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Abstract
Safe-screening rules are algorithmic techniques meant to detect and safely discard unneeded variables during the solution
process with the aim of accelerating computation. These techniques have been shown to be effective for one-norm
regularized problems. This paper generalizes the safe-screening rule proposed by Ndiaye et al. [J. Mach. Learn. Res.,
2017] to various optimization problem formulations with atomic-norm regularization. For nuclear-norm regularized
problems in particular, it is shown that the proposed generalized safe-screening rule cannot safely reduce the problem size.
In that case, approximation guarantees are developed that allows for reducing the problem size.
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1 Introduction

Atomic-sparse optimization problems are characterized by solutions that exhibit a notion of parsimony manifested
as sparsity of the solution with respect to a known dictionary or atomic set. Formally, for a given atomic set
A ⊆ Rn, an optimal solution x∗ can be decomposed as

x∗ =
∑
a∈A

caa, ca ≥ 0, (1)

where most of the coefficients ca are zero. The archetypal example is a sparse vector, which is sparse with
respect to the set of signed canonical unit vectors A = {±e1, . . . ,±en }. One-norm regularization is the standard
approach to produce sparse solutions with respect to this atomic set. The atoms that participate nontrivially
in the decomposition (1) represent latent structure in the solution. The notion of atomic sparsity is prevalent
in machine learning [3, 21, 29, 35] and signal processing [7], and has been formalized in the context of inverse
problems by Chandrasekaran et al. [8].

Safe-screening rules, originally proposed by El Ghaoui et al. [14], generally refer to approaches that correctly
identify atoms that can be safely discarded without changing the optimal solution. These rules are increasingly
used in optimization algorithms because of their empirical success for one-norm regularized problems. Generalized
screening rules can accommodate a range of atomic sets. Ndiaye et al. [22] propose a screening rule based
on monitoring the duality gap that provides an elegant and effective screening framework useful for one- and
group-norm regularized problems.

We derive generalized gap-based safe-screening rules that apply to general atomic-norm regularization in
various problem formulations. We also present a careful investigation of the gap-based safe-screening rule for the
set of rank-one matrices. We show that this safe-screening rule still requires a full singular-value decomposition
(SVD)—instead of partial SVD decomposition—even when the problem has a very low-rank solution. This
result reveals the limitation of safe-screening rules that depends on the duality gap. As a remedy, we provide
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2 Safe-screening rules for atomic-norm regularization

approximation guarantees of the gap-based screening rule based on a partial SVD. With minor modification, all
of our results can be transferred to the atomic set of symmetric rank-one matrices.

2 Related work

The sequential safe-screening rule proposed by El Ghaoui et al. [14] for one-norm regularization provides a
theoretical basis with which to identify variables that are zero at a solution. Subsequent proposals have aimed
at new screening rules that work for specific regularization functions, which are typically polyhedral, such as
one-norm and box-constrained regularization [4–6,19,20,23,25,32–34,36]. Among these, screening rules that
depend on the duality gap have been shown to be effective for one- and group-norm regularized problems
such as LASSO and group LASSO [23]. Zhou et al. [37] proposed the only safe-screening rule that applies to
nuclear-norm regularized problems. That rule, however, requires strong assumptions on the iterate that may
not hold even if the iterate is feasible and arbitrarily close to the optimal solution. More recently, Sun and
Bach [28] extended the safe-screening rule to general atomic sets and studied the atom-identification property of
the generalized conditional-gradient method. Their work, however, does not offer a safe screening rule that could
save computation when applied to the nuclear-norm regularized problems.

Other screening rules in the literature, which are not necessarily safe, include those based on statistical
notions [9, 10,38] and heuristics [16,30]. These approaches are tangential to our purpose and we do not discuss
them further. Some of the techniques used in our analysis are related to the facial reduction strategy from
Krislock and Wolcowicz [18].

3 Preliminaries

We introduce in this section the basic tools of convex analysis and atomic sparsity that serve as the cornerstone
of our analysis. We make the blanket assumption that the atomic set A ⊆ Rn is compact, and that the origin is
contained in its convex hull. (We do not assume that A is convex.) The gauge function to the set A measure the
magnitude of a function relative to that set.

I Definition 1 (Gauge function). The gauge function with respect to A is defined as

γA(x) = inf
{∑
a∈A

ca

∣∣∣∣∣ x =
∑
a∈A

caa, ca ≥ 0 ∀a ∈ A
}
. (2)

The gauge function is always convex, nonnegative, and positively homogeneous. However, it’s not necessarily
a norm because it may not be symmetric (unless A is centrosymmetric), may vanish at points other than the
origin, and is not necessarily finite valued (unless A contains the origin in its interior). Definition 1 makes explicit
the role of a gauge function as a convex penalty for atomic sparsity. The support of a vector x is the collection
of atoms a ∈ A that contribute positively in the decomposition described by (2).

I Definition 2 (Atomic support). The atomic support for a point x ∈ Rn with respect to the set A is defined to
be the set SA(x) that satisfies

γA(x) =
∑

a∈SA(x)

ca, x =
∑

a∈SA(x)

caa, and ca > 0 ∀a ∈ SA(x).

The atomic set of signed 1-hot unit vectors A = {±ei | i = 1, 2, . . . , n}, for example, the support SA(x) coincides
with the nonzero elements of x with the corresponding sign. The support function, defined below, is dual to the
gauge function, and provides a key tool for identifying atoms associated with the support of a vector.

I Definition 3 (Exposed faces and ε-exposed faces). The exposed face and ε-exposed face, respectively, of a set
A ⊆ Rn in the direction z ∈ Rn are defined by the sets

FA(z) = { a ∈ A | 〈a, z〉 = σA(z) } , FA(z, ε) = { a ∈ A | 〈a, z〉 ≥ σA(z)− ε } ,

where σA(z) := supa∈A〈a, z〉 is the support function with respect to A.

When ε = 0, the ε-exposed face coincides with the exposed face. We list in Table 1 commonly used atomic sets,
their corresponding gauge and support functions, and atomic supports.
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Atomic sparsity A γA(x) SA(x) σA(z)
non-negative cone({ e1, . . . , en }) δ≥0 cone({ ei | xi > 0 }) δ≤0
element-wise {±e1, . . . ,±en } ‖ · ‖1 { sign(xi)ei | xi 6= 0 } ‖ · ‖∞
low rank {uvT | ‖u‖2 = ‖v‖2 = 1 } nuclear-norm singular vectors of x spectral norm
PSD & low rank {uuT | ‖u‖2 = 1 } tr +δ�0 eigenvectors of x max {λmax, 0 }

Table 1 Commonly used sets atom sets and the corresponding gauge and support functions [12]. The indicator
function δC(x) is zero if x is in the set C and +∞ otherwise. The commonly used group-norm is also an atomic norm;
see [11, Example 4.7].

4 Problem setting

Our safe-screening rules apply to these three related atomic-regularized optimization formulations:

minimize
x

p1(x) := f(b−Mx) + λγA(x), (P1)

minimize
x

p2(x) := f(b−Mx) subject to γA(x) ≤ τ, (P2)

minimize
x

p3(x) := γA(x) subject to f(b−Mx) ≤ α, (P3)

where f is an L-smooth and convex function, M : Rn → Rm is a linear operator, and b ∈ Rm is a known
vector. It’s well known that under mild conditions, these three formulations are equivalent to each other for
appropriate choice of the positive parameters λ, τ , and α [13]. Practitioners often prefer one of these formulations
depending on their application. For example, tasks related to machine learning, including feature selection
and recommender system, typically feature one of the first two formulations [21, 29, 35]. On the other hand,
applications in signal processing and related fields, such as as compressed sensing and phase retrieval, usually
use the third formulation [7,31]. Previous work on safe screening rules usually focus on formulation (P1). The
safe screening rules we propose apply equally to all three formulations.

The Fenchel-Rockafellar duals for problems (P1)–(P3) play an important role in our screening rules:

minimize
y

d1(y) := f∗(y)− 〈b, y〉 s.t. σA(M∗y) ≤ λ, (D1)

minimize
y

d2(y) := f∗(y)− 〈b, y〉+ τσA(M∗y), (D2)

minimize
y

inf
β>0

d3(y, β) := β (f∗ (y/β) + α)− 〈b, y〉 s.t. σA(M∗y) ≤ 1, (D3)

where f∗(y) = supw 〈y, w〉 − f(w) is the convex conjugate function of f , and M∗ : Rm → Rn is the adjoint
operator of M , which satisfies 〈Mx, y〉 = 〈x,M∗y〉 for all x ∈ Rn and y ∈ Rm. For each problem i ∈ { 1, 2, 3 },
denote the duality gap function by pi + di, where pi and di, respectively, denote the primal and dual objectives
evaluated at feasible primal and dual variables. For the remainder of the paper, we assume strong duality
holds for all three pairs of problems—that is, there exist pairs (x∗, y∗) and (x∗, y∗, β∗), in the case of the third
formulation—that achieve the optimal primal and dual values. Denote the optimal primal and dual solutions for
problems i ∈ { 1, 2, 3 } by x∗i and y∗i , respectively. (Problem (P3) also includes the optimal scalar variable β∗).

5 The gap-based safe-screening rule

The task of developing safe screening rules that apply with full generality to any atomic set A ⊆ Rn—even those
that are uncountably infinite—requires tools that accommodate general notions of “activity”, in the same way,
for example, that simplex multipliers tell us which primal variables of a linear program are positive or zero. Our
screening rules use information about the faces of the atomic sets that are exposed through the dual problem,
and shows which atoms support an optimal solution. The following result, due to Fan et al. [11, Proposition 4.5
and Theorem 5.1], makes this precise.

Theorem 4 (Support identification). Let x∗ and y∗ be optimal primal-dual solutions for problems (Pi) and
(Di), with i = 1, 2, 3. Then

SA(x∗) ⊆ FA(M∗y∗).
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Our main theorem generalizes this result to show similar atomic support identification properties that also apply
to approximate primal and dual solutions. In particular, given a feasible dual variable y close to y∗, the support
of x∗ is contained in an ε-exposed face that includes FA(M∗y∗). Our results tie the parameter ε to the duality
gap. Define the atomic operator norm by ‖M‖A := maxa∈A ‖Ma‖2.

Theorem 5 (Generalized gap-based safe-screening rules). Let xi and yi be feasible primal and dual vectors,
respectively for problems (Pi) and (Di), with i = 1, 2, 3. Then

SA(x∗i ) ⊆ FA(M∗yi, εi), (3)

where each εi is defined for problem i as follows:
a) ε1 = ‖M‖A

√
2L (p1(x1) + d1(y1)),

b) ε2 = 2‖M‖A
√

2L (p2(x2) + d2(y2)),
c) ε3 = 2‖M‖A

√
2β̄L(p3(x3) + max { d3(y3, β), d3(y3, β̄) }),

where β and β̄ are positive lower and upper bounds, respectively, for β∗.

Theorem 5(a) recovers the gap safe-screening rule developed by Ndiaye et al. [23], which applies only to (P1)
with γA being the one-norm. Note that Theorem 5(a) and Theorem 5(b) also overlap with recent work by Sun
and Bach [28, Theorem 2] and we do not claim much novelty for them. But to the best of our knowledge,
Theorem 5(c) is a novel result. We also note that the atomic operator norm ‖M‖A may be difficult to compute,
and we show in Appendix E how to compute this term for the LASSO, matrix completion, and phase-retrieval
problems.

The generalization of the safe-screening rule to (P3) is more involved than for the first two problems (P1)
and (P2) because the dual objective contains the perspective map of f∗(·) + α [1]. The proofs for parts (a)
and (b) of Theorem 5 depend on the strong convexity of f∗, implied by the Lipschitz smoothness of f . This
convenient property, however, does not hold for the perspective map applied to f∗. We resolve this problem by
imposing the additional assumption that we have bounds available on the dual optimal variable β∗. Appendix C
describes how to obtain these bounds during the course of the level-set method developed by Aravkin et al. [2].

All three screening rules stated in Theorem 5 are based on having available primal and dual variables. Let x̂
denote an arbitrary feasible primal variable. We can then construct a corresponding feasible dual variable ŷ via
some scaling of ∇f(b−Mx̂), which ensures dual feasibility. By this construction, if x̂ converges to a solution of
the primal problem, then ŷ also converges to a solution of the dual problem. Our next proposition shows the
effectiveness of Theorem 5.

I Proposition 6 (Atomic identification). For each problem i = 1, 2, 3, let {x(t)
i }∞t=1 and {y(t)

i }∞t=1 be sequences
that converge to optimal primal and dual solutions (x∗i , y∗i ) respectively. For (D3), let {β(t)}∞t=1 and {β̄(t)}∞t=1 be
positive sequences that satisfy β∗ ∈ (β(t), β̄(t)) for all t and β̄(t) − β(t) → 0. Let {ε(t)i }∞t=1 be the gaps defined in
Theorem 5, evaluated at x(t)

i and y(t)
i (and β(t), β̄(t)). Then the intersection A(t)

i := ∩tj=1FA(M∗y(j)
i , ε

(j)
i ) has

the Painleveé-Kuratowski set limit [27, p. 111]

lim
t→∞

A(t)
i = FA(M∗y∗i ).

Proposition 6 ensures that the screening rule (3) is guaranteed to eventually discard superfluous atoms as long as
we have available an iterative solver that can generate primal iterates that converge to a solution. For polyhedral
atomic set, e.g., an atomic set with finite elements, it’s straightforward to verify that Proposition 6 implies the
following finite-time atom identification property: for i = 1, 2, 3,

∃ T > 0 such that A(t)
i = FA(M∗y∗i ) ∀t > T.

The implementation of the gap-based safe-screening rule for polyhedral atomic sets is also straightforward.
One can store all atoms in memory during computation, and the gap-based safe-screening rule offers a computable
way to discard redundant atoms periodically during the optimization. When FA(M∗y, ε) is small enough, let
Â := FA(M∗y, ε) := {âi}ri=1, we can solve efficiently the reduced low-dimensional problem

minimize
x∈Rr,x≥0

f

(
b−M

r∑
i=1

âixi

)
subject to

r∑
i=1

xi ≤ τ
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instead of the original high-dimensional problem using an algorithm such as accelerated projected-gradient
descent.

A remarkable aspect of the gap-based safe-screening rule is that it depends solely on the duality gap, and
hence is algorithm agnostic. As long as we have an algorithm that guarantees duality gap converges to 0, the
gap-based safe-screening rule will recover FA(M∗y∗) within a finite number of iterations (for finite atomic sets).
The gap-based safe-screening rule has been successfully applied to algorithms such as conditional gradient descent
and projected coordinate descent to achieve promising performance.

6 Gap-based safe screening rule for nuclear norm

A key question in this work is whether the generalized safe screening rule can give any computational advantage
for atomic sets A with infinite number of atoms. In particular we consider the atomic set to be the set of rank-one
matrices, i.e.,

A = {uvT | u ∈ Rn, v ∈ Rm, ‖u‖2 = ‖v‖2 = 1 } .

In the following proposition, we show that the ε-exposed face of M∗y contains all the singular vectors when ε is
strictly positive.

I Proposition 7 (Limitation of ε-Face). Let M∗y = UΣV T be the full SVD of M∗y, where

Σ = diag(σ1, σ2, . . . , σmin{n,m}), σi ≥ 0 ∀ 0 < i ≤ min{n,m}.

For any ε ≥ 0, the ε-face can be explicitly expressed as

FA(M∗y, ε) =

 (Up)(V q)T
∣∣∣∣∣∣

min{n,m}∑
i=1

σipiqi ≥ σ1 − ε, ‖p‖2 = ‖q‖2 = 1

 .

Then for any ε > 0, there exist p, q with all entries being nonzero, such that (Up)(V q)T ∈ FA(M∗y, ε).

Proposition 7 indicates that the ε-exposed face FA(M∗y, ε) contains not only the top singular vectors of
M∗y but also the bottom singular vectors—even if ε is arbitrarily close to 0. This result is unfortunate since the
gap-based safe-screening rules stated in Theorem 5 do not allow us to discard any singular vectors of M∗y and
thus require a full SVD of M∗y even if the duality gap is arbitrarily close to 0.

6.1 Approximation with partial SVD
The face of A exposed by the vector M∗y∗ is given by

FA(M∗y∗) =
{
uvT | uT (M∗y∗)v = σ1(M∗y∗)

}
,

where σ1(M∗y∗) is the largest singular value of M∗y∗. Therefore, when there are few singular vectors associated
with the largest singular value, only the top few singular vectors of M∗y∗ are actual useful atoms. This property
motivates us to use the partial SVD of M∗y to extract the reduced atomic set. This hard-thresholding technique
has been widely used as a heuristic. Formally, given a dual feasible solution y with partial singular value
decomposition

M∗y = UrΣrV Tr Ur ∈ Rn×r, Vr ∈ Rm×r, r � min{n,m},

we construct the corresponding reduced atomic set

Â = {UrpqTV Tr | ‖p‖2 = ‖q‖2 = 1 } ,

and solve the reduced problem over Â.
First, we give a concrete example showing that the partial SVD of M∗y is not able to give us a safe cover of

FA(M∗y∗) even when FA(M∗y∗) is a singleton and y arbitrarily close to y∗.
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I Example 8 (Limitation of Partial SVD). Consider the problem

minimize
X∈Rn×n

1
2‖X − Z‖

2
F subject to ‖X‖∗ ≤ 1, (4)

where

Z = U diag(2, 0.1, . . . , 0.1)V T and U = V =


√

1− ε 0 . . . −
√
ε

0 1 . . .
...

. . .√
ε 0

√
1− ε


n×n

for some ε ∈ (0, 1). The dual problem is

minimize
Y ∈Rn×n

1
2‖Y − Z‖

2
F − 1

2‖Z‖
2
F + ‖Y ‖2. (5)

The solutions for the dual pair (4) and (5) are

X∗ = U diag(1, 0, . . . , 0)V T and Y ∗ = Z −X∗ = U diag(1, 0.1, . . . , 0.1)V T .

Let u1 and v1, respectively, be the first columns of U and V . Then obviously SA(X∗) = FA(Y ∗) = {u1v
T
1 } is a

singleton. We construct the following dual feasible solution

Ŷ = diag(1, 0.1, . . . , 0.1).

Let Û and V̂ be the singular vectors of Ŷ , then Û = V̂ = [e1, e2, . . . , en], where ei is the n-dimensional vector with
1 at the ith entry and 0 at other entries. In order to cover the leading singular vector u1 = [

√
1− ε, 0, . . . ,

√
ε]T ,

we need both the top singular and bottom singular vectors e1 and en, and therefore any top-r SVD of Ŷ with
r < n will end up to be “unsafe”. It’s also easy to verify that ‖Ŷ −Y ∗‖F = O(

√
ε). Note that our argument holds

for any ε ∈ (0, 1). Therefore, ∀ε ∈ (0, 1) there exists y ∈ B(y∗, ε) such that only full SVD of M∗y can guarantee a
safe coverage of FA(M∗y∗). J

This result shows that the screening rule with partial SVD is not safe. Therefore, we can only resort to an
approximate screening rule. We use the one-sided Hausdorff distance

ρ(A1,A2) := sup
a1∈A1

inf
a2∈A2

‖a1 − a2‖F

to measure the similarity between any two subsets A1 and A2 of the atomic set A. The next result shows that
there is a set Â that is close to SA(x∗), then there must exist a point in Â that is close to x∗.

I Proposition 9 (Hausdorff error bound). Given Â ⊆ A, there exists x ∈ cone(Â) such that

‖x− x∗‖F ≤ ρ(SA(x∗), Â) ·
√
| SA(x∗)| · ‖x∗‖F .

Next, we study the approximation ability of the partial SVD of a given feasible dual solution M∗y to
FA(M∗y∗). The next result applies to each one of the dual pairs (Pi) and (Di), i = 1, 2, 3.

I Proposition 10 (Error in partial SVD). Let y be a dual feasible vector. Let M∗y = UrΣrV
T
r , Ur ∈ Rn×r,

and Vr ∈ Rm×r be the truncated SVD where r < min{n,m}. Let {σi}min{n,m}
i=1 be the singular values and

Â = {UrpqTV Tr | ‖p‖2 = ‖q‖2 = 1 } be the reduced atomic set. Assume σ1 > σr+1. Then

ρ(FA(M∗y∗), Â) ≤ ρ(FA(M∗y, ε), Â) =

√
2 min

{
ε

σ1 − σr+1
, 1
}
,

where ε = εi for i = 1, 2, 3 as defined in Theorem 5 depending on the problem formulation.

Oustry [24, Theorem 2.11] developed a related result based on the two-sided Hausdorff distance. Directly
applying Oustry’s result to our context results in a bound that is O(

√
ε/(σr − σr+1)), which is looser than the

bound shown in Proposition 10 because σ1 ≥ σr ≥ σr+1.
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7 Conclusion

Our extension of gap-based safe-screening rules to the various forms of atomic-norm regularization is based on
the convex calculus of sublinear functions. Our proposed screening rules can provide practical computational
advantages when the atomic sets are polyhedral. As demonstrated by Example 8, however, there are limitations
of the rule when used for non-polyhedral atomic sets. In that case, Proposition 10 provides an error bound based
on the truncated SVD.

Further research opportunities remain, particularly for designing meaningful safe-screening rules for non-
polyhedral sets. For example, it seems possible to design safe-screening rules for nuclear-norm regularized
problems that are particular to the search directions generated by the conditional-gradient method.
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Appendix

A Derivation of duals

We derive the dual problems (D1), (D2) and (D3) using the Fenchel–Rockafellar duality framework. We use the
following result.

Theorem 11 ( [26, Corollary 31.2.1]). Let f1 : Rn → R and f2 : Rm → R be two closed proper convex functions
and let M be a linear operator from Rn to Rm, then

inf
x∈Rn

f1(x) + f2(Mx) = inf
y∈Rm

f∗1 (M∗y) + f∗2 (−y).

If there exist x in the interior of dom f1 such that Mx in the interior of dom f2, then strong duality holds,
namely both infima are attained.

We also need a result that describes the relationship between gauge, support, and indicator functions.

I Proposition 12 ( [11, Proposition 3.2]). Let C ⊂ Rn be a closed convex set that contains the origin. Then

γC = σC◦ = δ∗C◦ .

For problem (P1), let

f1 := λγA and f2 := f(b− ·)

By the properties of conjugate functions and Proposition 12, we obtain

f∗1 = δ( 1
λA)◦ = δ{x|σA(x)≤λ} and f∗2 = 〈b, ·〉+ f∗(−·).

Then by Theorem 11, we can get the dual problem for (P1) as

minimize
y∈Rm

f∗(y)− 〈b, y〉 subject to σA(M∗y) ≤ λ.

For (P2),

f1 = δγA≤τ = δτA and f2 = f(b− ·).

By the properties of conjugate functions and Proposition 12, we obtain

f∗1 = στA = τσA and f∗2 = 〈b, ·〉+ f∗(−·).

Then by Theorem 11, it follows that the dual problem for (P2) is

minimize
y∈Rm

f∗(y)− 〈b, y〉+ τσA(M∗y).

For (P3),

f1 = γA and f2 = δ{x|f(b−x)≤α}.

By the properties of conjugate functions and Proposition 12, we can get that

f∗1 = δ{x|σA(x)≤1} and f∗2 = σ{f(b−x)≤α}.

Then by [15, Example E.2.5.3], we know that the support function of the sublevel set is

f∗2 = σ{x|f(b−x)≤α} = min
β>0

β

(
f∗
(
− ·
β

)
+ α

)
+ 〈b, ·〉.

Finally, by Theorem 11, we can get the dual problem for (P3) as

minimize
y∈Rm, β>0

β

(
f∗
(
y

β

)
+ α

)
− 〈b, y〉 subject to σA(M∗y) ≤ 1.
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B Proof of Theorem 5

The proof of this Theorem relies on the duality between smoothness and strong convexity.

I Lemma 13 ( [17, Theorem 6]). If f is L-smooth, then f∗ is 1
L -strongly convex.

Proof of Theorem 5. a) Let y∗ denote the optimal dual variable for D1. First, we show that ‖y − y∗‖ can be
bounded by the duality gap. Let g(y) = f∗(y)− 〈b, y〉. By Lemma 13, f∗ is 1

L -strongly convex, and it follows
that g is also 1

L -strongly convex. By the definition of strong convexity,

∀s ∈ ∂g(y∗), g(y) ≥ g(y∗) + 〈s, y − y∗〉+ 1
2L‖y − y

∗‖2.

Optimality requires that

∃s ∈ ∂g(y∗), 〈s, y − y∗〉 ≥ 0 ∀y s.t. σA(M∗y) ≤ λ.

Therefore, by reordering the inequality,

‖y − y∗‖ ≤
√

2L(g(y)− g(y∗)) ≤
√

2L (p1(x) + d1(y)) ∀x ∈ Rn, (6)

where the last inequality follows from the fact that the duality gap is always an upper bound for g(y)− g(y∗).
Next, we show that FA(M∗y∗) ⊆ FA(M∗y, ε1). For any a ∈ FA(M∗y∗),

〈a,M∗y〉 = σA(M∗y∗) + 〈Ma, y − y∗〉

≥ σA(M∗y∗)−
(

max
a∈A
‖Ma‖

)
‖y − y∗‖

≥ σA(M∗y∗)−
(

max
a∈A
‖Ma‖

)√
2L (p1(x) + d1(y))

≥ σA(M∗y)− ε1,

where the last inequality follows from the fact that σA(M∗y∗) = λ.
b) Let y∗ denote the optimal dual variable for D2. First, we show that ‖y − y∗‖ can be bounded by the duality

gap. Let g(y) = f∗(y)− 〈b, y〉+ τσA(M∗y). By Lemma 13, f∗ is 1
L -strongly convex, and it follows that g is

also 1
L -strongly convex. By the definition of strongly convex,

∀s ∈ ∂g(y∗), g(y) ≥ g(y∗) + 〈s, y − y∗〉+ 1
2L‖y − y

∗‖2.

By optimality, 0 ∈ ∂g(y∗). Reorder the inequality to deduce that

‖y − y∗‖2 ≤
√

2L(g(y)− g(y∗))

≤
√

2L (p2(x) + d2(y)) ∀x ∈ τA. (7)

Next, we show that FA(M∗y∗) ⊆ FA(M∗y, ε2). For any a ∈ FA(M∗y∗),

〈a,M∗y〉 ≥ σA(M∗y∗)−
(

max
a∈A
‖Ma‖

)
‖y − y∗‖

= σA(M∗y)− (σA(M∗y)− σA(M∗y∗))−
(

max
a∈A
‖Ma‖

)
‖y − y∗‖

≥ σA(M∗y)− 2
(

max
a∈A
‖Ma‖

)
‖y − y∗‖

≥ σA(M∗y)− ε2.

c) Let (y∗, β∗) denote the optimal dual variables for D3. First, we show that ‖y − y∗‖ can be bounded by the
duality gap. Let

g(y) = β∗f∗
(
y

β∗

)
+ β∗α− 〈b, y〉.
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By Lemma 13, f∗ is 1
L -strongly convex, and it’s not hard to check that g is 1

β∗L -strongly convex. By the
definition of strongly convex,

∀s ∈ ∂g(y∗), g(y) ≥ g(y∗) + 〈s, y − y∗〉+ 1
2β∗L‖y − y

∗‖2.

By optimality,

∃s ∈ ∂g(y∗), 〈s, y − y∗〉 ≥ 0 ∀y s.t. σA(M∗y) ≤ 1.

Reorder the inequality to deduce that

‖y − y∗‖2 ≤
√

2β∗L(g(y)− g(y∗))

≤
√

2β∗L (p3(x) + d3(y, β∗)) ∀x ∈ Rn s.t. f(b−Mx) ≤ α

≤
√

2βL (p3(x) + d3(y, β∗)) ∀x ∈ Rn s.t. f(b−Mx) ≤ α. (8)

Since β∗ is unknown to us, we will then get an upper bound for d3(y, β∗). Fix y, let h(β) = d3(y, β). By the
property of perspective function, we know that h is convex. Then it follows that

d3(y, β∗) ≤ max { d3(y, β), d3(y, β) } .

Therefore,

‖y − y∗‖2 ≤
√

2βL
(
p3(x) + max { d3(y, β), d3(y, β) }

)
∀x ∈ Rn s.t. f(b−Mx) ≤ α.

Finally, we show that FA(M∗y∗) ⊆ FA(M∗y, ε3). For any a ∈ FA(M∗y∗),

〈a,M∗y〉 ≥ σA(M∗y∗)−
(

max
a∈A
‖Ma‖

)
‖y − y∗‖

= σA(M∗y)− (σA(M∗y)− σA(M∗y∗))−
(

max
a∈A
‖Ma‖

)
‖y − y∗‖

≥ σA(M∗y)− 2
(

max
a∈A
‖Ma‖

)
‖y − y∗‖

≥ σA(M∗y)− ε3.

J

C Upper and lower bound for β∗

First, we consider (D3). Let w = y/β, then (D3) can be equivalently expressed as

minimize
w

inf
β>0

β(f∗(w)− 〈b, w〉+ α) subject to σA(M∗w) ≤ β.

Fix β = β∗, then (D3) can be expressed as

minimize
w

f∗(w)− 〈b, w〉 subject to σA(M∗w) ≤ β∗. (9)

Now compare (9) with (D1) to conclude that they are equivalent when λ = β∗. It thus follows that (P3) is
equivalent to

minimize
x

f(b−Mx) + β∗γA(x). (10)

Next, consider using the level-set method [2] with bisection to solve (P3). There exists τ∗ > 0 such that (P3)
is equivalent to

minimize
x

f(b−Mx) subject to γA(x) ≤ τ∗. (11)
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With the level-set method, we are able to get (x1, τ1) and (x2, τ2) such that τ1 ≤ τ∗ ≤ τ2 and xi is the optimum
for

minimize
x

f(b−Mx) subject to γA(x) ≤ τi, (12)

for i = 1, 2. Then there exits β1 and β2 such that β1 ≥ β∗ ≥ β2 and xi is optimal for

minimize
x

f(b−Mx) + βiγA(x), (13)

for i = 1, 2.
Finally, by [11, Theorem 5.1] we can conclude that

βi = σA(M∗∇f(b−Mx)) for i = 1, 2.

Therefore, we can get upper and lower bounds for β∗ via level-set method with bisection. Moreover, by strong
duality and convergence of the bisection method, the gap between β1 and β2 will converge to zero.

D Proof of Proposition 6

Proof. From the construction of sets A(t), it’s straightforward to see that

A(1) ⊇ A(2) ⊇ . . . ,

which shows that {A(t) }∞t=1 is a monotone sequence. By [27, Exercise 4.3], the Painleveé-Kuratowski set limit

A(∞) = lim
t→∞

A(t)

is well-defined.
First, we show that FA(M∗y∗) ⊆ A(∞). By Theorem 5, we know that FA(M∗y∗) ⊆ A(t) for all t. Therefore,

it follows that FA(M∗y∗) ⊆ A(∞).
Next, we show that A(∞) ⊆ FA(M∗y∗). Consider a ∈ A(∞). Since {A(t) }∞t=1 is a monotone sequence, there

exist T > 0 such that

a ∈ A(t), ∀t ≥ T.

By the construction of A(t), we know that A(t) ⊆ FA(M∗y(t), ε(t)) for all t, and thus we can conclude that

〈a,M∗y(t)〉 ≥ σA(M∗y(t))− ε(t), ∀t ≥ T.

Now by taking limits with respect to t to both sides of the inequality, we can conclude that

〈a,M∗y∗〉 ≥ σA(M∗y∗),

which implies that a ∈ FA(M∗y∗). J

E Computing ‖M‖A

In general, by the inequality ‖Ma‖ ≤ ‖M‖‖a‖, we can bound the term supa∈A ‖Ma‖ by ‖M‖ supa∈A ‖a‖. Which
is computable as long as we can compute ‖M‖ and supa∈A ‖a‖. For specific problem, it’s possible to compute a
tighter bound. We show how to compute the term ‖M‖A for LASSO, matrix completion and phase retrieval.

E.1 LASSO
In this case, A = {±e1, . . . ,±en }. Let M ∈ Rm×n, then

‖M‖A = max
i∈[n]
‖Mei‖ = max

i∈[n]
‖mi‖,

where mi denotes the i-th column of the matrix M . Thus ‖M‖A = 1 when the matrix M is column-wise
normalized.
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E.2 Matrix completion
In this case,

f(MX − Y ) = 1
2‖ΠΩ(X − Y )‖2F = 1

2‖ΠΩ(X)− Y ‖2F ,

where X ∈ Rm×n, the second equality is true since Y is a sparse matrix with nonzero entries on Ω. Then
f(·) = 1/2‖ · ‖2F andMX = ΠΩX.

‖M‖A = sup
‖u‖=‖v‖=1

‖ΠΩ(uvᵀ)‖F ≤ sup
‖u‖=‖v‖=1

‖uvᵀ‖F
(i)=

√√√√min{m,n}∑
i=1

σ2
i (uvᵀ) (ii)= 1,

where σi(X) denotes the i-th singular values of the matrix X. (i) is from the definition of Frobenius norm. (ii) is
true since σ1(uvᵀ) = 1, and σi(uvᵀ) = 0 ∀i ≥ 2.

E.3 Phase retrieval
In this case,

MX =
[
〈Mi, X〉

]
i=1:m ,

where m is the number of measurements and let X ∈ Rn×n. Then

‖M‖A = sup
‖u‖=1

∥∥∥[〈Mi,uuᵀ〉
]
i=1:m

∥∥∥
= sup
‖u‖=1

∥∥∥[vec(Mi)ᵀ
]
i=1:m vec(uuᵀ)

∥∥∥
≤
∥∥∥[vec(Mi)ᵀ

]
i=1:m

∥∥∥ sup
‖u‖=1

‖uuᵀ‖F

≤
∥∥∥[vec(Mi)ᵀ

]
i=1:m

∥∥∥ .
F Proof of Proposition 7

Proof. By the definition of FA(M∗y, ε),

FA(M∗y, ε) = {uvT | 〈uvT ,M∗y〉 ≥ σ1 − ε, ‖u‖2 = ‖v‖2 = 1 }

= {uvT | 〈uvT , UΣV T 〉 ≥ σ1 − ε, ‖u‖2 = ‖v‖2 = 1 } .

We know that U, V are orthonormal matrices, by setting u = Up and v = V p for some p, q ∈ Rmin{n,m}, ‖p‖2 =
‖q‖2 = 1, we obtain

FA(M∗y, ε) = {Up(V q)T | 〈Up(V q)T , UΣV T 〉 ≥ σ1 − ε, ‖p‖2 = ‖q‖2 = 1 }

= {Up(V q)T | pTΣq ≥ σ1 − ε, ‖p‖2 = ‖q‖2 = 1 }

=

 Up(V q)T
∣∣∣∣∣∣

min{n,m}∑
i=1

σipiqi ≥ σ1 − ε, ‖p‖2 = ‖q‖2 = 1

 .

The above finished the proof. J

G Proof of Proposition 9

Proof. Let x∗ =
∑
a∈SA(x∗) caa, ca > 0. By the definition of the one-sided Hausdorff distance ρ, for any

a ∈ SA(x∗), there exist a corresponding â ∈ Â such that

‖â− a‖F ≤ ρ(SA(x∗), Â).
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Let x̂ =
∑
a∈SA(x∗) caâ, then it’s straighforward to verify that x̂ ∈ cone(Â) and

‖x− x∗‖F ≤ ρ(SA(x∗), Â)
∑

a∈SA(x∗)

ca
(i)
≤ ρ(SA(x∗), Â)

√
| SA(x∗)|‖x∗‖F ,

where (i) follows from the orthonormal decomposition x∗ =
∑
a∈SA(x∗) caa, ca > 0 and ‖x∗‖2F =

∑
c2a when our

atomic set is the set of rank-one matrices. J

H Proof for Proposition 10

Proof. By the definition of ρ(·, ·), it follows that

ρ(A,C) ≤ ρ(B,C) ∀A,B,C ⊆ Rn×m such that A ⊆ B.

We know that FA(M∗y∗) ⊆ FA(M∗y, ε), then obviously we have

ρ(FA(M∗y∗), Â) ≤ ρ(FA(M∗y, ε), Â).

For any A1,A2 ⊆ A,

ρ(A1,A2) =
√

sup
a1∈A1

inf
a2∈A2

‖a1 − a2‖2F =

√
2− 2

(
inf
a1∈A1

sup
a2∈A2

〈a1, a2〉
)
, (14)

where the second equality holds since ‖a1‖F = ‖a2‖F = 1 by the definition of A. Define A1 = FA(M∗y, ε)
and A2 = Â =

{
Urpq

TV Tr
∣∣ ‖p‖2 = ‖q‖2 = 1

}
, where Ur, Vr are the top-r singular vectors of M∗y. Let

k := min{n,m}, C1 = {(p, q) |
∑k
i=1 σipiqi ≥ σ1 − ε, ‖p‖2 = ‖q‖2 = 1, p, q ∈ Rk} and C2 = {(p̂, q̂) | ‖p̂‖2 =

‖q̂‖2 = 1, p̂, q̂ ∈ Rk}, then

ρ(A1,A2) =

√
2− 2

(
min
p,q∈C1

max
p̂,q̂∈C2

〈UpqTV T , Urp̂q̂TV Tr 〉
)

=

√√√√2− 2
(

min
p,q∈C1

max
p̂,q̂∈C2

(
r∑
i=1

pip̂i

)(
r∑
i=1

qiq̂i

))

=

√
2− 2

(
min
p,q∈C1

‖p1:r‖2‖q1:r‖2
)
. (15)

Now we consider the subproblem in (15):

min
p,q
‖p1:r‖2‖q1:r‖2 (P1)

subject to
k∑
i=1

σipiqi ≥ σ1 − ε, ‖p‖2 = ‖q‖2 = 1, p, q ∈ Rk.

If p∗ and q∗ is a solution of the problem (P1), then it’s easy to verify that

p̃ =
[
‖p∗1:r‖2, 0, . . . , ‖p∗r+1:k‖2, 0, . . . , 0

]
and q̃ =

[
‖q∗1:r‖2, 0, . . . , ‖q∗r+1:k‖2, 0, . . . , 0

]
is also a valid solution. Therefore there must exist solution p∗, q∗ such that pi = qi = 0 ∀i /∈ {1, r + 1}, that is
only p∗1, q∗1 and p∗r+1 and q∗r+1 are greater or equal than 0. This allow us to further reduce the problem to

min
p1,q1,pr+1,qr+1

p1q1

subject to σ1p1q1 + σr+1pr+1qr+1 ≥ σ1 − ε,
p2

1 + p2
r+1 = q2

1 + q2
r+1 = 1, p1, q1, pr+1, qr+1 ≥ 0.

It’s easy to verify that when σ1 − σr+1 ≥ ε, the above problem attains solution at

p1 = q1 =
√
σ1 − σr+1 − ε
σ1 − σr+1

and pr+1 = qr+1 =
√

1− p2
1.

When σ1 − σr+1 < ε, the solution is simply p1 = q1 = 0, pr+1 = qr+1 = 1. Therefore the optimal value of (P1) is
max{1− ε/(σ1 − σr+1), 0}. Subsitute this into eq. (15) to obtain the required result. J
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