learning
To support the complete functionality of an MLN solver, we also

include a weight learning module to MLN4KB. Various learning
algorithms of MLN have been proposed in the literature. For ex-

ample, the generative learning [8, 15], discriminative learning [16],

WWW ’23, May 1–5, 2023, Austin, TX, USA Huang Fang, Yang Liu, Yunfeng Cai, and Mingming Sun

learning based on pseudo-likelihood [38], gradient boosting [18]

and random walk [21], etc. Among these approaches, we find that

discriminative learning and optimizing the pseudo-likelihood best

fit the design of MLN4KB. Specifically, the discriminative learning

approach repeatedly calls the MAP inference subroutine to perform

stochastic gradient step [16], and the learning based on pseudo-

likelihood approach aims at maximizing the pseudo-log-likelihood

max

𝑤

∑︁
(ℎ,r,𝑡) ∈O∪H

log Pr

[
r(ℎ, 𝑡) = 1{(ℎ,r,𝑡) ∈O}

���𝑀𝐵(ℎ, r, 𝑡)],
where 1{· } is the indicator function, i.e., 1𝑡𝑟𝑢𝑒 = 1 and 1𝑓 𝑎𝑙𝑠𝑒 = 0,

and𝑀𝐵(ℎ, r, 𝑡) denotes the Markov blanket of the fact (ℎ, r, 𝑡), and
the probability distribution is defined in eq. (3).

For large-scale knowledge bases, optimizing the pseudo-likelihood

is usually more efficient than the discriminative learning approach

because the latter usually requires invoking the MAP inference

at least hundreds of times, which can be prohibitively expensive

in practice. Therefore we adopt the pseudo-likelihood maximiza-

tion as the default learning algorithm of MLN4KB. Classic MLN

learning algorithm optimizes the pseudo-likelihood function via the

scaled stochastic gradient descent or the L-BFGS optimizer [8, §4.1].

Thanks to the recent progress in stochastic optimization made by pi-

oneering researchers in the past decade, we include more advanced

optimizers, including the Adagrad [11] and Adam [20] optimizer

intoMLN4KB. In addition to the classic weight learning, we also

include a positive and unlabeled (PU) weight learning subroutine

given that many real-world KB datasets are positive and unlabeled.

The material presented in this subsection is mostly based on exist-

ing algorithms, and we do not claim much technical novelty for the

learning module of MLN4KB.

6 IMPLEMENTATION
We implement MLN4KB as a Julia package called MLN4KB.jl. Julia
[2] is an emerging programming language for high-performance

numerical computation and has almost all the functionalities needed

for a high-performance MLN engine. Moreover, a Julia project is

easy to develop and its code is reader-friendly; this allows potential

interested researchers and practitioners to understand and conduct

future research based onMLN4KB.jl conveniently.

7 EXPERIMENTS
We conduct experiments to evaluate the efficiency and effective-

ness of MLN4KB.jl. We use the following datasets and adopt the

train/test splitting from TransE [6] and Neural LP [54].

• Kinship: Kinship is a synthetic dataset that contains kinship re-
lationships such as father,mother,husband,wife, etc. To com-

pare the scalability of different algorithms, we generate a series

of Kinship datasets with different number of entities ranges

in {102, 5 × 102, 103, 5 × 103, 104, 105}. Following the standard
evaluation setup in the literature [54], we use the observed

kinship relations to predict entities’ gender.

• UMLS: Unified medical language system (UMLS) [4] is a bench-

mark dataset for statistical relation learning in the field of

biomedicine. It contains 6,529 facts (5,896 training and 633

testing facts), 135 entities and 46 relations.

• WN-18: WN-18 is generated from the WordNet [19] and has

been widely used as a benchmark dataset for knowledge graph

completion.WN-18 has 151,442 facts (14,6442 training and 5,000

testing facts), 40,943 entities and 18 relations.

• YAGO3-10: YAGO3-10 is a subset of the YAGO knowledge base

[45] and is a standard benchmark dataset for knowledge graph

completion. YAGO3-10 contains 1,084,040 facts (1,079,040 train-

ing and 5,000 testing facts), 123,143 entities and 37 relations.

We include Tuffy1, DeepDive2 and PSL3 as the baseline methods

into comparison. Note that these software are well-engineeredMLN

inference and learning engines, therefore it is fair to compare with

their runtime. For the Kinship datasets, we use the standard kinship

rules as the logic rules and set the weights of all rules to be 1.0. For

UMLS, WN-18 and YAGO3-10, we use the amie [13] rule mining

system to extract logic rules and use the weight learning module of

MLN4KB.jl to learn the weights of the extracted logic rules. We set

the threshold parameter 𝜏 in Algorithm 2 to be 0.1 as the default

value if not otherwise specified. All experiments are conducted on

a machine with 32 Intel CPUs and 64GB memory.

Outline of experiments: We compare the inference time of MLN4KB.jl
against existing competitive MLN solvers in Section 7.1 and demon-

strate the importance of the open-world assumption in Section 7.2.

In Section 7.3, we evalute MLN4KB.jl and other baseline MLN

solvers on real-world knowledge base datasets. We evaluate the

memory usage and hyper-parameter sensitivity of MLN4KB.jl in
Section 7.4 and Section 7.5.

7.1 Comparing inference time on Kinship
We compare the inference time of different MLN engines by using

the Kinship datasets with a different number of entities ranging

from 10
2
to 10

5
. The experimental results in both open-world and

close-world settings are shown in Table 2. Note that the kinship

datasets used in this experiment do not contain any noise, thus all

methods can achieve nearly 100% testing accuracy, thus we omit

the prediction accuracy in Table 2. From Table 2, we observe that

• in the open-world setting, i.e., the MLN engine is required to

infer the status of the missing facts for all relations simultane-

ously, MLN4KB.jl is orders of magnitudes faster (at least 10
3

times faster) than all other baseline MLN engines for all Kinship

datasets. When the number of entities is greater than 10, 000,

all baseline methods either run out of time (more than 8 hours)

or run out of space, whileMLN4KB.jl can solve all cases within

one minute.

• in the less challenging close-world setting, i.e., the MLN engine

only needs to infer the gender information of each entity, both

Tuffy, DeepDive andMLN4KB.jl are able to handle the Kinship

dataset with 10
5
entities. Both Tuffy and MLN4KB.jl can solve

all cases within 20 seconds.MLN4KB.jl is still the fastest among

all MLN engines for all cases.

The experimental results in this section strongly support the effi-

ciency of MLN4KB.jl, especially for large-scale knowledge bases in

the challenging open-world setting.

1
http://i.stanford.edu/hazy/tuffy/

2
http://deepdive.stanford.edu/

3
https://psl.linqs.org/

http://i.stanford.edu/hazy/tuffy/
http://deepdive.stanford.edu/
https://psl.linqs.org/

MLN4KB: an efficient Markov logic network engine for large-scale knowledge bases and structured logic rules WWW ’23, May 1–5, 2023, Austin, TX, USA

Number of entities

Settings Algorithms 100 500 1,000 5,000 10,000 100,000

open-world

Tuffy 2s 30s ∼1min ∼4.5hr NA NA

DeepDive ∼4min ∼4hr NA NA NA NA

PSL 20s ∼14min NA NA NA NA

MLN4KB.jl 0.001s 0.005s 0.007s 0.9s 2.1s 33.5s

close-world

Tuffy 0.9s 1.0s 1.1s 1.9s 2.6s 18.3s

DeepDive 1min 1min 1min 1min 1min 1min10s

PSL 20s ∼14min NA NA NA NA

MLN4KB.jl 0.001s 0.009s 0.01s 0.04s 0.18s 8.9s
Table 2: Comparison of inference time with the Kinship dataset under the open-world and close-world settings. NA means that
the method either run out of memory (or disk) or cannot finish inference within 8 hours. For each setting, we highlight the
shortest inference time.

Missing percentage

Settings 0% 10% 20% 30% 40% 50%

open-world 100 99.5 98.08 96.48 92.18 86.36
close-world 100 98.8 95.68 91.42 83.94 75.16

Table 3: The prediction accuracy of MLN4KB.jl for Kinship
dataset (5000 entities) with different levels of noise.

7.2 Open-world assumption matters
In this part, we design an experiment to illustrate the importance

of the open-world assumption. Again, we use the Kinship datasets

for evaluation. Instead of using the Kinship datasets with com-

plete relation information, we uniform randomly drop some ob-

served facts with a certain probability. We try the dropping rates

in {0, 0.1, 0.2, 0.3, 0.4, 0.5}. The prediction accuracy of MLN4KB.jl
for Kinship (5,000 entities) with various dropping rates under the

open-world and close-world settings is given in Table 3. As shown

in Table 3, we can observe thatMLN4KB.jl in the open-world set-

ting consistently outperforms the its predictions in the close-world

setting. The performance gap between open-world and close-world

settings becomes more obvious as the dropping rate goes up. The

observations in this section should not be surprising. MLN with the

close-world assumption cannot fill in the missing facts for closed

relations, and the missing facts of closed relations will further affect

the predictions for the open relations. Our experiment demonstrates

the superiority of the open-world setting, and therefore further sup-

ports the significance of MLN4KB.jl asMLN4KB.jl is able to handle
large knowledge bases in the open-world setting.

7.3 Evaluation on real-world KB datasets
We evaluate different MLN engines on the link prediction task with

real-world knowledge bases. Given a fact (or query) (ℎ, r, 𝑡) from
the testing set, the evaluation of the link prediction task is based on

the rank of 𝑡 among all candidate tail entities associated with the

head ℎ and relation r. Note that the MAP inference of MLN assigns

either 0 or 1 to each fact, and it tends to produce a large number of

ties among the facts assigned with the same value. In order to break

the ties and calculate a meaningful rank of the given tail entity

𝑡 , we sort the tail entities with the same score by their marginal

contribution to the total cost, i.e., how much the cost decreases by

flipping the fact from 0 to 1.

Datasets

Algorithms Metrics UMLS WN-18 YAGO3-10

Tuffy – NA NA NA

DeepDive – NA NA NA

PSL – NA NA NA

MLN4KB.jl

MRR 48.32 69.40 41.19

Hit@5 82.31 95.18 60.38

Hit@10 91.15 96.62 62.54

Inference time ∼5min ∼30min ∼10hr
Table 4: The testing accuracy of different methods on real-
world knowledge base datasets.

Evaluation metrics. For the link prediction task, we follow the

literature and adopt the filtered evaluation setting [6], that is all

facts appeared in the training and testing (except the one of being

tested) are removed when evaluating the rank of a given testing

fact. We use Hit@𝑘 and the mean reciprocal rank (MRR) as our

evaluation metrics, where Hit@𝑘 measures the portion of test facts

that are ranked in top 𝑘 against other candidate facts and MRR is

the averaged inverse of the rank of testing facts. We try 𝑘 ∈ {5, 10}
in our experiments.

Logic rules. For each knowledge bases, we first use the rule min-

ing system amie [13] to generate a set of candidate first-order logic
rule. Then we call the learning module of MLN4KB.jl to calculate

the weights of the extracted rules; rules weighted with 0 after learn-

ing are discarded during inference. After rule extraction, learning

and pruning, we obtain 1,038 rules for UMLS, 98 rules for WN-18

and 206 rules for YAGO3-10.

Results. The testing accuracy of MLN4KB.jl on UMLS, WN-18,

YAGO3-10 and their corresponding inference time are shown in

Table 4. From Table 4, we observe that Tuffy, DeepDive and PSL can
not solve either problem in the open-world settingwhileMLN4KB.jl
can finish the inference within a reasonable amount of time. For

WN-18 and YAGO4-10, the Hit@10 obtained by MLN4KB.jl are
comparable to the state-of-the-art results achieved by the heavily-

tuned embedding-based methods [7, 49]. To our knowledge, this is

the first time that pureMLNmethod can scale toWN-18 and YAGO3-

10 in the open-world setting without any approximation tricks.

We note that we simply adopt the default settings of MLN4KB.jl

WWW ’23, May 1–5, 2023, Austin, TX, USA Huang Fang, Yang Liu, Yunfeng Cai, and Mingming Sun

Figure 2: The evolution of the cost (objective value) along with the number of violated clauses during inference. The black
curve represents the evolution of the number of violated clauses and the red curve standards for the evolution of the cost. The
two curves of Kinship coincide because we set the weights of all rules to be 1 for the Kinship datasets.

Figure 3: The evolution of the cost (objective value) with different threshold parameters.

Kinship (10
5
) UMLS WN-18 YAGO3-10

167MB 318MB 196MB 1.08GB

Table 5: The RAM usage of MLN4KB.jl.

(setting the threshold 𝜏 to 1 and the number of negative sample to

1 during the weight learning) for the experiments in this section,

and more careful rule mining and hyper-parameter tunning may

further improve the testing accuracy.

We also attempted to applyMLN4KB.jl to the widely used FB15k
datasets [5]. Unfortunately, FB15k contains more than 1,000 rela-

tions and amie extracted more than 4 × 104 rules,MLN4KB.jl can
not finish learning and inference within a day. We left further accel-

eratingMLN4KB.jl via parallelization and warm-up initialization

as our future work.

7.4 The memory usage of MLN4KB.jl
We examine the memory usage of MLN4KB.jl without any hard

cardinality constraints on the sparsity of positive facts. The main

memory usage of MLN4KB.jl is spent on storing the knowledge

base and the set of violated clauses. For the storage of knowledge

base, the memory usage is mainly controlled by the number of

observed facts, which is usually affordable when the observation

in knowledge base is sparse. For the set of violated clauses, we plot

the evolutions of the total cost and the number of violated clauses

during inference on different real-world knowledge bases in Fig-

ure 2. From Figure 2, we observe that both the cost and the number

of violated clauses tend to keep decreasing during the inference,

which is consistent with our theoretical analysis in Section 5. The

detailed peak memory usages of MLN4KB.jl on different knowledge
bases are shown in Table 5; the memory usage of MLN4KB.jl does
not exceed 1.1GB for all testing knowledge bases. We conclude that

MLN4KB.jl is memory-efficient on real-world knowledge bases.

7.5 Sensitivity to the threshold parameter
We test the effects of the threshold parameter 𝜏 in Algorithm 2. The

evolutions of the total cost with different thresholds on various

knowledge bases are shown in Figure 3. We observe that the thresh-

old parameter has a significant impact on the convergence of the

cost, and different knowledge bases favour different thresholds. For

example, setting 𝜏 = 0 (which is equivalent to greedy search) yields

the best convergence for the UMLS dataset, while setting 𝜏 = 0.1

fits best to the YAGO3-10 dataset.

To balance the trade-off between exploration and exploitation

in the local search algorithm, we set the default threshold 𝜏 to be

0.1 forMLN4KB.jl. In practice, we encourage practitioners to try

different thresholds and select the best for their applications.

7.6 Conclusion and future work
In this work, we develop an efficientMLN engine by designing smart

algorithm to leverage the structure of a certain class of logic rules

and the sparsity of knowledge bases. We implement the proposed

MLN engine as a Julia package called MLN4KB.jl. Experiments on

both synthetic and real-world knowledge bases strongly support

the effectiveness of MLN4KB.jl.
Future directions remain. Firstly, the current implementation

of MLN4KB.jl still does not scale to knowledge bases with a large

number of relations and rules. Further acceleration techniques

such as parallelization, efficient greedy search, and more careful

memory management are needed forMLN4KB.jl. We left adding

these acceleration techniques to MLN4KB.jl as our future work.

Secondly, MLN4KB.jl has some limitations. In particular, it does

not support negative weights and marginal inference. It is worth

to explore if it is possible to realize these functionalities under the

framework of MLN4KB.jl. Lastly, it would be interesting to explore
whether MLN4KB.jl can break the state-of-the-art testing accuracy

on benchmark knowledge bases by a more careful mining of rules.

MLN4KB: an efficient Markov logic network engine for large-scale knowledge bases and structured logic rules WWW ’23, May 1–5, 2023, Austin, TX, USA

REFERENCES
[1] Bach, S. H., Broecheler, M., Huang, B., and Getoor, L. (2017). Hinge-loss markov

random fields and probabilistic soft logic. Journal of Machine Learning Research,
18:109:1–109:67.

[2] Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B. (2017). Julia: A fresh

approach to numerical computing. SIAM review, 59(1):65–98.
[3] Biba, M. (2009). Integrating logic and probability: Algorithmic improvements in

markov logic networks. PhD Thesis. University of Bari.
[4] Bodenreider, O. (2004). Nucleic Acids Res., 32:267–270.
[5] Bollacker, K. D., Evans, C., Paritosh, P. K., Sturge, T., and Taylor, J. (2008). Freebase:

a collaboratively created graph database for structuring human knowledge. In

Proceedings of the ACM SIGMOD International Conference on Management of Data,
(SIGMOD), pages 1247–1250. ACM.

[6] Bordes, A., Usunier, N., García-Durán, A., Weston, J., and Yakhnenko, O. (2013).

Translating embeddings for modeling multi-relational data. In Proceedings of the
Advances in Neural Information Processing Systems (NeurIPS), pages 2787–2795.

[7] Dettmers, T., Minervini, P., Stenetorp, P., and Riedel, S. (2018). Convolutional

2d knowledge graph embeddings. In The AAAI Conference on Artificial Intelligence,
pages 1811–1818. AAAI Press.

[8] Domingos, P. and Lowd, D. (2009a). Markov Logic: An Interface Layer for Artificial
Intelligence. Morgan & claypool publishers.

[9] Domingos, P. M. and Lowd, D. (2009b). Markov logic: Theory, algorithms and

applications. PhD Thesis. University of Washington, Seattle.
[10] Domingos, P. M. and Lowd, D. (2019). Unifying logical and statistical AI with

markov logic. Commun. ACM, 62(7):74–83.

[11] Duchi, J. C., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for

online learning and stochastic optimization. Journal of Machine Learning Research,
12:2121–2159.

[12] Friedman, N., Getoor, L., Koller, D., and Pfeffer, A. (1999). Learning probabilistic

relational models. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), pages 1300–1309.

[13] Galárraga, L. A., Teflioudi, C., Hose, K., and Suchanek, F. M. (2013). AMIE:

association rule mining under incomplete evidence in ontological knowledge bases.

In The International World Wide Web Conference (WWW), pages 413–422.
[14] Genesereth, M. R. and Nilsson, N. J. (1988). Logical foundations of artificial
intelligence. Morgan Kaufmann.

[15] Haaren, J. V., den Broeck, G. V., Meert, W., and Davis, J. (2016). Lifted generative

learning of markov logic networks. Machine Learning, 103(1):27–55.
[16] Huynh, T. N. and Mooney, R. J. (2008). Discriminative structure and parameter

learning for markov logic networks. In Proceedings of the International Conference on
Machine Learning, ICML, volume 307, pages 416–423.

[17] Kautz, H. A., Selman, B., and Jiang, Y. (1996). A general stochastic approach to

solving problems with hard and soft constraints. In Satisfiability Problem: Theory and
Applications, volume 35, pages 573–585.

[18] Khot, T., Natarajan, S., Kersting, K., and Shavlik, J. W. (2015). Gradient-based

boosting for statistical relational learning: the markov logic network and missing

data cases. Machine Learning, 100(1):75–100.
[19] Kilgarriff, A. and Fellbaum, C. (2000). Wordnet, an electronic lexical database.

[20] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980.
[21] Kok, S. and Domingos, P. M. (2010). Learning markov logic networks using

structural motifs. In Proceedings the International Conference on Machine Learning
(ICML), pages 551–558.

[22] Kok, S., Sumner, M., Richardson, M., Singla, P., Poon, H., Lowd, D., and Domingos,

P. (2000). The alchemy system for statistical relational ai. Technical Report. Department
of Computer Science and Engineering, University of Washington, Seattle, WA.

[23] Lifschitz, V. (1990). Formalizing Common Sense: Papers by John McCarthy. Nor-
wood, New Jersey: Ablex Publishing Corporation.

[24] McCarthy, J. (1959). Programs with common sense. In Proceedings of the Tedding-
ton Conference on the Mechanization of Thought Processes.

[25] McCarthy, J. (1979). First order theories of individual concepts and propositions.

In Machine Intelligence.
[26] McCarthy, J. and Hayes, P. (1969). Some philosophical problems from the stand-

point of artificial intelligence. In Machine Intelligence.
[27] Mihalkova, L. and Mooney, R. J. (2007). Bottom-up learning of markov logic

network structure. In Proceedings of the International Conference on Machine Learning
(ICML), volume 227, pages 625–632. ACM.

[28] Muggleton, S. (1991). Inductive logic programming. New Generation Computing,
8(4):295—-318.

[29] Muggleton, S. (1996). Stochastic logic program. Advances in Inductive Logic
Programming, 7:254–264.

[30] Nickel, M., Rosasco, L., and Poggio, T. A. (2016). Holographic embeddings of

knowledge graphs. In The AAAI Conference on Artificial Intelligence, pages 1955–1961.
AAAI Press.

[31] Niepert, M., Meilicke, C., and Stuckenschmidt, H. (2010). A probabilistic-logical

framework for ontology matching. In The AAAI Conference on Artificial Intelligence.
AAAI Press.

[32] Niu, F., Ré, C., Doan, A., and Shavlik, J. W. (2011). Tuffy: Scaling up statistical

inference in markov logic networks using an RDBMS. The International Journal on
Very Large Data Bases (VLDB), 4(6):373–384.

[33] Poon, H. and Domingos, P. M. (2006). Sound and efficient inference with proba-

bilistic and deterministic dependencies. In Proceedings of the Conference on Artificial
Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Confer-
ence, pages 458–463.

[34] Poon, H. and Domingos, P. M. (2007). Joint inference in information extraction.

In The AAAI Conference on Artificial Intelligence, pages 913–918. AAAI Press.
[35] Poon, H. and Domingos, P. M. (2009). Unsupervised semantic parsing. In Proceed-
ings the Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1–10. ACL.

[36] Poon, H., Domingos, P. M., and Sumner, M. (2008). A general method for reducing

the complexity of relational inference and its application to MCMC. In The AAAI
Conference on Artificial Intelligence.

[37] Qu, M. and Tang, J. (2019). Probabilistic logic neural networks for reasoning. In

Proceedings of the Advances in Neural Information Processing Systems, pages 7710–
7720.

[38] Richardson, M. and Domingos, P. M. (2006). Markov logic networks. Machin.
Learning, 62(1-2):107–136.

[39] Riedel, S. (2008). Improving the accuracy and efficiency of MAP inference for

markov logic. In Proceedings of the Conference in Uncertainty in Artificial Intelligence,
pages 468–475.

[40] Sa, C. D., Ratner, A., Ré, C., Shin, J., Wang, F., Wu, S., and Zhang, C. (2016).

Deepdive: Declarative knowledge base construction. SIGMOD Rec., 45(1):60–67.
[41] Shavlik, J. W. and Natarajan, S. (2009). Speeding up inference in markov logic

networks by preprocessing to reduce the size of the resulting grounded network.

In Proceedings of the International Joint Conference on Artificial Intelligence, pages
1951–1956.

[42] Shin, J., Wu, S., Wang, F., Sa, C. D., Zhang, C., and Ré, C. (2015). Incremental

knowledge base construction using deepdive. The International Journal on Very Large
Data Bases (VLDB), 8(11):1310–1321.

[43] Singla, P. and Domingos, P. M. (2006). Memory-efficient inference in relational

domains. In The AAAI Conference on Artificial Intelligence, pages 488–493.
[44] Singla, P. and Domingos, P. M. (2008). Lifted first-order belief propagation. In

The AAAI Conference on Artificial Intelligence, pages 1094–1099. AAAI Press.
[45] Suchanek, F. M., Kasneci, G., and Weikum, G. (2007). Yago: a core of semantic

knowledge. In Proceedings of the International Conference onWorldWideWeb (WWW),
pages 697–706. ACM.

[46] Sun, Z., Deng, Z., Nie, J., and Tang, J. (2019). Rotate: Knowledge graph embedding

by relational rotation in complex space. In International Conference on Learning
Representations, ICLR.

[47] Sun, Z., Zhao, Y., Wei, Z., Zhang, W., and Wang, J. (2017). Scalable learning

and inference in markov logic networks. In International Journal of Approximate
Reasoning, volume 82, pages 39–55.

[48] Thomason, R. (2020). Logic and Artificial Intelligence. In The Stanford Encyclope-
dia of Philosophy. Metaphysics Research Lab, Stanford University.

[49] Tran, H. N. and Takasu, A. (2022). MEIM: multi-partition embedding interaction

beyond block term format for efficient and expressive link prediction. In Proceedings
of the International Joint Conference on Artificial Intelligence, pages 2262–2269.

[50] Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., and Bouchard, G. (2016). Complex

embeddings for simple link prediction. In Proceedings of the International Conference
on Machine Learning (ICML), pages 2071–2080.

[51] Wellman, M., Breese, J. S., and Goldman, R. P. (1992). From knowledge bases to

decision models. Knowledge Engineering Review, 7:35–53.
[52] Wielemaker, J. (2003). An overview of the SWI-Prolog programming environ-

ment. In Mesnard, F. and Serebenik, A., editors, Proceedings of the 13th International
Workshop on Logic Programming Environments, pages 1–16. Katholieke Universiteit
Leuven.

[53] Wielemaker, J. (2009). Logic programming for knowledge-intensive interactive ap-
plications. PhD thesis, University of Amsterdam. http://dare.uva.nl/en/record/300739.

[54] Yang, F., Yang, Z., and Cohen, W. W. (2017). Differentiable learning of logical

rules for knowledge base reasoning. In Advances in Neural Information Processing
Systems (NeurIPS), pages 2319–2328.

[55] Yoshikawa, K., Riedel, S., Asahara, M., and Matsumoto, Y. (2009). Jointly iden-

tifying temporal relations with markov logic. In Proceedings of the Association for
Computational Linguistics and the International Joint Conference on Natural Language
Processing of the AFNLP, pages 405–413.

[56] Zhang, Y., Chen, X., Yang, Y., Ramamurthy, A., Li, B., Qi, Y., and Song, L. (2020).

Efficient probabilistic logic reasoning with graph neural networks. In International
Conference on Learning Representations, ICLR.

WWW ’23, May 1–5, 2023, Austin, TX, USA Huang Fang, Yang Liu, Yunfeng Cai, and Mingming Sun

APPENDIX
A MISSING PROOFS

Proof of Theorem 5.1. Consider the 𝑖-th rule 𝐹𝑖 . Without loss

of generality, we assume that 𝐹𝑖 is of the form eq. (1). For a ground-

ing of 𝐹𝑖 , it is false (violated) iff all negated literals are true and all

un-negated literals are false. Therefore,

𝑛𝑖 (O,H) =
∑︁

all possible entities

∏
𝑖∈I−

𝐹𝑖

r𝑖 (ℎ𝑖 , 𝑡𝑖)
∏
𝑖∈I+

𝐹𝑖

(1 − r𝑖 (ℎ𝑖 , 𝑡𝑖))

≤
∑︁

all possible entities

∏
𝑖∈I−

𝐹𝑖

r𝑖 (ℎ𝑖 , 𝑡𝑖)

(∗)
≤

∏
𝑖∈I−

𝐹𝑖

𝐾r𝑖 (O,H) ≤
(
max

r∈𝐹𝑖
𝐾r (O,H)

) |I−
𝐹𝑖
|
,

where (∗) uses Assumption 3.1. Summing 𝑖 over {1, 2, . . . ,𝑚} yields
the desired result. □

Proof of Theorem 5.3. First, we calculate the space complexity

of MLN4KB. The space complexity of MLN4KB is dominated by the

storage of the knowledge base and the size of the violated clauses.

With the constraint 𝐾r (O,H) ≤ 𝐾 ∀r ∈ R,
• the total number of positive facts is in the order of O(𝐾 |R |);
• the total number of violated clauses is O(∑𝑚

𝑖=1 𝐾
𝐿𝑖) by The-

orem 5.1.

To sum up, the space complexity of MLN4KB with the cardinality

constraints is O(𝐾 |R | +∑𝑚
𝑖=1 𝐾

𝐿𝑖).

Next, we calculate the per iteration time complexity of MLN4KB.
The time complexityMLN4KB is controlled by the number of vi-

olated clauses that become satisfied and the number of satisfied

clauses that become violated in that iteration. The size of these

clauses is bounded by O(∑𝑚
𝑖=1 𝐾

𝐿𝑖). Therefore, the time complexity

of flipping a fact in a violated clauses and updating corresponding

data structures is O(∑𝑚
𝑖=1 𝐾

𝐿𝑖).
□

Proof of Corollary 5.2. For any 𝑡 ∈ [𝑇],
𝑚∑︁
𝑖=1

𝑛𝑖 (O,H(𝑡)) ≤ 𝑤−1
min

(
𝑚∑︁
𝑖=1

𝑤𝑖𝑛𝑖 (O,H(𝑡))
)

= 𝑤−1
min

𝑓 (O,H(𝑡))
(i)
≤ 𝑤−1

min
𝐶𝑓 (O,H(0))

(ii)
≤ 𝐶𝑤−1

min

𝑚∑︁
𝑖=1

𝑤𝑖

(
max

r∈R
𝐾r (O,H(0))

)𝐿𝑖
(iii)
≤ 𝐶𝑤−1

min

𝑚∑︁
𝑖=1

𝑤𝑖

(
max

r∈R

∑︁
(ℎ,r,𝑡) ∈O

r(ℎ, 𝑡)
)𝐿𝑖
,

where (i) is by the assumption 𝑓 (O,H(𝑡)) ≤ 𝐶𝑓 (O,H(0)), (ii) is a
direct consequence of Theorem 5.1, (iii) is by the definition of 𝐾r

and H(0) . □

	Abstract
	1 Introduction
	2 Related work
	3 Problem setup
	3.1 Preliminaries
	3.2 Assumptions and Notations

	4 The MAP inference of MLN
	5 MLN4KB
	5.1 Weight learning

	6 Implementation
	7 Experiments
	7.1 Comparing inference time on Kinship
	7.2 Open-world assumption matters
	7.3 Evaluation on real-world KB datasets
	7.4 The memory usage of MLN4KB.jl
	7.5 Sensitivity to the threshold parameter
	7.6 Conclusion and future work

	References
	A Missing proofs

