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Abstract

Greedy coordinate descent (GCD) is an efficient
optimization algorithm for a wide range of ma-
chine learning and data mining applications. GCD
could be significantly faster than randomized co-
ordinate descent (RCD) if they have similar per
iteration cost. Nevertheless, in some cases, the
greedy rule used in GCD cannot be efficiently im-
plemented, leading to huge per iteration cost and
making GCD slower than RCD. To alleviate the
cost per iteration, the existing solutions rely on
maximum inner product search (MIPS) as an ap-
proximate greedy rule. But it has been empirically
shown that GCD with approximate greedy rule
could suffer from slow convergence even with the
state-of-the-art MIPS algorithms. We propose a
hybrid coordinate descent algorithm with a simple
variable partition strategy to tackle the cases when
greedy rule cannot be implemented efficiently. The
convergence rate and theoretical properties of the
new algorithm are presented. The proposed method
is shown to be especially useful when the data ma-
trix has a group structure. Numerical experiments
with both synthetic and real-world data demon-
strate that our new algorithm is competitive against
RCD, GCD, approximate GCD with MIPS and
their accelerated variants.

1 INTRODUCTION

With an immense growth of data in recent years, classical
optimization algorithms tend to struggle with the current
huge amount of data. For example, some of today’s social
networks could have hundreds of millions of users and even
solving a linear system using the classical approach in this
scale is challenging. Many efficient algorithms are proposed
or re-discovered in the last two decades to solve today’s

large-scale optimization problems. Due to the low numer-
ical accuracy required by most machine learning and data
mining tasks, first-order methods with cheap cost per itera-
tion dominate certain fields recently. In particular stochastic
gradient descent (SGD) and coordinate descent (CD) are
two most important representatives. SGD and its variants are
dominant for the big-N problems i.e., problems with a large
number of samples (Robbins and Monro, 1951; Ghadimi
and Lan, 2013; Johnson and Zhang, 2013; Defazio et al.,
2014; Nguyen et al., 2017; Schmidt et al., 2017) while CD
and its variants are highly effective in handling the struc-
tured big-p problems i.e., problems with a large number
of features (Bertsekas and Tsitsiklis, 1989; Luo and Tseng,
1992, 1993; Tseng, 2001; Nesterov, 2012; Lee and Sid-
ford, 2013; Shalev-Shwartz and Zhang, 2013; Richtárik and
Takác, 2014; Wright, 2015; Lu and Xiao, 2015; Allen-Zhu
et al., 2016; Zhang and Xiao, 2017). Starting with Nes-
terov’s seminal work (Nesterov, 2012), coordinate descent
and its variants has been an active research topic in both
academia community and industrial practice.

Greedy coordinate descent (GCD) belongs to the family of
CD. Differentiating from randomized coordinate descent
(RCD), which randomly selects a coordinate to update in
each iteration, GCD selects the coordinate that makes the
most progress. This selection rule is also known as the
Gauss-Southwell (GS) rule. It has been theoretically verified
that GCD could converge faster than RCD if the GS rule can
be implemented efficiently (Nutini et al., 2015). However,
different from RCD which can be implemented efficiently
for a wide range of problems, only a small class of problems
are suitable for the GS rule (Nutini et al., 2015). For the
cases when the GS rule cannot be implemented efficiently,
one could only resort to the approximate GS rule based on
maximum inner product search (MIPS) algorithms (Dhillon
et al., 2011; Shrivastava and Li, 2014; Karimireddy et al.,
2019). However, most existing algorithms for MIPS do not
have strong theoretical guarantee and extensive numerical
experiments in the literature (Karimireddy et al., 2019) have
empirically shown that the approximate GS rule with the
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state-of-the-art MIPS algorithm usually performs worse than
RCD on real-world datasets.

In this work, we propose a hybrid coordinate descent (hy-
bridCD) algorithm with a simple variable partitioning strat-
egy as an alternative of the approximate GS rule when GCD
cannot be implemented efficiently. The proposed hybridCD
algorithm aims to achieve the fast convergence rate as GCD
while preserving the low iteration cost as randomized CD
via devised variable partitioning. On the theory side, we
show that the convergence rate of our hybridCD algorithm
could match GCD and outperform RCD when the data ma-
trix has an underlying group structure. We also provide an
accelerated hybridCD scheme which further improves the
convergence rate. On the empirical side, we evaluate the
new algorithm with ridge regression, logistic regression, lin-
ear support vector machine (SVM) and graph-based label
propagation models. The results show that the proposed
method empirically outperforms RCD, GCD, approximate
GCD with MIPS and their accelerated variants on syn-
thetic datasets when the data group structure exists and also
achieves the better performance on real-world datasets.

2 RELATED WORK

2.1 COORDINATE DESCENT

Coordinate descent is an old optimization method that can
be traced back to 1940s (Southwell, 1940). It is gaining in-
creasing interest in the past decade due to its superior empir-
ical performance on the structured big-p (high dimensional)
machine learning and data mining applications including
LASSO (Friedman et al., 2007; Hastie et al., 2008; Fried-
man et al., 2010), support vector machine (SVM) (Platt,
1999; Tseng and Yun, 2010), non-negative matrix factoriza-
tion (Cichocki and Phan, 2009), graph-based label propaga-
tion (Bengio et al., 2006), Mazumder et al. (2011) etc. De-
spite its popularity in practice, the convergence rate of CD
is not clear until Nesterov (2012)’s work in 2012, in which
Nesterov presented the first non-asymptotic convergence
rate of RCD. Subsequent works include block CD (Beck
and Tetruashvili, 2013) proximal RCD (Richtárik and Takác,
2014), accelerated RCD (Lee and Sidford, 2013; Lin et al.,
2015; Allen-Zhu et al., 2016; Nesterov and Stich, 2017).

2.2 GREEDY COORDINATE DESCENT

Nesterov (2012) demonstrated that GCD has the same con-
vergence rate as RCD. However, GCD is observed to be
much faster than RCD in terms of convergence rate empiri-
cally, and some clever implementations of GCD do consti-
tute the state-of-the-art solvers for machine learning prob-
lems like kernel SVM (Joachims, 1999; Chang and Lin,
2011) and non-negative matrix factorization (Cichocki and
Phan, 2009). This gap between practice and theory was

filled with refined analysis (Nutini et al., 2015) of GCD
(see Tseng and Yun (2009); Nutini et al. (2017) for an ex-
tension to blocked GCD), in which Nutini et al. (2015)
theoretically explained why GCD could be faster than RCD
for certain class of problems. Subsequent works (Karim-
ireddy et al., 2019; Fang et al., 2020) further extended the
refined analysis to composite optimization problems.

When the GS rule cannot be implemented effi-
ciently, Dhillon et al. (2011) proposed to use MIPS
algorithm as an approximate GS rule for least square
problems, Karimireddy et al. (2019) further discussed
how to map the approximate GS rule to MIPS for a richer
family of problems beside least square problems. These two
papers are closely related to this work as all of them are
considering how to improve GCD when the GS rule cannot
be implemented efficiently.

2.3 PARALLEL COORDINATE DESCENT

Another line of work in recent years is to accelerate CD
under multi-core or multi-machine environments (Liu et al.,
2015; Richtárik and Takác, 2016). This line of work is or-
thogonal to the purpose of this work, but it is worth to note
that the variable partitioning strategy used in this work has
been mentioned as heuristics for parallel greedy coordi-
nate algorithms (Scherrer et al., 2012b,a; You et al., 2016;
Moreau et al., 2018). It is also worth to note that these works
apply greedy rule within each partition in a parallel fashion
and is different from the algorithm proposed in this paper
which advocates greedy rule among all partitions.

3 PRELIMINARIES

We consider the following optimization problem:

min
x∈Rd

f(x), (3.1)

where d is the number of variables, f : Rd → R is a
convex and smooth function. Throughout the paper, we
use x∗ to denote a solution of problem 3.1 and f∗ as the
optimal objective value. In addition, we make the following
assumptions on f .

Assumption 3.1. f(x + αei) is Li-smoothness in terms of
α ∀i ∈ [d]:

|∇if(x + αei)−∇if(x)| ≤ Li|α|, ∀x ∈ Rd, α ∈ R,

where ei is the i-th unit vector, ∇if(x) denotes the i-th
entry of∇f(x).

Assumption 3.2. f(x) is L-smoothness:

f(x) ≤ f(y)+〈∇f(y),x−y〉+L

2
‖x−y‖22, ∀x,y ∈ Rd.



Algorithm 1 Pseudocode for coordinate descent

Input: x0.
for t = 0, 1, 2, ... do

[RCD rule] uniform randomly choose a i from
{1, 2, . . . , d}
[GS rule] i ∈ arg maxj∈[d] |∇if(x(t))|
[Approx-GS rule] choose i from {1, 2, . . . , d} by
MIPS algorithm.
x(t+1) = x(t) − 1

Li
∇fi(x(t))ei

end for

In the following content of this paper, we denote
Lmax := maxi∈[d] Li. It is worth mentioning here that
Lmax is usually much smaller than the global smoothness
constant L. Then we introduce the definition of strong
convexity, which is the standard assumption used to obtain
linear convergence rate in the literature.

Definition 3.3. f(x) is µ2 and µ1 strongly convex with
respect to ‖ · ‖2 and ‖ · ‖1 respectively:

f(x) ≥ f(y)+〈∇f(y),x−y〉+ µ2

2
‖x−y‖22, ∀x,y ∈ Rd

and

f(x) ≥ f(y)+〈∇f(y),x−y〉+µ1

2
‖x−y‖21, ∀x,y ∈ Rd.

It is easy to verify that µ2/d ≤ µ1 ≤ µ2, we refer readers
to Nutini et al. (2015) for more discussions on the rela-
tionship between µ2 and µ1. Note that in order to prove
linear convergence rate, recent works show that the strongly
convex condition can be relaxed to some weaker condi-
tions (Karimi et al., 2016). For simplicity, we use the
strongly convex condition for part of our analysis. A general
template for coordinate descent is shown in Algorithm 1.
When we use random selection rule, the algorithm is RCD
and when we apply the GS rule, it reduces to GCD.

4 MOTIVATION

Nesterov (2012)’s seminal work established the first global
convergence rate of RCD and GCD:

E
[
f(x(t+1))− f∗

]
≤
(

1− µ2

dLmax

)(
f(x(t))− f∗

)
,

where f∗ is the optimum value. Later on, Nutini et al. (2015)
refined the analysis of GCD, showing that with the GS rule,
we have

f(x(t+1))− f∗ ≤
(

1− µ1

Lmax

)(
f(x(t))− f∗

)
.

Recall from previous section, µ1 is the strongly convexity
constant with respect to ‖·‖1, it satisfy the condition µ2/d ≤

Algorithm 2 Hybrid coordinate descent

Input: x(0),B = {Bi}ki=1.
for t = 0, 1, 2, . . . do
I = ∅
for j = 1, 2, . . . , k do

[Random rule] uniform randomly choose a ij ∈ Bj
and let I = I ∪ {ij}

end for
[Greedy rule] i ∈ arg maxj∈I |∇jf(x(t))|
x(t+1) = x(t) − 1

Li
∇fi(x(t))ei

end for

µ1 ≤ µ2. It is straightforward to see that when µ2/d / µ1,
GCD tends to have similar convergence rate as RCD, when
µ1 / µ2, GCD would have d times convergence rate as
RCD. In this case, GCD will be much faster than RCD if
they have similar computation cost per iteration.

Unfortunately, for a wide range of applications including lin-
ear regression, logistic regression, LASSO and dual SVM,
the GS rule cannot be implemented efficiently as random
selection rule unless the data in both row and column
sparse (Nutini et al., 2015, 2017). These observations nat-
urally raise a question: can we design an algorithm that
preserve the advantage of both GCD and CD – converge as
fast as GCD with cost per iteration as cheap as RCD?

5 PROPOSED METHOD

We propose a hybrid coordinate descent algorithm incorpo-
rating a variable partitioning strategy, the detailed algorithm
is shown in Algorithm 2.

The algorithm is straightforward to understand:

• First, we partition all variables into k blocks.

• In each iteration, we perform random selection rule
within each blocks and get k candidate coordinates.

• Then we apply the GS rule over the k candidate coor-
dinates to get the best coordinate among them.

• Apply standard coordinate gradient step on the chosen
coordinate.

We denote k as the number of blocks and the partitions
as B = {Bi}ki=1. In fact, we can change the number of
blocks and the partition during the optimization process, we
will discuss the influence of the choice of partition on the
algorithm convergence in following section.

One can immediately observe from Algorithm 2 that when
k = 1, the greedy selection disappears and the algorithm
reduces to RCD. Meanwhile, when k = d, each block repre-
sents one coordinate and the algorithm is essentially GCD.



6 ANALYSIS

We analyze the convergence of hybridCD and present a
concrete example show that hybridCD could outperform
RCD and GCD, all missing proofs are placed in §9 from
supplementary materials.

6.1 CONVERGENCE

First, we introduce a new norm induced by the partition B.

Definition 6.1. Given a partition B := {Bi}ki=1 such that
Bi ∩ Bj = ∅ ∀i 6= j ∈ [d],

⋃k
i=1Bi = {1, 2, . . . , d}.

∀x ∈ Rd, we define the l∞ norm of x induced by the
partition B as ‖x‖B,∞ := maxi∈[k]

1√
|Bi|
‖xBi

‖2, where

xB denotes a sub-vector with coordinates in B.

The dual norm of ‖ · ‖B,∞ is given as follows. Interestingly,
its dual norm coincides with the group-norm (Yuan and Lin,
2006).

Lemma 6.2. We denote the dual norm of ‖·‖B,∞ as ‖·‖B,1,
and it can be expressed as

‖x‖B,1 := sup
‖z‖B,∞≤1

〈z,x〉 =

k∑
i=1

√
|Bi|‖xBi

‖2.

We know that gradient descent is the steepest descent
method in 2-norm and GCD is performing steepest descent
in 1-norm (Boyd and Vandenberghe, 2004, § 9.4.3). Our
hybridCD can be viewed as the steepest descent method in
the group-norm induced by the partition B.

It is easy to check that the new norm satisfies the following
conditions:

Lemma 6.3. The new norm satisfy the following condition:

‖x‖22
d
≤ ‖x‖2B,∞ ≤

‖x‖22
mini |Bi|

∀x ∈ Rd,

‖x‖2∞
maxi |Bi|

≤ ‖x‖2B,∞ ≤ ‖x‖2∞ ∀x ∈ Rd.

Lemma 6.4 (Descent lemma). Denote x(t) as the iterate
generated from Algorithm 2, then we have the following
result:

E
[
f(x(t+1))

∣∣∣ x(t)
]
≤ f(x(t))− 1

2Lmax
‖∇f(x(t))‖2B,∞.

Proof. Given x(t), following Algorithm 2,

E
[
f(x(t+1))

∣∣∣ x(t)
]

(i)

≤ E
[
f(x(t)) +

〈
∇f(x(t)),− 1

Li
∇if(x(t))ei

〉
+

Li
2L2

i

‖∇if(x(t))‖22
]

≤ f(x(t))− 1

2Lmax
E
[(
∇if(x(t))

)2]
= f(x(t))− 1

2Lmax
E
[
max
j∈[k]

{(
∇ijf(x(t))

)2}]
(ii)

≤ f(x(t))− 1

2Lmax
max
j∈[k]

{
E
[(
∇ijf(x(t))

)2]}
= f(x(t))− 1

2Lmax
max
j∈[k]

{
1

|Bj |
‖∇Bj

f(x(t))‖22
}

= f(x(t))− 1

2Lmax
‖∇f(x(t))‖2B,∞, (6.1)

where (i) is true by plugging α = −∇if(x(t))/Li to the
Assumption 3.1 and (ii) is from Jensen’s inequality.

Based on Lemma 6.4, we can immediately obtain the fol-
lowing convergence rate for strongly convex objective.

Theorem 6.5 (Convergence for strongly convex objective).
Denote x(t) as the iterate generated from Algorithm 2, as-
sume f is µ1 and µ2 strongly convex for 1 and 2-norm
respectively, then we have the following convergence result:

E
[
f(x(t+1))− f∗

∣∣∣ x(t)
]
≤ (1− ηt)

(
f(x(t))− f∗

)
,

where

ηt :=

max

{
µ2

Lmax

‖∇f(x(t))‖2B,∞
‖∇f(x(t))‖22

,
µ1

Lmax

‖∇f(x(t))‖2B,∞
‖∇f(x(t))‖2∞

}
.

By using Lemma 6.3, it is easy to verify that ηt ∈
[µ2/(dLmax), µ1/Lmax]. Different from GCD with approx-
imate GS rule (with additive error) that might suffer from
non-convergent, the convergence rate of hybridCD is at least
as fast as RCD in the worst case scenario. On the other side.
It is clear that the quantity ‖∇f(x(t))‖B,∞/‖∇f(x(t))‖∞
plays a crucial role in the convergence rate at the t-th iter-
ation. If this quantity is close to 1, the proposed algorithm
will converge as fast as GCD.

Following the same argument as Dhillon et al. (2011);
Karimireddy et al. (2019), we can obtain the convergence
of hybridCD for convex but not necessarily strongly convex
objectives.



Theorem 6.6 (Convergence for convex objective). Denote
x(t) as the iterate generated from Algorithm 2, then we have
the following convergence result:

E
[
f(x(t))− f∗

]
≤ 2LmaxD

2

ρt
,

where ρ := infx∈Rd{‖∇f(x)‖2B,∞/‖∇f(x)‖2∞} and
D = supx∈Rd{‖x− x∗‖1 | f(x) ≤ f(x(0))}.

The term ρ := infx∈Rd{‖∇f(x)‖2B,∞/‖∇f(x)‖2∞}, simi-
lar to Theorem 6.5, controls the convergence rate, hybridCD
could converge as fast as GCD when it is close to 1.

Theorem 6.5 and Theorem 6.6 described the convergence
rate on expectation. Based on these results, we can obtain
convergence rates with high probability using standard tech-
niques (Richtárik and Takác, 2014). We place the high prob-
ability error bounds in supplementary materials §9.

Our convergence rate analysis indicated that the
quantity ‖∇f(x(t))‖B,∞/‖∇f(x(t))‖∞ stays in
the center of our analysis. A natural question
arise at this point: how does the partition B affect
the quantity ‖∇f(x(t))‖B,∞/‖∇f(x(t))‖∞? Intu-
itively, if there is a clustering pattern in ∇f(x(t)),
‖∇f(x(t))‖B,∞/‖∇f(x(t))‖∞ will be close to 1. In this
case, B tends to partition similar values in∇f(x(t)) into the
same block. To formally choose a good partition strategy,
one option is to maximize the worst-case convergence
rate, which leads to a combinatorial optimization problem,
namely

max
B

min
x∈Rd

‖∇f(x(t))‖B,∞
‖∇f(x(t))‖∞

.

This is, however, a hard combinatorial optimization problem
even with simple objective functions like least square. In
fact, solving this problem could be even harder than the
original optimization problem.

Here we would like to have a simple and effective parti-
tioning strategy and clustering is an intuitive choice. We
present a more formal discussion on how clustering helps
hybridCD when our data has an underlying group structure
in the following subsection.

6.2 PARTITIONING STRATEGY

We consider the optimization problem

min
x∈Rd

f(Ax), (6.2)

where f is a convex and smooth function, A ∈ Rn×d,
where n is the number of data points and d is the
number of features. Assume that each column of A
is generated from a mixture Gaussian distribution i.e.,

∑k
i=1 πiN (µj , Inσ

2). Then we have the following
improved bound on infx∈Rd{‖∇f(x)‖2B,∞/‖∇f(x)‖2∞}.

Theorem 6.7. Assume that j ∈ Bi if the j-th column of A
is generated from the i-th cluster N (µi, Inσ

2), then

inf
x∈Rd

‖∇f(x)‖2B,∞
‖∇f(x)‖2∞

= Ω

(
1

nmaxi log2 |Bi|

)
(6.3)

holds with probability at least 1− 4d exp{−n/4}.

Theorem 6.7 improves the bound from 1/maxi |Bi| to
1/(nmaxi log2 |Bi|), the improvement is significant when
maxi∈[k] |Bi| � n.

Remark 6.8. Under the condition stated in Equation (6.3),
we summarize the iteration complexities of RCD, GCD and
hybridCD to obtain an ε-error as follows. When f is f is µ1

and µ2 strongly convex for 1 and 2-norm respectively,

• RCD: O
(
dLmax

µ2
log

(
1

ε

))
;

• GCD: O
(
Lmax

µ1
log

(
1

ε

))
;

• hybridCD: O
(
nmaxi log2 |Bi|Lmax

µ1
log

(
1

ε

))
.

For not necessarily strongly convex objective f ,

• RCD: O
(
dLmaxD

2
2

ε

)
;

• GCD: O
(
LmaxD

2
1

ε

)
;

• hybridCD: O
(
nmaxi log2 |Bi|LmaxD

2
1

ε

)
,

where Di := supx∈Rd{‖x − x∗‖i | f(x) ≤ f(x(0))}, i ∈
{1, 2}.

Remark 6.9. Consider the logistic regression problem,
where f in Equation (6.2) is set to f(y) =

∑n
i=1 log(1 +

exp(−yi)). Assume that the condition stated in Equa-
tion (6.3) holds. Then the number of flops required to achieve
ε-error is:

• RCD: O
(
nd‖A‖∞D2

2

ε

)
;

• GCD: O
(
nd‖A‖∞D2

1

ε

)
;

• hybridCD: O
(
n2kmaxi log2 |Bi|‖A‖∞D2

1

ε

)
.



When d � n and d � k, hybridCD requires significantly
less flops than RCD and GCD. This again shows the effec-
tiveness of our proposed algorithm.

In Theorem 6.7, we do the partition according to the true
underlying groups, i.e., B ≡ B∗. (We use ∗ to denote the
true group.) However, in practice, we usually do not have
a prior knowledge on the group structure and the partition
is obtained by some clustering algorithms. Therefore, we
develop the following theorem under inexact partitioning.

Theorem 6.10. Assume j ∈ B∗i if the j-th column of A
is generated from the i-th cluster N (µi, Inσ

2) and the
clustering algorithm returns a partition B = {Bi}ki=1.
Let ci be the center of Bi i.e., ci := 1

|Bi|
∑
j∈Bi

aj and
µgap := maxi,j∈[k] ‖µi − µj‖∞. Assume that

A1 ∀i ∈ [k], |Bi∩B∗i |
|Bi| ≥ 1− σ

µgap+σ log |Bi| .

A2 maxj∈Bi
‖aj − ci‖2 ≤ minj′∈B∗i C‖aj′ −

ci‖2 ∀i ∈ [k] for some constant C > 0.

Then we have

inf
x∈Rd

‖∇f(x)‖2B,∞
‖∇f(x)‖2∞

= Ω

(
1

nC2 maxi log2(|Bi|)

)
with probability at least 1− 4d exp{−n/4} − 1/n.

Conditions A1 and A2 require the clustering algorithm to
output a reasonable partition. When the noise parameter
σ gets smaller, the clustering algorithm is required to be
more accurate. The bound in Theorem 6.10 is within a mul-
tiplicative factor C2 of the bound in Theorem 6.7, where C
approximately measures how close our partition B approxi-
mates B∗.

6.3 ACCELERATION

Next, we apply Nesterov’s acceleration technique to hy-
bridCD. Our algorithm is inspired by the accelerated semi-
greedy CD (ASCD) algorithm developed by Lu et al. (2018).
ASCD maintains two variables x(t) and z(t), where x(t)

is updated in a greedy manner and z(t) is updated in the
same way as randomized CD. We naturally extend their
acceleration technique to hybridCD and the detailed algo-
rithm described in Algorithm 3. By modifying the original
convergence analysis of ASCD, we obtain the following
convergence result.

Theorem 6.11. Denote x(t) as the iterate generated from
Algorithm 3, then

E[f(x(t))− f∗] ≤ 2d2Lmax‖x(0) − x∗‖22
(t+ 1)2

. (6.4)

The convergence rate in Equation (6.4) matches exactly the
same as the convergence rate of ASCD, but ASCD requires
a greedy search over all d coordinates and can not resolve
the issue of high per iteration cost. Note that this rate is also
the same as the rate of accelerated RCD (Lee and Sidford,
2013; Allen-Zhu et al., 2016) (ARCD). Therefore the rate
in Equation (6.4) cannot explain why greedy selection rule
works better than its randomized counterpart even though
we obtained a O(1/t2) rate. We empirically show the effec-
tiveness of accelerated hybridCD in numerical experiments.

7 EXPERIMENTS

Table 1: Data statistics, n is the number of data samples, d
is the number of features.

Datasets synthetic leukemia rcv1 ijcnn1
n 50 72 697, 641 49, 990
d 5, 000 7, 129 47, 236 22

In this section, we evaluate our algorithm on ridge regres-
sion, logistic regression, linear SVM and label propaga-
tion models on both synthetic and real-world datasets, the
statistics of our experimental data are shown in Table 1,
where leukemia, rcv1, ijcnn1 are downloadable from LIB-
SVM’s (Chang and Lin, 2011) webpage1. More details on
the use of each dataset is presented as follows,

• synthetic is constructed by the make_blobs function
from the sklearn package (Pedregosa et al., 2011) with
number of clusters set to 8, this data has an inherent
clustering pattern by its construction and it is expected
to work well with hybridCD. We use both synthetic

Algorithm 3 Accelerated hybrid coordinate descent

Input: x0,B = {Bi}ki=1. Define the sequence {θt} as
follows: θ0 = 1 and construct θt recursively by 1−θt

θ2t
=

1
θ2t−1

for t = 1, . . ..
for t = 0, 1, 2, . . . do
y(t) = (1− θt)x(t) + θtz

(t), I = ∅
for j = 1, 2, . . . , k do

[Random rule 1] uniform randomly choose a ij ∈
Bj and let I = I ∪ {ij}

end for
[Greedy rule] j1 ∈ arg maxj∈I |∇jf(y(t))|
x(t+1) = y(t) − 1

Lmax
∇fj1(y(t))ej1

[Random rule 2] randomly choose a j2 ∈ I with
probability {|B1|/d, |B2|/d, . . . , |Bk|/d}
z(t+1) = z(t) − 1

dLmaxθt
∇fj2(y(t))ej2

end for

1https: /www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/



Figure 6.1: Convergence of hybridCD, RCD and GCD. We compare their convergence in terms of the number of iteration
and runtime. For a fair comparison in runtime, the overhead of clustering used in hybridCD are included in the total runtime.
Note that the curve of GCD is not included in the linear SVM task since the cost per iteration is too expensive with the naive
implementation.

and leukemia for ridge regression, logistic regression
and `1 regularized logistic regression problems. Note
that `1 regularized logistic regression problem involves
a `1 regularization and we solve it with a proximal-
gradient variant of hybridCD (algorithm described in
§10).

• rcv1 is used for linear SVM tasks, we use CD to solve
the dual problem and compare different algorithms on
objective value and test accuracy, we adopt the default
training/test splitting of rcv1 where 20, 242 data points
are used for training and 677, 399 are used for testing.

• We construct a 5 nearest neighbour graph with ijcnn1
under Euclidean distance and use the resulting graph
for label propagation task. We randomly set 39, 992
samples as labeled data and the remaining 9, 998 sam-
ples as unlabeled data. It is worth to note that the GS-
rule can be implemented efficiently using maxheap,
but the implementation is sophisticated (Meshi et al.,
2012). Here we use a naive implementation of GCD
for simplicity, this will increase the total runtime of
GCD but will not affect the objective gap v.s. iteration
curve and we still have a fair comparison in terms of
convergence rate.

We use the k-means algorithm as our variable partition strat-
egy for experiments if not otherwise specified. We try the
number of blocks k in {1, 2, 4, 8, 16} in our numerical ex-
periments, it is worth to note that when k = 1, hybridCD
reduces RCD. To obtain a fair comparison on runtime, we
include the overhead induced by the clustering algorithm
into the total runtime in our experiments though the time
spent on k-means is usually far less than the total runtime.

We conduct all experiments on a Linux server with 11 In-
tel(R) Xeon(R) CPUs E5-2620 v2 (2.10GHz) and 128GB
memory. All algorithms are implemented in Python.

7.1 COMPARISON: HYBRIDCD VS. RCD & GCD

In Figure 6.1, we can clearly see that hybridCD with 8 or
16 blocks achieves similar convergence rate as GCD on syn-
thetic. Since that synthetic has an inherent clustering pattern
with 8 clusters, the convergence result on synthetic implies
that hybridCD with simple clustering partition strategy and
appropriate number of blocks indeed can be as fast as GCD
and we could get diminishing returns if we set the number of
blocks more than the real number of underlying clusters of
the data. These observations are consistent with our analysis
in previous sections.



Figure 7.1: Convergence comparison among RCD, ARCD, HCD, AHCD, GCD and AGCD.

Figure 7.2: Left two figures: the convergence of HCD and AHCD with different clustering algorithms. Right two figures: the
convergence of RCD, CCD, RPCD and HCD.

Figure 7.3: The convergence of objective value (training error) of hybridCD (with 8 blocks), RCD and approximate GCD
with the state-of-the-art MIPS algorithm.

All experiments on real world datasets share the same pat-
tern, hybridCD with more blocks tends to have a better
convergence rate and too many blocks could increase the
time per iteration and increase the total runtime. In terms
of convergence rate, hybridCD with more blocks behaves
similar as GCD and much better than RCD, while the cost
per iteration of hybridCD with few blocks is significantly
cheaper than GCD and comparable to RCD. As a result,
the proposed hybridCD with appropriate number of blocks
outperforms both RCD and GCD.

7.2 COMPARISON: ACCELERATED VARIANTS

Figure 7.1 presents the convergence comparison among
RCD, accelerated RCD (ARCD), hybridCD (HCD), ac-
celerated hybridCD (AHCD), GCD and accelerated GCD
(AGCD). For the implementation of ARCD and AHCD, we
adopt the change of variable techniques developed by Lee
and Sidford (2013) and therefore the per iteration cost of
ARCD and AHCD are the same as RCD and HCD respec-
tively. We can observe that RCD, HCD, GCD with Nesterov

acceleration indeed exhibit faster convergence than their
non-accelerated counterparts. AHCD with appropriate num-
ber of blocks is the fastest among all competitors.

7.3 COMPARISON: CLUSTERING STRATEGIES
AND OTHER SELECTION RULES

We experiment hybridCD with different clustering algo-
rithms including k-means, minibatch-kmeans and spectral
clustering. The convergence curves of HCD and AHCD
with different clustering algorithms are given in the left two
figures from Figure 7.2. The convergence curves under dif-
ferent clustering algorithms almost coincide with each other
and therefore hybridCD is empirically robust to the change
of partitioning strategy.

The right two figures from 7.2 present the convergence of
CD with some other commonly used selection rules includ-
ing cyclic (CCD) and randomly permuted selection rule
(RPCD). We can see that RCD, CCD and RPCD has simil-
iar convergence behaviour and hybridCD could outperform
them with appropriate number of blocks.



7.4 COMPARISON: HYBRIDCD VS. GCD-MIPS

Similar to Karimireddy et al. (2019), we use the widely used
package nmslib2 for the MIPS algorithm.

As shown in Figure 7.3, GCD with MIPS (GCD-MIPS) is
competitive against RCD and hybridCD in solving over-
determined linear system but a much inferior than RCD
and hybridCD in ridge regression and label propagation
tasks. Different from RCD and hybridCD, GCD with MIPS
could suffer from non-convergence. The reason is that ridge
regression and label propagation require the MIPS algo-
rithm used in GCD to search in high dimensional space,
see Karimireddy et al. (2019) for more details and explana-
tions. In this scenario, the cost per iteration of GCD-MIPS
tends to be high and its searching quality tends to be low,
and therefore GCD-MIPS could suffer from slower or even
non-convergence in these tasks.

8 CONCLUSION

In this work, we propose a hybrid coordinate descent (hy-
bridCD) algorithm to improve greedy coordinate descent
(GCD) for optimization problems when the exact GS-rule
cannot be implemented efficiently. We provide a relatively
complete convergence analyses for the proposed hybridCD
and its accelerated version. Noticeably, our theory demon-
strates that the proposed method can converge as fast as
GCD if the data matrix has an underlying group structure
and the algorithm adopts the reasonable partitioning strategy.
Multiple numerical experiments illustrate that our hybridCD
with k-means clustering partitioning strategy is highly effec-
tive, hybridCD and its accelerated variant outperform other
existing baselines, such as RCD, ARCD, GCD, AGCD and
GCD with MIPS, on both synthetic and real-world datasets
in the tasks of ridge regression, logistic regression and label
propagation. Although we empirically show that the simple
clustering is surprisingly effective, we believe there is still
space for further improvement for the partitioning strategy,
for example, one may use the partitioning strategy based on
different metrics; one may also design a dynamic partition-
ing strategy that adaptively change the partition during the
optimization process. Furthermore, the current theoretical
analysis only considers the smooth objective functions. It
will be interesting and challenging to extend the theory of
hybridCD algorithm to general non-smooth situations. We
left these as the directions of the future work.
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9 PROOFS

Proof of Lemma 6.2

Proof. Given x ∈ Rd,

‖x‖B,1 := sup
‖z‖B,∞≤1

〈z,x〉

= sup
z∈Rd

{
〈z,x〉

∣∣∣∣∣ max
i∈[k]

1√
|Bi|
‖zBi
‖2 ≤ 1

}

= sup
z∈Rd

{
k∑
i=1

〈zBi
,xBi

〉

∣∣∣∣∣ 1√
|Bi|
‖zBi
‖2 ≤ 1 ∀i ∈ [k]

}

=

k∑
i=1

sup
z∈Rd

{
〈zBi ,xBi〉

∣∣∣∣∣ 1√
|Bi|
‖zBi‖2 ≤ 1

}
(i)
=

k∑
i=1

√
|Bi|‖xBi

‖2.

For (i), the maximum is attained when zBi
=
√
|Bi|xBi/‖xBi‖2.

Proof of Theorem 6.5

Proof. We begin with Equation (6.1),

Equation (6.1) ≤ f(x(t))− 1

2Lmax

(
‖∇f(x(t))‖B,∞
‖∇f(x(t))‖∞

)2

‖∇f(x(t))‖2∞

The next step follows from the refined analysis of GCD from Nutini et al. (2015), we present it here for completeness. Since
µ1 is strongly convex, we have

f(x) ≥ f(y) + 〈∇f(y),x− y〉+
µ1

2
‖x− y‖21, ∀x,y ∈ Rd.

By minimizing left-hand and right-hand sides over x, we get

f∗ ≥ f(y)− sup
x∈Rd

(
〈∇f(y),y − x〉 − µ1

2
‖y − x‖21

)
= f(y)−

(µ1

2
‖ · ‖21

)∗
(∇f(y))

(i)
= f(y)− 1

2µ1
‖∇f(y)‖2∞, (9.1)

where (i) uses the fact that the convex conjugate of 1
2‖ · ‖

2
1 is 1

2‖ · ‖
2
∞. By subtracting f∗ from left-hand and right-hand sides

of Eq. (6.1) and combining with Eq. (9.1), we get

E
[
f(x(t))− f∗

]
≤

(
1− µ1

Lmax

‖∇f(x(t))‖2B,∞
‖∇f(x(t))‖2∞

)(
f(x(t))− f∗

)
. (9.2)

Furthermore, with ‖x‖
2
2

d ≤ ‖x‖2B,∞ and Eq. (6.1), we get



E
[
f(x(t))

]
≤ f(x(t))− 1

2dLmax
‖∇f(x(t))‖22,

Using the same argument to derive Eq. (9.2) or following the standard analysis for randomized coordinate descent, we get

E
[
f(x(t))− f∗

]
≤

(
1− µ2

Lmax

‖∇f(x(t))‖2B,∞
‖∇f(x(t))‖22

)(
f(x(t))− f∗

)
. (9.3)

We complete the proof by combining Eq. (9.2) and Eq. (9.3).

Proof of Theorem 6.6

Proof. We begin with Equation (6.1) and follow the standard proof template (Karimireddy et al., 2019; Dhillon et al., 2011),

E[f(x(t+1)) | x(t)] ≤ f(x(t))− η2

2Lmax
‖∇f(x(t))‖2∞

≤
(i)f(x(t))− η2

2Lmax‖x(t) − x∗‖21
(f(x(t))− f∗)2.

≤ f(x(t))− η2

2LmaxD2
(f(x(t))− f∗)2.

where (i) is from the following inequality

f(x(t))− f∗ ≤ 〈x∗ − x(t),−∇f(x(t))〉 ≤ ‖x∗ − x(t)‖1‖∇f(x(t))‖∞.

Taking expectation on both sides,

E[f(x(t+1))] ≤ E[f(x(t))]− η2

2LmaxD2
(E[f(x(t))]− f∗)2,

Note that we use the fact that E[X2] ≥ E[X]2 to derive the above property. Denote E[f(x(t))]− f∗ as ht, then we can get

ht+1 ≤ ht −
η2

2LmaxD2
h2t . (9.4)

Dividing both side by ht+1ht, we get

1

ht
≤ 1

ht+1
− η2

2LmaxD2

ht
ht+1

(i)

≤ 1

ht+1
− η2

2LmaxD2
, (9.5)

where (i) is from the fact that {ht}∞t=1 is a decreasing sequence and ht/ht+1 ≥ 1. Summing Equation (9.5) over t ∈
{0, 1, . . . , T}, we get

1

h0
− 1

hT
≤ − Tη2

2LmaxD2

=⇒ hT ≤
2LmaxD

2

η2T
,

which completes the proof.



Proof of Theorem 6.7

Proof. Given any vector r, we let zi = aTi r and define mj := µTj r. Therefore,∑
i∈Bj

z2i = (mj + zi −mj)
2 = |Bj |m2

j + 2mj

∑
i∈Bj

(zi −mj) +
∑
i∈Bj

(zi −mj)
2. (9.6)

According to Rudelson and Vershynin (2010), with probability at least 1− 2 exp{−n/2}, we have that∑
i∈Bj

(zi −mj)
2 = ‖ÃBj

r‖2 ≥ (
√
|Bj | − 2

√
n)2‖r‖22σ2

and
|
∑
i∈Bj

(zi −mj)| ≤ σ‖r‖2
√
|Bj |n log n

hold for all r. Here ÃBj
is the jth-block submatrix of A by shifting mean to zero. Therefore, we have∑

i∈Bj

z2i ≥ |Bj |m2
j − 2mjσ‖r‖2

√
|Bj |n log n+ (

√
|Bj | − 2

√
n)2‖r‖22σ2 (9.7)

by simplifying (9.6). On the other hand,

max
i∈Bj

|zi| = max
i∈Bj

|µrj + (ai − µj)
T r| ≤ mj + max

i∈Bj

|(ai − µj)
T r| ≤ mj + 2 log |Bj |

√
n‖r‖2σ

holds with probability at least 1− 2|Bj | exp{−n/4}. Thus, when |Bj | � n, we get√∑
i∈Bj

z2i

maxi∈Bj |zj |

≥

√
|Bj |m2

j − 2mjσ‖r‖2
√
|Bj |n log n+ (

√
|Bj | − 2

√
n)2‖r‖22σ2

mj + 2 log |Bj |
√
n‖r‖2σ

≥
c
√
|Bj |

√
m2
j + ‖r‖22σ2

log |Bj |
√
n
√
m2
j + ‖r‖22σ2

(9.8)

= c
√
|Bj |/(log |Bj |

√
n) (9.9)

for some universal constant c. Notice that the above results hold for all r. This implies that

‖∇Bj
f‖2/

√
|Bj |

‖∇Bjf‖∞
≥ c

log |Bj |
√
n
, (9.10)

if we specifically take r = f ′(Axt). This further gives

‖∇f(xt)‖B,∞ ≥
c

maxj log |Bj |
√
n
‖∇f(xt)‖∞,

When maxj |Bj | ≥ d/k � n, there is huge improvement in lower bound, from 1/(maxj
√
|Bj |) to 1/(maxj log |Bj |

√
n).

This concludes the proof.



Proof of Theorem 6.10

Proof. We first show that ‖cj − µj‖ ≤ δ
√
n. We compare the difference between kth coordinates of cj and µj . Then

|cj(k)− µj(k)| =
1

|Bj |
|
∑
i∈Bj

Aik − µj(k)|

≤ 1

|Bj |
(|

∑
i∈Bj∩B∗j

(Aik − µj(k))|+ |
∑

i∈Bj∩B∗cj

(Aik − µj(k))|)

≤
C1 log |Bj |

√
|Bj ∩B∗j |

|Bj |
+
|Bj ∩B∗cj |
|Bj |

(µgap + σ log |Bj |), (9.11)

:= δj .

holds with probability at least 1− 1
|Bj | , where µgap := maxk∈[n] maxj1 6=j2 |µj1(k)− µj2(k)| and B∗cj is the complement

of B∗j . By assumption A1, it can be checked that δj ≤ 2σ when |Bj | � n. Here, (9.11) holds since that
∑
i∈Bj∩B∗cj

(Aik −

µj(k)) is a Gaussian random variable which is Op(
√
|Bj ∩B∗j |). For each i ∈ Bj ∩B∗cj , the difference between Aik and

µj(k) is at most |µji(k)− µj(k)| plus noise term, which is further bounded by µgap + σ log |Bj |.

We next compute the lower bound of
∑
i∈Bj

z2i . By use of (9.7), we get

∑
i∈Bj

z2i ≥
∑

i∈Bj∩B∗j

z2i = |Bj ∩B∗j |m2
j − 2mjσ‖r‖2

√
|Bj ∩B∗j |n log n+ (

√
|Bj ∩B∗j | − 2

√
n)2‖r‖22σ2. (9.12)

We further calculate the upper bound of maxi∈Bj
|zi|.

max
i∈Bj

|zi| = max{ max
i∈Bj∩B∗j

|zi|, max
i∈Bj∩B∗cj

|zi|}

≤ max{mj + 2 log |Bj |
√
n‖r‖2σ, max

i∈Bj∩B∗cj

|zi|}

= max{mj + 2 log |Bj |
√
n‖r‖2σ, max

i∈Bj∩B∗cj

|cTj r − µTj r + µTj r + (ai − cj)
T r|}

≤ max{mj + 2 log |Bj |
√
n‖r‖2σ,

√
nδj‖r‖+mj + max

i∈Bj∩B∗cj

|(ai − cj)
T r|}

≤ max{mj + 2 log |Bj |
√
n‖r‖2σ,

√
nδj‖r‖+mj + max

i∈B∗j
C|(ai − cj)

T r|}

≤ max{mj + 2 log |Bj |
√
n‖r‖2σ,

√
n(C + 1)δj‖r‖+mj + 2C log |B∗j |

√
n‖r‖2σ}

≤ mj +
√
n(C + 1)δj‖r‖+ 2C log |B∗j |

√
n‖r‖2σ. (9.13)

By (9.12) and (9.13), when |Bj | � n, we get√∑
i∈Bj

z2i

maxi∈Bj
|zj |

≥

√
|Bj ∩B∗j |m2

j − 2mjσ‖r‖2
√
|Bj ∩B∗j |n log n+ (

√
|Bj ∩B∗j | − 2

√
n)2‖r‖22σ2

mj +
√
n(C + 1)δj‖r‖+ 2C log |B∗j |

√
n‖r‖2σ

≥
c
√
|Bj ∩B∗j |

√
m2
j + ‖r‖22σ2

max{C log |B∗j |, C + 1}
√
n
√
m2
j + ‖r‖22σ2 + ‖r‖22δ2j

≥ c
√
|Bj |/(C(log |B∗j |+ 1)

√
n) (9.14)



by adjusting some universal constant c. Notice that the above results hold for all r. This implies that

‖∇Bj
f‖2/

√
|Bj |

‖∇Bj
f‖∞

≥ c

C(log |B∗j |+ 1)
√
n
. (9.15)

This further gives

‖∇f(xt)‖B,∞ ≥
c

C maxj(log |B∗j |+ 1)
√
n
‖∇f(xt)‖∞,

When maxj |Bj | ≥ d/k � n, there is huge improvement in lower bound, from 1/(maxj
√
|Bj |) to 1/(C(log |B∗j | +

1)
√
n).

Proof of Theorem 6.11

Our proof follows the same pattern as the proof of ASCD (Lu et al., 2018).

Lemma 9.1. Define s(t+1) := y(t) − 1
dLmax

∇f(y(t)), then

Etf(x(t)) ≤ f(y(t)) + 〈∇f(y(t)), s(t+1) − y(t)〉+
dLmax

2
‖s(t+1) − y(t)‖2.

Proof.

Etf(x(t+1)) ≤ f(y(t))− 1

2Lmax
Et(∇j1f(y(t)))2 (9.16)

≤ f(y(t))− 1

2dLmax
‖∇f(y(t))‖2 (9.17)

= f(y(t)) + 〈∇f(y(t)), s(t+1) − y(t)〉+
dLmax

2
‖s(t+1) − y(t)‖2 (9.18)

Here, (9.17) holds due to the following fact,

Et|∇j1f(y(t))|2 = Et max
j
|∇ijf(y(t))|2

≥ Et
∑
j

|Bj |
d
|∇ijf(y(t))|2

=
∑
j

|Bj |
d

Et|∇ijf(y(t))|2

=
∑
j

|Bj |
d

1

|Bj |
|∇Bjf(y(t))|2

=
1

d
|∇f(y(t))|2.

Lemma 9.2. Define t(t+1) := z(t) − 1
nθt

L−1max∇f(y(t)). Or equivalently,

t(t+1) := arg min
z
〈∇f(y(t)), z− z(t)〉+

dθtLmax

2
‖z− z(t)‖2.

Then

Etf(x(t+1)) ≤ (1− θt)f(x(t)) + θtf(x∗) +
nLmaxθ

2
t

2
‖x∗ − z(t)‖2 − nLmaxθ

2
t

2
‖x∗ − t(t+1)‖2.



Proof. By Lemma 9.1, we have

Etf(x(t)) ≤ f(y(t)) + 〈∇f(y(t)), s(t+1) − y(t)〉+
dLmax

2
‖s(t+1) − y(t)‖2

= f(y(t)) + θt
(
〈∇f(y(t)), t(t+1) − z(t)〉+

dLmaxθt
2

‖t(t+1) − z(t)‖2
)

= f(y(t)) + θt
(
〈∇f(y(t)),x∗ − z(t)〉+

dLmaxθt
2

‖x∗ − z(t)‖2 − dLmaxLθt
2

‖x∗ − (t+1)‖
)

= (1− θt)(f(y(t)) + 〈∇f(y(t)),x(t) − y(t)〉) + θt(f(y(t)) + 〈∇f(y(t)),x∗ − y(t)〉)

+
nLmaxθ

2
t

2
‖x∗ − z(t)‖2 − nLmaxθ

2
t

2
‖x∗ − t(t+1)‖2

≤ (1− θt)f(x(t)) + θtf(x∗) +
nLmaxθ

2
t

2
‖x∗ − z(t)‖2 − nLmaxθ

2
t

2
‖x∗ − t(t+1)‖2.

Lemma 9.3. dLmax

2 ‖x∗ − z(t)‖2 − dLmax

2 ‖x∗ − t(t+1)‖2 = d2Lmax

2 ‖x∗ − z(t)‖2 − d2Lmax

2 Ej2‖x∗ − z(t+1)‖2.

Proof.

dLmax

2
‖x∗ − z(t)‖2 − dLmax

2
‖x∗ − t(t+1)‖2 =

dLmax

2
〈t(t+1) − z(t), 2x∗ − 2z(t)〉 − dLmax

2
‖t(t+1) − z(t)‖2

=
d2Lmax

2
Ej2 [〈z(t+1) − z(t), 2x∗ − 2z(t)〉 − ‖z(t+1) − z(t)‖2](9.19)

=
d2Lmax

2
‖x∗ − z(t)‖2 − d2Lmax

2
Ej2‖x∗ − z(t+1)‖2. (9.20)

Here, we use the fact that t(t+1) − z(t) = dEj2 [z(t+1) − z(t)] and ‖t(t+1) − z(t)‖2 = dEj2‖z(t+1) − z(t)‖2.

Proof of Theorem 6.11. By Lemma 9.2 and Lemma 9.3, we obtain that

Etf(x(t+1)) ≤ (1− θt)f(x(t)) + θtf(x∗) +
d2θ2tLmax

2
‖x∗ − z(t)‖2 − d2θ2tLmax

2
Ej2‖x∗ − z(t+1)‖2.

By using 1−θt+1

θ2t+1
= 1

θ2t
, we arrive at:

1− θt+1

θ2t+1

(Etf(x(t+1))− f(x∗)) +
d2Lmax

2
Ej2‖x∗ − z(t+1)‖2 ≤ 1− θt

θ2t
(f(xt)− f(x∗)) +

d2Lmax

2
‖x∗ − zt‖2

We use Et to denote taking expectation over everything up to t, it follows that

Et+1

[
1− θt+1

θ2t+1

(f(x(t+1))− f(x∗)) +
d2Lmax

2
‖x∗ − z(t+1)‖2

]
≤ Et

[
1− θt
θ2t

(f(xt)− f(x∗)) +
d2Lmax

2
‖x∗ − zt‖2

]
.

By above recursive formula, we get

Et+1

[
1− θt+1

θ2t+1

(f(x(t+1))− f(x∗))

]
≤ E0

[
1− θ0
θ20

(f(x0)− f(x∗)) +
d2Lmax

2
‖x∗ − z0‖2

]
(9.21)

=
d2Lmax

2
‖x∗ − x0‖2 (9.22)

It is easy to check that θt ≤ 2
t+2 , then it gives

Et
[
f(x(t))− f(x∗)

]
≤ θ2t

1− θt
d2Lmax

2
‖x∗ − x0‖2 =

d2θ2t−1Lmax

2
‖x∗ − x0‖2 ≤ 2d2Lmax

(t+ 1)2
‖x∗ − x0‖2.



High probability error bounds

The following high probability error bounds can be obtained by using (Richtárik and Takác, 2014, Theorem 1)

Corollary 9.4. Denote x(t) as the iterate generated from Algorithm 2. For f that is µ1 and µ2 strongly convex with respect
for 1 and 2-norm. Let

η := inf
x∈Rd

max

{
µ2

Lmax

‖∇f(x)‖2B,∞
‖∇f(x)‖22

,
µ1

Lmax

‖∇f(x)‖2B,∞
‖∇f(x)‖2∞

}
,

then with probability at least 1− β, we have

E[f(x(t))]− f∗ ≤ exp(−tη)

β
(f(x0)− f∗).

Using Equation (9.4) and (Richtárik and Takác, 2014, Theorem 1), we can immediately get the following.

Corollary 9.5. Denote x(t) as the iterate generated from Algorithm 2. For convex objective f , with probability at least
1− β,

E[f(x(t))]− f∗ = O
(
LmaxD

2

η2t

(
1 + log

(
1

β

)))
,

where ρ := infx∈Rd{‖∇f(x)‖2B,∞/‖∇f(x)‖2∞} and D = supx∈Rd{‖x− x∗‖1 | f(x) ≤ f(x(0))}.

10 PROXIMAL HYBRIDCD

Proximal hybridCD is a proximal-gradient variant of hybridCD. It aims to solve the composite problem

min
x∈Rd

f(x) +

d∑
i=1

gi(xi).

The detailed algorithm is shown in Algorithm 4, where

proxg (y) := arg min
x∈Rd

1

2
‖y − x‖2 + g(y)

is the standard definition of proximal operator and the GS-s rule is the greedy selection rule extended to composite problem,
see Nutini et al. (2015) for more details.

Algorithm 4 Proximal hybrid coordinate descent

Input: x(0),B = {Bi}ki=1.
for t = 0, 1, 2, . . . do
I = ∅
for j = 1, 2, . . . , k do

[Random rule] uniform randomly choose a ij ∈ Bj and let I = I ∪ {ij}
end for
[GS-s rule] i ∈ arg maxj∈I

{
mins∈gi |∇jf(x(t)) + s|

}
x(t+1) = prox1/Ligi

(
x(t) − 1

Li
∇fi(x(t))ei

)
end for
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