
Improved Bounded Matrix Completion for Large-Scale
Recommender Systems

Huang Fang1, Zhen Zhang1, Yiqun Shao2, Cho-Jui Hsieh1

1Departments of Statistics and Computer Science
2Department of Mathematics

University of California, Davis
{hgfang, ezzhang, yqshao, chohsieh}@ucdavis.edu

Abstract
Matrix completion is a widely used technique for
personalized recommender systems. In this paper,
we focus on the idea of Bounded Matrix Com-
pletion (BMC) which imposes bounded constraints
into the standard matrix completion problem. It
has been shown that BMC works well for sev-
eral real world datasets, and an efficient coordi-
nate descent solver called BMA has been proposed
in [R. Kannan and Park., 2012]. However, we ob-
serve that BMA can sometimes converge to non-
stationary points, resulting in a relatively poor ac-
curacy in those cases. To overcome this issue,
we propose our new approach for solving BMC
under the ADMM framework. The proposed al-
gorithm is guaranteed to converge to stationary
points. Experimental results on real world datasets
show that our algorithm can reach a lower objective
function value, obtain a higher prediction accuracy
and have better scalability compared with existing
bounded matrix completion approaches. Moreover,
our method outperforms the state-of-art standard
matrix factorization in terms of prediction error in
many real datasets.

1 Introduction
Matrix factorization and matrix completion [Koren et al.,
2009a] are widely used for personalized recommender sys-
tems. Given partially observed ratings in the user-item ma-
trix, the goal is to predict missing ratings by solving one of
the following optimization problems:

min
W∈Rm×kH∈Rk×n

1

2
‖PΩ(Y −WH)‖2F +

λ

2
(‖W‖2F + ‖H‖2F )

(1.1)

min
X∈Rm×n

1

2
‖PΩ(Y −X)‖2F + λ‖X‖∗. (1.2)

where (1.2) is the convex form, and the nonconvex form (1.1)
is equivalent to the convex form if k is chosen large enough.
In the above problems, Y ∈ Rm×n is our observed rating
matrix, Ω is the observed set, usually |Ω| � mn. W ∈
Rm×k and H ∈ Rk×n are low rank matrices with rank
k � min(m,n) and PΩ(·) is the indicator function with

the indicate set Ω. ‖ · ‖∗ denote the nuclear norm which is
commonly used as a convex relaxation technique for the non-
convex rank penalty.

Despite the excellent performance on many real world
problems, traditional matrix factorization formulations do not
enforce any constraint to the prediction values. However, in
many real world problems, the ratings are bounded within a
certain region. For example, the ratings of MovieLens and
Netflix datasets are bounded in the range of [0.5, 5], but the
prediction of Eq (1.1) and (1.2) often output values out of this
range. In those cases, it is reasonable to impose bounded con-
straints to the original optimization problems, leading to the
following Bounded Matrix Completion (BMC) problem:

min
W∈Rm×kH∈Rk×n

1

2
‖PΩ(Y −WH)‖2F +

λ

2
(‖W‖2F + ‖H‖2F )

s.t. rmin ≤WH ≤ rmax (1.3)

min
X∈Rm×n

1

2
‖PΩ(Y −X)‖2F +λ‖X‖∗ s.t. rmin ≤ X ≤ rmax

(1.4)
Note that we use rmin ≤ X ≤ rmax to denote the element-
wise constraints rmin ≤ Xij ≤ rmax for all i, j through-
out the paper. This is a hard optimization problem because
there are totally mn constraints, so a naive implementation
will easily require O(mn) memory, which is prohibitive for
problems with more than 10,000 users/movies.

Recently, [R. Kannan and Park., 2012] proposed an effi-
cient block coordinate descent algorithm for solving the non-
convex form (1.3) of the BMC problem. The resulting al-
gorithm, named BMA, often outperforms traditional matrix
completion algorithms on real datasets with bounded ratings.
However, the BMA algorithm does not always converge to
stationary points. Instead, it can easily stuck in non-stationary
points, as we will discuss in Section 2. This unstable conver-
gence behavior often leads to a performance drop in practice.

In this paper, we propose a new algorithm for minimizing
the BMC objective function. Our algorithm is based on the
ADMM framework [Boyd et al., 2011] for solving the con-
vex form (1.4), so it is guaranteed to converge to the optimal
solution. Moreover, with carefully-designed update rules, our
algorithm does not encounter O(mn) space complexity, and
can scale to large datasets with 10 million ratings. Experi-
mental results on real world datasets show that our algorithm



can reach a better solution and is also much faster than ex-
isting bounded matrix completion approaches. More interest-
ingly, our algorithm often outperforms state-of-the-art matrix
factorization in terms of prediction accuracy.

The rest of the paper is outlined as follows. We present
related work and give an example to show that coordinate de-
scent does not work for bounded matrix completion in Sec-
tion 2. Our main algorithm is proposed and analyzed in Sec-
tion 3, and the experimental results on real datasets are pre-
sented in Section 4.

2 Related Work
There are many existing methods for solving (1.1) and (1.2),
[Funk, 2006] first proposed matrix factorization for rec-
ommender systems and used SGD to solve the optimiza-
tion problem. [Koren, 2008] proposed a baseline estimate
and incorporate it with matrix factorization to promote pre-
dict accuracy. See also a useful survey in [Koren et al.,
2009b]. Later, several coordinate descent and SGD al-
gorithms have been proposed to scale matrix factorization
to very large datasets [Yu et al., 2012; Yun et al., 2014;
Gemulla et al., 2011]; unfortunately, none of the above al-
gorithms can handle bounded constraints. There are several
other recent trend of matrix completion focusing on handling
side information [Rao et al., 2015; Chiang et al., 2015] and
noisy observations [Hsieh et al., 2015], and our algorithm can
also be potentially used in those cases.

Recently, [R. Kannan and Park., 2012] proposed an algo-
rithm called BMA to solve the bounded constraint matrix fac-
torization problem (1.3), and they demonstrated that BMA
can achieve lower Test RMSE compared with SGD (without
bounded constraint). BMA is built on the idea of block coor-
dinate descent. However, block coordinate descent assumes
that the feasible area of W ,H can be decomposed as Carte-
sian product, and the bounded constraints in (1.3) violates
this assumption, so BMA lacks theoretical support and may
not converge to stationary points.

Figure 1: Simulation results show that BMA cannot converge to
stationary points, while our algorithm, BMC-ADMM, converges to
a stationary point with much lower test RMSE.

Here we give an example that BMA cannot converge to sta-

tionary points. Consider the problem with Y =

(
1 0
0 1

)
,

rmin = 0 and rmax = 1, and the initial solution is W =(
1
−1

)
, H = ( 0 0 ). When we fix W , H cannot

change, and vice versa. But at this time W ,H are not op-
timal and it is also not a stationary point. If we don’t im-
pose bounded constraints, when we fix W , H will change
to (0.5, 0.5), which eventually converges to optimal solution.
So we can see that the bounded constraint makes it difficult
to use block coordinate descent.

Here we use a small synthetic example to illustrate the po-
tential convergence problem of BMA. We assume there are
1,000 rows and 1,000 columns with 49,153 ratings bounded
between 0 and 5. We set the low rank k = 1 and initial-
ize W ∈ Rm×1 with standard Gaussian distribution variables
and H ∈ R1×n with all zeros.

From the simulation result, BMA stucks at the initial solu-
tion and is not able to escape. However, our proposed method
BMC-ADMM could converge to global optimal and get com-
peting predict accuracy under the same initialization. Fur-
thermore, BMA is much slower than standard matrix factor-
ization, whose time complexity is O(k2mn) in each iteration
and the space needed isO(mn/nblk+ |Ω|), where nblk is the
number of ”blocks” used in BMA. Numerical experiments
also show that the run time will increase significantly if the
number of blocks is too large. The large time and space com-
plexity imply that BMA cannot scale to large datasets very
well.

3 Proposed Method

In this section, we describe our algorithm for the bounded
matrix completion problem. We begin with the mathemati-
cal formulation under the ADMM framework [Boyd et al.,
2011], then describe our algorithm in detail. We also discuss
the convergence property of our method and analyze the time
and space complexity of our proposed algorithm.

3.1 Mathematical Formulation and Convergence
Properties

To apply alternating direction method of multipliers
(ADMM) framework, we first split the loss, regularization,
and constraints in the original problem (1.4), leading to the
following equivalent form:

min
X,Z,W

1

2
‖PΩ(Y −X)‖2F + λ‖Z‖∗ (3.1)

s.t. X = Z, Z = W, rmin ≤W ≤ rmax.

This looks like a standard ADMM problem and can be solved
by alternately updating X, Z, W and the Lagrange multipliers
corresponding to the constraints. Unfortunately, solving (3.1)
by ADMM requires O(mn) space complexity since X is a
dense and full rank m by n matrix during the whole opti-
mization procedure until converging to the optimal solution.

To resolve this issue, we propose to further decompose
X into PΩ(X) + PΩ̂(X), where PΩ(X) is a sparse matrix
and PΩ̂(X) is stored as the product of two low rank ma-
trices. Here we make a transformation and write the origi-
nal X as Xnew + E, where Xnew := PΩ(X) is sparse and
E := PΩ̂(X). This variable transformation leads to the fol-



lowing equivalent problem:

min
X,Z,W

1

2
‖PΩ(Y −X)‖2F + λ‖Z‖∗ (3.2)

s.t. X + E = Z, PΩ̂(X) = 0, PΩ(E) = 0

Z = W, rmin ≤W ≤ rmax.

For simplicity, in (3.2) we use X to denote Xnew described
above, and Z,E,W ∈ Rm×n are auxiliary matrices. The
corresponding augmented Lagrangian is:

L(X,Z,W,U1, U2)
PΩ̂(X)=0,PΩ(E)=0,rmin≤W≤rmax

=
1

2
‖PΩ(Y −X)‖2F + λ‖Z‖∗

+〈U1, X − Z + E〉+ 〈U2, Z −W 〉

+
ρ1

2
‖X − Z + E‖2F +

ρ2

2
‖Z −W‖2F .

This is equivalent to the following scaled form:

L(X,Z,W,U ′1, U
′
2)

PΩ̂(X)=0,PΩ(E)=0,rmin≤W≤rmax

=
1

2
‖PΩ(Y −X)‖2F + λ‖Z‖∗

+
ρ1

2
‖X − Z + E + U ′1‖2F +

ρ2

2
‖Z −W + U ′2‖2F + const,

where U1, U2 are Lagrangian multipliers, U1, U2 ∈ Rm×n,
ρ1, ρ2 are penalty parameters, U ′1 = U1/ρ1, U

′
2 = U2/ρ2.

Note that the inequality constraint is not included in our aug-
mented Lagrangian equation. The motivation of this is to fa-
cilitate the calculation of auxiliary matrix W , which is dis-
cussed and named as augmented partial Lagrangian in [Du
et al., 2014].

Since the objective function (3.2) is closed, proper and con-
vex, it can be solved by finding a saddle point of the aug-
mented Lagrangian L(X,Z,W,U1, U2). Under the Gauss-
Seidel framework, ADMM finds the saddle point using the
following iterative procedure:

Xk+1 = arg min
PΩ̂(X)=0

1

2
‖PΩ(Y−X)‖2F+

ρ1

2
‖X−Zk+Ek+U ′k1 ‖2F

(3.3)

Zk+1 = arg min
Z

λ‖Z‖∗ +
ρ1

2
‖Xk+1 − Z + E + U ′k1 ‖2F

+
ρ2

2
‖Z −W k + U ′k2 ‖2F (3.4)

Ek+1 = arg min
PΩ(E)=0

ρ1

2
‖Xk+1 − Zk+1 + E + U ′k1 ‖2F (3.5)

W k+1 = arg min
rmin≤W≤rmax

‖Zk+1 −W + U ′k2 ‖2F (3.6)

U ′k+1
1 = U ′k1 +Xk+1 − Zk+1 + Ek+1

U ′k+1
2 = U ′k2 + Zk+1 −W k+1

Next we discuss how to solve each subproblem in detail.
• Eq (3.3) can be solved in closed form by the element-

wise soft-thresholding operator: Xk+1
i,j =

1

1 + ρ1
(Yi,j+

ρ1Z
k
i,j−ρ1E

k
i,j−ρ1U

′k
1i,j when (i, j) ∈ Ω andXk+1

i,j = 0

when (i, j) /∈ Ω.

• To solve (3.4), we first notice that this subproblem is
equivalent to

arg min
X

λ‖Z‖∗ +
ρ

2
‖Z −A‖2F ,

where A = ρ1

ρ1+ρ2
(Ek +Xk+1 + U ′k1 ) + ρ2

ρ1+ρ2
(W k −

U ′k2 ) and ρ = ρ1 + ρ2. Therefore, the original problem
has a closed form solution by soft-thresholding singu-
lar values: Zk+1 = Usoftλ/ρ(Λ)V T , where U,Λ, V is
the SVD decomposition of A, softλ/ρ(Λ) = diag[(λ1 −
λ/ρ)+, (λ2−λ/ρ)+, ..., (λn−λ/ρ)+]. Computing SVD
is costly, but here we only need to compute singular val-
ues that are larger than the threshold λ/ρ, which can
be solved iteratively by PROPACK [Larsen, 1998] or
power iterations [Halko et al., 2011]. In this paper, we
apply PROPACK to compute partial SVD decomposi-
tion efficiently. To use PROPACK, we have to specify
the number of singular values greater than the thresh-
old. We can either give a fixed number or dynamically
predict this number in each iteration, which is presented
in [Mazumder et al., 2010; Hsieh and Olsen, 2014]. In
this paper, we use fixed rank k to compute partial SVD
decomposition for simplicity.

• For eq (3.5), the subproblem has a simple closed form
solution by setting Ek+1

i,j = 0 when (i, j) ∈ Ω, and
Ek+1
i,j = Zk+1

i,j − X
k+1
i,j − U ′k1i,j for (i, j) /∈ Ω. Since

PΩ̂(Xk+1) = 0 and PΩ̂(U ′k1 ) = 0, so E = PΩ̂(Zk+1)

• For eq (3.6), W k+1 = ΠC(Z
k+1 + U ′k2 ), where ΠC is

the projection into [rmin, rmax].

The resulting algorithm is summarized in Algorithm 1.

3.2 Complexity and Implementation Details
Time complexity
The most time consuming steps are (3.4) and (3.6). For (3.4),
PROPACK uses iterative method to get truncated k SVD de-
composition. For (3.6), the complexity isO(kmn) for check-
ing all the elements inW k+1 and project back to the bounded
constraints. Numerical experiments (refer to section 4.4)
show that (3.6) is the slowest step and dominates the run time.

Space complexity
Here we use the same trick as [Lin et al., 2011] used to save
memory usage, where Y,X,U1 are sparse matrices(O(|Ω|)
complexity), Z is stored as the product of two low rank
matrices(O(k(m + n)) complexity), Z = A1A

T
2 , A1 ∈

Rm×k, A2 ∈ Rn×k. Since E = PΩ̂(Z) and PΩ(E) = 0,
we can express E by A1 and A2. U2 is also represented as a
sparse matrix where its number of non-zero elements equals
to the number of elements of W that are on the boundary.
For W , W = ΠC(Z + U ′2), we need to store both A1, A2

and record the elements that are out of bound in order to rep-
resent W . Numerical experiments show that the number of
elements out of bound is far less than |Ω|, for example, on
movielens10m training set, |Ω| = 8 million, but mostly
only 96, 073 elements are out of bound(nnz(U ′2)) during the
computation.



Algorithm 1 BMC-ADMM for Bounded Matrix Completion

Input Y, λ, k, rmin, rmaxρ1 > 0, ρ2 > 0,maxIter
Initialize X,W,Z with baseline initialization
Initialize U1, U2 with zeros matrices ∈ Rm×n
for i = 1,2,...,maxIter do

# Solve Eq (3.3)

PΩ(Xi+1) =
1

1 + ρ1
PΩ(Y + ρ1(Zi − Ei − U i1))

PΩ̂(Xi+1) = 0
# Solve Eq (3.4)
ρ = ρ1 + ρ2

A =
ρ1

ρ1 + ρ2
(Ei +Xi+1 + U i1) +

ρ2

ρ1 + ρ2
(W i − U i2)

(U, S, V ) = Partial svd(A, k)
D = diag(diag(S(1 : k, 1 : k)− λ/ρ)+)
Zi+1 = UDV T

# Solve Eq (3.5)
PΩ̂(Ei+1) = PΩ̂(Xi+1 − Zi+1 + U i1)
PΩ(Ei+1) = 0
# Solve Eq (3.6)
W i+1 = Zi+1 + U i2
W i+1(W i+1 > rmax) = rmax
W i+1(W i+1 < rmin) = rmin
# Update Scaled Lagrangian multipliers
U i+1

1 = U i1 +Xi+1 − Zi+1 + Ei+1

U i+1
2 = U i2 + Zi+1 −W i+1

if stopping criterion is met then
break

end
end
Ouput rating matrix W

In summary, the total space complexity is O((m + n)k +
|Ω|) which is the same as standard matrix factorization meth-
ods.

Initialization
Initialization for BMC is non-trivial since W0H0 need to sat-
isfy the bounded constraints. Here we discuss two initializa-
tion techniques.

The first one is random initialization: we generate two low
rank matrices with random Gaussian variables W0 and H0,
and then multiply them with a scalar α and adjust their first
column and first row such that min (W0H0) = rmin and
max (W0H0) = rmax. The detailed procedure is in Algo-
rithm 2.

In Algorithm 2, the construction of AdjustTerm and α is
based on the following equations:{

AdjustTerm + αvmin = rmin
AdjustTerm + αvmax = rmax.

In this way, our initialized W0H0 is bounded in
[rmin, rmax]. This is an improved version of the random ini-
tialization proposed in [R. Kannan and Park., 2012] since the
random initialization implemented in [R. Kannan and Park.,
2012] can only generate non-negative W0 and H0 and guar-
antee that the initialized W0H0 ∈ [0, rmax].

Algorithm 2 Random initialization
Input Y, k, rmin, rmax
m,n = size(Y )
Initialized 2 random matrices W0 ∈ Rm×k and H0 ∈ Rk×n
vmin = min(W0(:, 2 : end) ∗H0(2 : end, :))
vmax = max(W0(:, 2 : end) ∗H0(2 : end, :))

α =
rmax − rmin
vmax − vmin

AdjustTerm =
rminvmax − rmaxvmin

vmax − vmin
W0 =

√
αW0, H0 =

√
αH0

W0(:, 1) = AdjustTerm, H0(1, :) = 1
Ouput initialized matrices W0 and H0

Another initialization approach is called “baseline esti-
mate”. [Koren, 2008] presents that baseline estimate is a
reasonable initialization for recommender systems, where the
missing rating µi,j = µ+gi+hj , where µ is the global mean
of ratings and gi and hj are corresponding bias terms for user
i and movie j.

Note that these two initializations are also used by BMA,
and we will use random initialization to compare the perfor-
mance of BMA, CCD++ and our method in the following
sections.

4 Experiments
In this section, we compare ADMM with existing matrix fac-
torization methods on real datasets, in terms of efficiency,
quality of the solution, and prediction accuracy. We in-
clude the following algorithms/implementations in our com-
parisons:

• BMC-ADMM: Our proposed method for solving the
bounded matrix completion problem (Algorithm 1).

• BMA [R. Kannan and Park., 2012]: The coordinate de-
scent algorithm for solving the BMC problem proposed
in [R. Kannan and Park., 2012].

• CCD++ [Yu et al., 2012]: The coordinate descent solver
for the traditional matrix completion problem (1.1).

We use five real world datasets to test the performance of the
above matrix completion algorithms, and the detailed data
statistics are listed in Table 1. We randomly split 80% as
training data and 20% as testing data. For each algorithm and
dataset, we choose the best regularization parameters from
λ ∈ {0, 0.01, 0.1, 1, 10, 100} based on validation set. All the
following experiments are conducted on an Intel i5-4590 3.30
GHz CPU with 16GB RAM.

dataset m n |Ω| range
movielens100k 671 9,066 100,004 [0.5, 5]
movielens10m 71,567 10,677 10,000,054 [0.5, 5]
Flixster subset 14,761 4,903 81,495 [0.5, 5]
Flixster 147,612 48,794 8,196,077 [0.5, 5]
Jester 50,692 150 1,728,847 [-10, 10]

Table 1: Dataset Statistics



(a) movielens100k λ = 0.1 (b) movielens100k λ = 10 (c) flixster(subset) λ = 0.1 (d) flixster(subset) λ = 10

Figure 2: Convergence behaviour for different values of λ on movielens100k & Flixster(subset)

(a) movielens100k, k = 10 (b) movielens100k, k = 30 (c) flixster(subset), k = 10 (d) flixster(subset), k = 30

Figure 3: Test RMSE for different values of k (rank) on movielens100k & Flixster(subset)

(a) Jester (b) Movielens10m (c) Flixster

Figure 4: Test RMSE of BMC-ADMM for larger datasets

Note that BMA is slow and requires large memory when
data is large unless we let nblk to be very large to save mem-
ory, but this will make the BMA even slower. Therefore, we
use small datasets or a subset of large datasets to compare
BMC-ADMM, BMA and CCD++, and use full large dataset
to compare BMC-ADMM and CCD++.

4.1 Comparison of Bounded Matrix Completion
(BMC) Algorithms

In the first set of experiments, we compare BMC-ADMM
with the state-of-the-art bounded matrix completion al-
gorithm, BMA [R. Kannan and Park., 2012]. Al-
though BMA solves the non-convex form (1.3) while we
solve the convex form (1.4), it is well known that these

two objective functions are equivalent since ‖X‖∗ =
minU∈Rm×k,V ∈Rn×k:X=UV T

1
2 (‖U‖2F + ‖V ‖2F ) for suffi-

ciently large k. Therefore, we first compare the objective
function of BMC-ADMM with BMA in Figure 2.

We set ρ1 = ρ2 = 1 and try λ = 0.1 and 10, and com-
pare the performance on all the datasets. In Figure 2, we
observe that our algorithm BMC-ADMM can achieve lower
objective function value than BMA, and the main reason is
that BMA can stuck at non-stationary points, while our algo-
rithm always converges to stationary points. In Figure 2, we
also compare BMC-ADMM and BMA under different regu-
larization parameter λ. Results show that BMC-ADMM can
always find a solution with better objective function value.



dataset k Global Mean BMC-ADMM BMA Standard MF (CCD++)
movielens100k 5 1.0617 1.0073 1.2545 1.104
movielens100k 10 1.0617 0.9689 0.9858 1.096
movielens100k 30 1.0617 0.9177 0.9970 1.087
movielens10m 5 1.06 0.8399 0.8887 0.8205
movielens10m 10 1.06 0.8122 0.87819 0.8110
movielens10m 30 1.06 0.8080 0.88488 0.8098
Flixster subset 5 1.0555 1.0458 0.9700 1.2177
Flixster subset 10 1.0555 1.0014 0.9664 1.2205
Flixster subset 30 1.0555 0.9287 0.9592 1.2168
Flixster 5 1.0921 0.9198 - - 0.9247
Flixster 10 1.0921 0.8854 - - 0.9187
Flixster 30 1.0921 0.8838 - - 0.9165
Jester 5 5.2747 4.2452 4.4587 4.3268
Jester 10 5.2747 4.6222 4.5772 4.4069
Jester 30 5.2747 4.9631 4.501 4.4262

Table 2: Test RMSE Comparison

To compare the prediction performance of these two meth-
ods, we list the test RMSE for all the 5 datasets in Table 2
using their own best parameter chosen by validation sets.
The results indicate that BMC-ADMM can achieve a bet-
ter test RMSE than BMA in most of the datasets except
Flixster subset. Unfortunately, due to the large time com-
plexity and huge memory requirement, BMA is not able to
scale to the full Flixster dataset. In conclusion, we observe
that BMC-ADMM is faster, more accurate, and more scal-
able than BMA.

4.2 Comparison with Standard Matrix
Completion

Next we compare our algorithm, BMC-ADMM, with matrix
completion algorithm without bounded constraints on large
datasets. We choose the coordinate descent solver for matrix
completion developed in [Yu et al., 2012] to compare with,
and list the results on all the datasets in Table 2. To have a fair
comparison, we tried different settings of rank k = 5, 10, 30
for all the algorithms, and select the best regularization pa-
rameter for each of them using the random validation set. The
results in Table 2 indicates that BMC-ADMM outperforms
other methods in most cases, and this means adding bounded
constraints is really useful in practice if we want to achieve
better prediction accuracy.

4.3 Scalability

To test the scalability of our BMC-ADMM, we run our algo-
rithm on larger datasets, i.e. movielens10m, flixster
and Jester. Result is presented in Figure 4. A larger rank
k usually leads to a better test RMSE but slower convergence
(see Figure 4 b,c), but sometimes it also leads to over-fitting,
especially when the dataset has few users or movies (see Fig-
ure 4 a).

Experiments show that our algorithm is slower than stan-
dard matrix factorization method (without bounded con-
straint), but faster than BMA.

4.4 Time Spent on Each Part of BMC-ADMM
Table 3 present the detailed run time information of each step
for our implementation. The update of W dominates our run
time since its complexity is O(kmn). Note that for Eq. (3.5),
E = PΩ̂(Z), so we don’t need explicit computation for E
once we get the update of Z. Therefore, there is no runtime
for Eq. (3.5) in Table 3. The result presented here verified our
computational complexity analysis, showing that computing
the projection in (3.6) is the bottleneck of our algorithm.

dataset k Eq. (3.3) Eq. (3.4) Eq. (3.6)
movielens10m 5 0.67 1.47 11.47
movielens10m 10 1.04 2.01 14.6
Flixster 5 0.69 1.52 109.42
Flixster 10 1.20 2.18 151.84

Table 3: Average runtime(sec) of each step in each iteration

5 Discussions and Conclusions
In this paper, we consider the bounded matrix factorization
problem. We point out the convergence problem of the ex-
isting algorithm for Bounded Matrix Factorization BMA and
propose a novel algorithm based on the ADMM framework.
Experimental results showed that our approach has better
convergence properties than BMA and can achieve lower
Test RMSE values in most cases. In terms of run time and
space complexity, our algorithm also outperforms BMA but
takes more time than standard matrix factorization (without
bounded constraint). To further speedup our algorithm, we
can use parallel computing to solve subproblem (3.6) since
it is the bottleneck of our algorithm. Since this step is a sim-
ple element-wise projection, we expect a linear speedup by
parallelizing it.



References
[Boyd et al., 2011] S. Boyd, N. Parikh, E. Chu, B. Peleato,

and J. Eckstein. Distributed optimization and statistical
learning via the alternating direction method of multipli-
ers. Found. Trends Mach. Learn., pages 1–122, January
2011.

[Cabral et al., 2013] Ricardo Cabral, Fernando De la Torre,
Joo P. Costeira, and Alexandre Bernardino. Unifying nu-
clear norm and bilinear factorization approaches for low-
rank matrix decomposition. In Computer Vision (ICCV),
2013 IEEE International Conference on, December 2013.

[Candes and Recht., 2009] E. J. Candes and B. Recht. Exact
matrix completion via convex optimization. Foundations
of Computational mathematics, 9(6):717–772, 2009.

[Chiang et al., 2015] Kai-Yang Chiang, Cho-Jui Hsieh, and
Inderjit S Dhillon. Matrix completion with noisy side in-
formation. In Advances in Neural Information Processing
Systems, pages 3447–3455, 2015.

[Du et al., 2014] Simon S. Du, Y. Liu, B. Chen, and L. Li.
Maxios: Large scale nonnegative matrix factorization for
collaborative filtering. In In Conference on Neural In-
formation Processing Systems (NIPS) 2014, workshop on
Distributed Machine Learning and Matrix Computations.,
2014.

[Funk, 2006] Simon Funk. Stochastic gradient descent,
http://sifter.org/∼ simon/journal/20061211.html, 2006.

[Gemulla et al., 2011] Rainer Gemulla, Erik Nijkamp, Pe-
ter J Haas, and Yannis Sismanis. Large-scale matrix fac-
torization with distributed stochastic gradient descent. In
Proceedings of the 17th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages
69–77. ACM, 2011.

[Halko et al., 2011] Nathan Halko, Per-Gunnar Martinsson,
and Joel A Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate ma-
trix decompositions. SIAM review, 53(2):217–288, 2011.

[Hsieh and Olsen, 2014] Cho-Jui Hsieh and Peder A Olsen.
Nuclear norm minimization via active subspace selection.
In ICML, 2014.

[Hsieh et al., 2015] Cho-Jui Hsieh, Nagarajan Natarajan,
and Inderjit Dhillon. Pu learning for matrix completion.
In International Conference on Machine Learning, pages
2445–2453, 2015.

[Koren et al., 2009a] Y. Koren, R. Bell, and C. Volinsky. Ma-
trix factorization techniques for recommender systems.
IEEE Computer, pages 42–49, 2009.

[Koren et al., 2009b] Yehuda Koren, Robert Bell, and Chris
Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 2009.

[Koren, 2008] Yehuda Koren. Factorization meets the neigh-
borhood: a multifaceted collaborative filtering model. In
In Proc. of the 14th ACM SIGKDD conference, pages 426–
434, 2008.

[Larsen, 1998] Rasmus Munk Larsen. Lanczos bidiagonal-
ization with partial reorthogonalization, 1998.

[Lin et al., 2011] Z. Lin, M. Chen, L. q. Wu, and Y. Ma. Lin-
earized alternating direction method with adaptive penalty
for low rank representation. In Neural Information Pro-
cessing Systems (NIPS), 2011.

[Mazumder et al., 2010] Rahul Mazumder, Trevor Hastie,
and Robert Tibshirani. Spectral regularization algorithms
for learning large incomplete matrices. Journal of machine
learning research, 11(Aug):2287–2322, 2010.

[R. Kannan and Park., 2012] M. Ishteva R. Kannan and
H. Park. Bounded matrix low rank approximation. In
ICDM 2012 IEEE 12th International Conference on, pages
10–13, December 2012.

[Rao et al., 2015] Nikhil Rao, Hsiang-Fu Yu, Pradeep
Ravikumar, and Inderjit S. Dhillon. Collaborative filtering
with graph information: Consistency and scalable meth-
ods. In Neural Information Processing Systems (NIPS),
December 2015.

[Yu et al., 2012] Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, and In-
derjit S. Dhillon. Scalable coordinate descent approaches
to parallel matrix factorization for recommender systems.
In IEEE International Conference of Data Mining, 2012.

[Yun et al., 2014] Hyokun Yun, Hsiang-Fu Yu, Cho-Jui
Hsieh, SVN Vishwanathan, and Inderjit Dhillon. No-
mad: Non-locking, stochastic multi-machine algorithm for
asynchronous and decentralized matrix completion. Pro-
ceedings of the VLDB Endowment, 7(11):975–986, 2014.


