
Greed Meets Sparsity: Understanding and Improving Greedy
Coordinate Descent for Sparse Optimization

Huang Fang Zhenan Fan Yifan Sun Michael P. Friedlander
University of

British Columbia
University of

British Columbia
INRIA-Paris University of

British Columbia

Abstract

We consider greedy coordinate descent (GCD)
for composite problems with sparsity induc-
ing regularizers, including 1-norm regulariza-
tion and non-negative constraints. Empirical
evidence strongly suggests that GCD, when
initialized with the zero vector, has an im-
plicit screening ability that usually selects at
each iteration coordinates that at are nonzero
at the solution. Thus, for problems with
sparse solutions, GCD can converge signif-
icantly faster than randomized coordinate de-
scent. We present an improved convergence
analysis of GCD for sparse optimization, and
a formal analysis of its screening properties.
We also propose and analyze an improved se-
lection rule with stronger ability to produce
sparse iterates. Numerical experiments on
both synthetic and real-world data support
our analysis and the effectiveness of the pro-
posed selection rule.

1 Introduction

Coordinate descent (CD) optimization algorithms op-
erate on a single variable at each iteration, improving
the objective value along a single coordinate while
holding all other variables fixed. Both theoretical and
empirical evidence point to the efficiency of this ap-
proach for large-scale optimization problems (Nesterov,
2012; Shalev-Shwartz and Zhang, 2013; Zhang and Lin,
2015; Wright, 2015; Allen-Zhu et al., 2016). Greedy
coordinate descent (GCD) select at each iteration the
coordinate that maximizes the marginal progress. It
has been observed in practice that GCD, using the
Gauss-Southwell coordinate selection rule (the GS rule),
together with an all-zero initialization, may converge to

Proceedings of the 23rdInternational Conference on Artificial
Intelligence and Statistics (AISTATS) 2020, Palermo, Italy.
PMLR: Volume 108. Copyright 2020 by the author(s).

a sparse solution significantly faster than CD methods
that use a randomized selection rule (RCD), especially
for high-dimensional problems. In particular, GCD
applied to problems of the form LASSO (Hastie et al.,
2008; Li and Osher, 2009; Nutini et al., 2015) and
kernel support vector machines (SVMs) (Platt, 1999;
Joachims, 1999; Chang and Lin, 2011) can sometimes
get close to an optimal solution before executing even
a single pass of all coordinates. This suggests that
GCD exhibits an inherent screening ability for sparse
optimization, preferring to update coordinates at which
the final solution is nonzero.

We present a formal analysis to understand why GCD
works well for problems with sparse solutions and an
all-zero initialization. In addition, we propose and
analyze an improved selection rule for GCD, and show
its connection with existing algorithms. Experiments
on both real world and synthetic data illustrate our
analysis and the effectiveness of the approach.

2 Related Work

2.1 Coordinate descent (CD)

Coordinate descent methods for optimization have a
long history, dating to 1940 (Southwell, 1940; Powell,
1973; Luo and Tseng, 1993; Bertsekas, 1999). Wright
(2015) gives a comprehensive survey. Their key attrac-
tion is the low computational complexity of updating a
single variable at each iteration, via either a complete
minimization or a gradient update along the selected co-
ordinate. These methods are prized for their efficiency
on many machine learning problems, including LASSO
(Hastie et al., 2008), SVMs (Platt, 1999), non-negative
matrix factorization (Cichocki and Phan, 2009), and
graph-based label propagation (Bengio et al., 2006).
Nesterov’s 2012 seminal work established the first non-
asymptotic convergence rate for RCD, widely used in
practice. Subsequent studies offered refined analyses
on CD and its variants and explained why these meth-
ods are effective for many machine learning problems
(Richtárik and Takác, 2014; Allen-Zhu et al., 2016;
Nesterov and Stich, 2017).

Greed Meets Sparsity: Understanding and Improving Greedy Coordinate Descent for Sparse
Optimization

2.2 Greedy coordinate descent (GCD)
A greedy-coordinate selection rule can greatly acceler-
ate a CD method in practice. There are many such
update rules, including the maximum-improvement
rule, which picks a coordinate that allows maximal de-
crease; the GS rule, which picks the coordinate with the
largest gradient magnitude, and a randomized-selection
rule. The analyses offered by Nutini et al. (2015) and
Karimireddy et al. (2019) explain why the GS rule is
often faster than the randomized-selection rule, and
describe a convergence rate, based on strong convex-
ity with respect to the 1-norm, that is independent
of problem dimension. Our approach builds primarily
upon these last two references.

Implementation One obstacle for efficiently imple-
menting the GS rule is its requirement for computing
the maximal (in modulous) element of the full gradi-
ent. This operation generally requires a full gradient
computation, which may be prohibitive for large prob-
lems. The GS rule is therefore most relevant for cases
where the maximal-element may be found at a cost less
than the cost of a full gradient computation. Nutini
et al. (2015) describe a range of problem structures
that allow for efficient maximal-element computation.
Dhillon et al. (2011) and Karimireddy et al. (2019)
describe a maximum inner-product search algorithm
that approximates the GS rule. Other notable im-
provements to a standard CD implementation include
parallel or distributed kernels suitable for multi-core or
multi-machine environments (Liu et al., 2015; Richtárik
and Takác, 2016). This line of work is tangential to
our purpose and we do not discuss these further.

2.3 Sparsity pattern identification
A related line of work seeks to analyze the iteration
complexity of identifying the sparsity pattern of an
optimal solution (Dunn, 1987; Burke and Moré, 1988;
Wright, 1993; Nutini et al., 2017b,a; Liang et al., 2017;
Sun et al., 2019). The analysis approach used in this
context is closely related to the screening properties
studied in the present paper, and forms the basis for
our approach.

3 Problem statement
We consider the optimization problem

min
x∈Rd

F (x) := f(x) + g(x), (1)

where d is the number of variables, f is a smooth and
convex function, and g(x) :=

∑d
i=1 gi(xi) is a func-

tion that is separable and convex, but not necessarily
smooth. We also make the following assumptions:

• f(x+ αei) is Li-smooth in terms of α ∀i ∈ [d]:

|∇if(x+ dei)−∇if(x)| ≤ Li|d|,

Algorithm 1 A generic template for GCD

Input: functions f and gi ∀i ∈ [d].
W0 = ∅
x0 = 0
for t = 0, 1, 2, . . . do
Coordinate selection: select i according to rule
Gradient step: xt+

1
2 = xt − (1/Li)∇fi(xt)ei

Prox step: xt+1 = prox(1/Li)gi

(
xt+

1
2

)
Optional post-processing; see (3)
Update working set: Wt+1 = Wt ∪ {i}

end for

for all x ∈ Rd, where ei is the ith unit vector.
Let L := maxi∈[d] Li. Note that L can be much
smaller than the gradient Lipschitz constant in
Rd.

• f is L∞-smooth with respect to the ∞-norm:

‖∇f(x)−∇f(y)‖∞ ≤ L∞‖x− y‖1 ∀x, y ∈ Rd.

• f is µp-strongly convex with respect to the p-norm:

f(x) ≥ f(y) + 〈∇f(y), x− y〉+
µp
2
‖x− y‖2p

for all x, y ∈ Rd, where p ∈ {1, 2}.

• g = λ‖·‖1, or g = δ≥0 is the function that vanishes
on the nonnegative orthant, and is +∞ otherwise.
(We believe that it may be possible to relax this as-
sumption and generalize our analysis to the case in
which the constituent functions gi are non-smooth
at 0 for all i ∈ [d].)

Algorithm 1 shows the generic template for the GCD
method. We consider GCD under the following rule:

Selection rule 1 (GS-s rule). Select coordinate i ∈
arg maxj∈[d]Qj(x

t), where

Qj(x) = min
s∈∂gj

|∇jf(x) + s|. (2)

Although our subsequent theoretical development is
based on the GS-s rule, it can be easily extended to
include other selection rules described by Nutini et al.
(2015); Bertsekas (1999); Tseng and Yun (2009); and
Dhillon et al. (2011).

Karimireddy et al. (2019) propose an optional post-
processing step useful to derive a convergence rate that
depends on the strong convexity modulous µ1 instead of
µ2, needed to remove the dependency on the dimension
d. Specifically, after each prox-gradient step, set

xt+1
i := 0 if xt+1

i xti < 0. (3)

We adopt this post-processing technique in the follow-
ing sections. For simplicity, assume that there is only a

Huang Fang, Zhenan Fan, Yifan Sun, Michael P. Friedlander

single element in the set arg maxj Qj(xt), which makes
Algorithm 1 deterministic. (In practice, the selection
rule might break ties with a lexicographic ordering.)

Definition 1. Define the working set Wt as the set of
indices selected up to and including iteration t. Define
also W :=

⋃∞
t=0Wt as the overall working set.

Definition 2. Define the support of a vector x as
supp(x) = { i | xi 6= 0 }.

Definition 3. (Rockafellar, 1970, §23) For a closed,
convex function g : Rd → R, the subdifferential of g
at x is defined as the set

∂g(x) := { v ∈ Rd | g(y) ≥ g(x) + vT (y − x) ∀y }

The set ∂g is always closed and convex. In particular,
for gi : R→ R convex, the set ∂gi is a closed interval
in R. Thus, for

• g(x) = λ‖x‖1, ∂gi(0) = [−λ, λ];

• g(x) = δ≥0(x), ∂gi(0) = (−∞, 0].

3.1 The merits of keeping the iterates sparse
Karimireddy et al. (2019) derive the following linear
convergence rate for GCD applied to strongly convex
objectives with 1-norm regularization or non-negative
constraints:

F (xt)− F ∗ ≤
(

1− µ1

L

)d t2 e
(F (0)− F ∗) , (4)

where F ∗ = inf F . Such rates illustrate the theoret-
ical advantage of GCD over randomized CD, which
exhibit the bound (4), except that the term µ1/L is
replaced with µ2/(dL), where µ1 ∈ [µ2/d, µ2] (Nutini
et al., 2015). The rate improvement is especially salient
when the dimension d is very large. A weakness of the
rate (4) is its suggestion that GCD applied to strongly
convex composite problems, with either 1-norm regu-
larization or non-negative constraints, has the same
rate as it does for problems without regularizers—i.e.,
minimizing only f(x) instead of the sum f(x) + g(x).
However, GCD applied to the composite problem with
sparsity inducing regularization is usually significantly
faster than its non-sparse counterpart. An improved
convergence analysis is thus needed to explain this
phenomenon.

The following theorem sketch describes how sparse
solutions translate into an improved convergence rate
for GCD. See Theorems 4 and 5 for fuller descriptions.

Theorem Sketch 2 (GCD rate with sparsity). The
t-th iterate xt generated by Algorithm 1, using the GS-s
selection rule (1), satisfies the bound

F (xt)− F ∗ ≤
(

1− µ̃

L

)d t2 e
(F (0)− F ∗) , (5)

where the constant

µ̃ ∈ [max{µ2/|W |, µ1}, µ2].

The linear convergence rate shown by this last result
reveals the dependency of the rate constant on the
sparsity of the solution: when the solution is very
sparse—i.e., |W | � d—then the rate in bound (5) is
much tighter than the rate predicted by (4), particularly
when the constant µ1 ≈ µ2/d.

Additionally, sparsity carries the benefit of allowing for
sparse data structures to reduce memory requirements
and faster matrix-vector multiplications.

4 Analysis
We now study the screening ability of GCD and de-
velop a bound on the size of the working set W . We
require the following quantity, often in sparsity pattern
identification:

δi := min {−∇if(x∗)− `i, ui +∇if(x∗)} , (6)

where ∂gi(x∗i) = [`i, ui] and x∗ = arg minF (x); see
Hare and Lewis (2007); Lewis and Wright (2011); Nu-
tini et al. (2017b); Sun et al. (2019). The constant
δi is closely related to the distance to the relative
interior of the sparse manifold, and is an important
quantity in sparse manifold identification (Lewis and
Wright, 2011). Optimality conditions for (1) imply
that δi = 0 if x∗i 6= 0, and δi ≥ 0 if x∗i = 0. Because
x∗ is unique, these quantities are problem-specific and
algorithmically invariant. The definition in (6) leads
to the following identification result.

Lemma 3 (Nutini et al. (2017b)). If for some t > 0,

|∇if(xt)−∇if(x∗)| ≤ δi,

then after one coordinate proximal gradient step,

xti = 0 ⇒ xt+1
i = 0.

This lemma suggests that if ∇if(xt) is close to ∇if(x∗)
and x∗i = 0 , then the ith entry of xt will be correctly
identified as 0.

4.1 Numerical motivation
Our analysis approach is based on the following numer-
ical observations, which we illustrate with an example
LASSO problem on random synthetic data. Define

f(x) = 1
2‖Ax− b‖

2
2 and g(x) = λ‖x‖1, (7)

where A ∈ R50×104

and b := Ax]+ε. The elements Aij ,
εi, and nonzeros in the solution x] are distributed as
standard Gaussians. We randomly select 10 elements
of x] to be nonzero and set λ = 2.

Greed Meets Sparsity: Understanding and Improving Greedy Coordinate Descent for Sparse
Optimization

(a) Number of inactive variables plot. (b) Objective progress, where ρt is defined in (9).

Figure 1: Exploratory investigations.

Figures 1a and 1b show the evolution of the number
of “inactive” variables and objective progress for Algo-
rithm 1.

In Figure 1a, we define

inactive :=

d∑
i=1

1
{
|∇if(xt)−∇if(x∗)| ≤ δi

}
. (8)

According to Lemma 3, this quantity measures how
many variables are staying “inactive”, i.e., do not move
away from 0 in the next iteration. From Figure 1a, we
find that most variables are initially incorrectly labeled
as “active”, i.e., |∇if(xt)−∇if(x∗)| > δi, but a large
number of them quickly switch to “inactive”.

In Figure 1b, we illustrate the objective progress at
each step by plotting ρt, defined to satisfy

F (xt+1)− F ∗ = (1− ρt)
(
F (xt)− F ∗

)
. (9)

These experiments illustrate the fact that initial con-
vergence of GCD, which, for sparse solutions, may be
sufficient to quickly identify the few nonzeros. From
this experiment we observe that

• GCD converges fast initially and ∇f(xt) quickly
approaches ∇f(x∗) when xt is still sparse; and

• before |supp(xt)| has grown significantly, the co-
ordinates i where x∗i = 0 have mostly become
inactive, and thus future coordinates that enter
W are constrained to supp(xt).

We now rigorously characterize these observations. Be-
fore proceeding to our results, we introduce some
needed concepts.

Definition 4. The function f is µ(τ)
p strongly convex

with respect to ‖ · ‖p and sparse vectors if ∀x, y ∈
Rd such that whenever |supp(x) ∪ supp(y)| ≤ τ ,

f(x) ≥ f(y) + 〈∇f(y), x− y〉+
µ

(τ)
p

2
‖x− y‖2p,

where p ∈ {1, 2}.

It can be easily verified that µ(τ)
1 and µ(τ)

2 satisfy the
following conditions:

µ1 = µ
(d)
1 ≤ µ(d−1)

1 ≤ · · · ≤ µ(1)
1 ,

µ2 = µ
(d)
2 ≤ µ(d−1)

2 ≤ · · · ≤ µ(1)
2 ,

µ
(τ)
2 /τ ≤ µ(τ)

1 ≤ µ(τ)
2 ∀τ ∈ [d]. (10)

Next, we present a formal analysis to answer why GCD
may converge fast initially, and give a bound on the
size of the working set W .

4.2 Fast initial convergence

Theorem 4. Let τ = |supp(x∗)| and let {xi}∞i=1 be the
iterates generated by Algorithm 1 with the GS-s rule
(selection rule 1). Then for t < d− τ ,

F (xt)− F ∗ ≤
d t2e∏
i=1

(
1− µ

(τ+i−1)
1

L

)
(F (0)− F ∗) (11)

≤
d t2e∏
i=1

(
1− µ2

(τ + i− 1)L

)
(F (0)− F ∗) .

(12)

The bound in (12) follows from (10).

In Theorem 4 we show two different bounds, which
allow us to draw comparisons to existing results, below.

Bound (12). Nesterov (2012) and Richtárik and
Takác (2014) establish that RCD exhibits the rate

E
[
F (xt)− F (x∗)

]
≤
(

1− µ2

dL

)
(F (0)− F ∗) .

Compared to (12), we see that the dimension d is re-
placed by the quantity (τ+i−1), which, if τ = supp(x∗)
is small and we are in the first few iterations, may be
much smaller than d. This reflects the fast initial con-
vergence often observed in practice; cf. Figure 1b.

Huang Fang, Zhenan Fan, Yifan Sun, Michael P. Friedlander

(a) The trend of approximate µ(τ+i)
1 , where τ = 10

in this example.
(b) The curve illustrates the upper bound of |W |
in Theorem 5.

Figure 2: Illustrations for Theorem 4 and 5

Bound (11). Nutini et al. (2015) and Karimireddy
et al. (2019) establish for the GCD method the linear
convergence rate described by (4). Compared to (11),
we see that µ1 is replaced with the quantity µ(τ+i−1)

1 ,
which is potentially much larger in the early stages (i
small), particularly if τ is small (x∗ is sparse). This is
confirmed by Figure 2a, which shows how in practice
this quantity can be much larger than µ1. In particular,
when τ and i are small, µ2/d � µ

(τ+i−1)
1 and the

convergence rate for GCD is initially significantly faster
than RCD, even in the worst case.

The rate we derived here is based on two important
ingredients: zero initialization and sparse solution. The
screening ability of GCD does not hold without either
of these properties.

To better understand the effect of the quantity µ(τ+i−1)
1

on the convergence rate, we conduct a simulation using
the LASSO problem in (7). The term µ

(τ+i−1)
1 is hard

to compute in general, and thus here we set τ = 10,
and for each i ∈ {1, 2, . . . , 30} we generate 103 random
(τ + i− 1)-sparse vectors and approximate µ(τ+i−1)

1 as
the minimum of ‖Ax‖22/‖x‖21 over the sample vectors.
The plot of approximate µ(τ+i−1)

1 against i is shown in
Figure 2a, and its pattern clearly supports our previous
argument.

4.3 Fast support identification

In this section we define bounds on the size of the
working set W . Define the error measure

pδ(α) =

d∑
i=1

1{α ≤ δi},

which we use to quantify the number of inactive ele-
ments in the iterates, as in (8).

Theorem 5 (Working set bound). Let {xi}∞i=1 be the
iterates generated by Algorithm 1 with the GS-s rule

(selection rule 1). Then

|W | ≤ min
t∈[d]

{Bt + t} , (13)

where

Bt := d− pδ
(
L∞ sup

i≥t

{
‖xi − x∗‖1

})
.

In order to better understand this bound, note that Bt
is a decreasing function of t. Thus, |W | is bounded by
the infimum of the sum of a decreasing and increasing
function. (See Figure 2b.) Theorem 5 implies that if
xt converges quickly to x∗ (i.e., with t� d), then the
bound (13) will be far less than d.

Again, consider the synthetic LASSO problem (A ∈
R50×104

, λ = 2) as a concrete example to illustrate this
bound. In this example, the curve of Bt + t is shown
in Figure 2b and the infimum of Bt + t is about 1000
in this case. This experiment demonstrates that the
bound we derived in Theorem 5 is non-trivial, especially
for problems where d is large.

We use Theorems 4 and 5 to derive an alternative bound
that depends only on the constant µ(τ+i)

1 , i ∈ [d − τ],
instead of the iterates xi.

Corollary 6. Let τ = |supp(x∗)| and let {xi}∞i=1 be
the sequence of iterates generated by Algorithm 1 with
the GS-s rule (selection rule 1). Then Bt in bound (13)
can be replaced by

Bt := d− pδ

[2L2
∞

µ1

t−1∏
i=0

(
1− µ

(τ+i)
1

L

)
R

]1/2
 ,

where R = F (0)− F ∗ is the initial objective gap.

5 Improved selection rule
Our analysis in section 4 provides a bound on the size of
the working set W , and thus provides an explanation

Greed Meets Sparsity: Understanding and Improving Greedy Coordinate Descent for Sparse
Optimization

for why GCD is fast for sparse optimization. But
GCD could be potentially slow in some situations, for
example when |W | is large. Can we improve GCD by
trying to keep |W | small? In answer, we propose a
variant of the GS-s selection rule that favours a small
final working set. The resulting algorithm, which we
call ∆-GCD, is Algorithm 1 with the following modified
selection rule.

Selection rule 7 (∆-GS-s rule). Given the fixed pa-
rameter ∆ ∈ (0, 1], select coordinate

i ∈

arg max
i∈[d]

Qi(x
t), ∆ max

i∈[d]
Qi(x

t)2 ≥ max
i∈Wt

Qi(x
t)2

arg max
i∈Wt

Qi(x
t), ∆ max

i∈[d]
Qi(x

t)2 < max
i∈Wt

Qi(x
t)2

where Wt denotes the set of indices accrued thus far
and Qi is defined by (2).

Note that when ∆ = 1, the ∆-GS-s and GS-s rules are
equivalent.

Intuitively, the ∆-GS-s rule, with small ∆, is more
likely to focus on the current working set; on the other
hand, a large ∆ encourages the algorithm to explore
new coordinates and expand the current working set.
Thus ∆ controls the trade-off between the size of work-
ing set and the progress we made when staying in
the current working set. This is similar to the explo-
ration/exploitation trade-off in the context of online
learning (Auer et al., 1995).

Theorem 8. Let {xi}∞i=1 be the iterates generated by
Algorithm 1 with the ∆-GS-s rule (selection rule 7) and
let W∆ be the final working set. Then for all t > 0,

F (xt)− F ∗ ≤

(
1− ∆µ

(|W∆|)
1

L

)d t2 e
(F (0)− F ∗) (14)

≤
(

1− ∆µ2

|W∆|L

)d t2 e
(F (0)− F ∗) . (15)

Theorem 8 makes explicit the trade-off between the
convergence rate and the size of working set. Again,
we provide two bounds for easier interpretation: (14)
as a refinement of the strong convexity parameter in
Karimireddy et al. (2019) and Nutini et al. (2015); and
(15) where the variable dimension dependency that
appears in Nesterov and Stich (2017) and Richtárik and
Takác (2014) is replaced by the size of the final working
set. The ∆-GCD variant is expected to outperform
standard GCD when the latter has a comparatively
large working set, and ∆-GCD can reduce the size of
working set with an appropriate value of ∆.

To better understand the relationship betweenW∆ and
∆, we present an description of W∆ as ∆→ 0. First,
consider the standard GCD algorithm where at each

Table 1: Properties of the experimental data. Here,
d denotes the number of features and n denotes the
number of samples.

Datasets colon leukemia make_circle ijcnn1

d 2,000 7,129 2 22
n 62 72 1,000 35,000

iteration we additionally minimize the objective over
the current working set, i.e., the next iterate is obtained
as

xt+1 := arg min
supp(x)⊆Wt+1

f(x) + g(x), (16)

where all variables not in the working set are held fixed
at 0. The algorithm terminates when the iterate xt+1

is optimal for (1). The resulting method is known as
the totally corrective greedy algorithm, which is closely
related to orthogonal matching pursuit for sparse least
squares; see Pati et al. (1993); Davis et al. (1997); and
Foucart and Rauhut (2013, §3.2). We denote the final
working set from this scheme as W].

Next, note that as ∆ → 0, the ∆-GS-s selection rule
tends to select indices from the current working set,
and thus the ∆-GS algorithm converges to a solution
of (16). However, when the ∆-GCD iterate is close to
the exact minimizer, the ∆-GS-s rule must eventually
expand the workset. As the following result shows, W∆

converges to W].

Theorem 9. Let k = |W]| and let {xt}ki=0 be the
iterates generated by the totally corrective greedy algo-
rithm. Assume that arg maxi∈[d]Qi(x

t) are singletons
for t = 0, 1, . . . , k − 1 and δi > 0 ∀x∗i = 0. Then

lim
∆→0

W∆ = W].

If the totally corrective greedy algorithm can yield a
small working set, then we expect that a sufficiently
small value of ∆ would also yield a small working
set (but could probably slow down the convergence
according to Theorem 8). Hence, our new algorithm
∆-GCD can be viewed as a flexible greedy algorithm
between the two extreme cases—standard GS-GCD
and the totally corrective greedy algorithm.

6 Experiments
In this section, we describe experiments on both real
world data and synthetic data to illustrate the impor-
tance of zero initialization and evaluate the effectiveness
of ∆-GCD.

The statistics of our experimental data are shown
in Table 1, where the datasets colon, leukemia, and
ijcnn1 were obtained from the LIBSVM website (Chang

Huang Fang, Zhenan Fan, Yifan Sun, Michael P. Friedlander

and Lin, 2011). The make_circle dataset were gen-
erated from the scikit-learn package (Pedregosa et al.,
2011). We solve the LASSO problem over the colon
and leukemia datasets, and the dual RBF kernel SVM
over the make_circle and ijcnn1 datasets. For ijcnn1,
we follow the parameter settings described by Hsieh
et al. (2014), and thus set γ = 2 and C = 32, where
γ is the free parameter in the RBF kernel and 1/C
is the hinge-loss weight parameter. All experiments
are conducted on a machine with 4 CPUs and 16GB
memory.

The code to reproduce our experimental results is
publicly available at https://github.com/fanghgit/
Greed_Meets_Sparsity.

6.1 Zero v.s. other initializations

In this section, we compare the convergence of stan-
dard GCD for solving LASSO problems over different
initializations.

• Zero initialization: x0 = 0.

• Random initialization: x0 is generated from Gaus-
sian distributions N (0, σId), for σ ∈ {1, 0.1, 0.01}.

• Least-squares initialization: x0 = (ATA +
λId)

−1AT b. This initialization starts the method
at a low objective value, but is not sparse.

In Figure 4, we can see that zero initialization clearly
outperforms other initialization strategies, and random
initialization tends to be the worst. In particular, GCD
with zero initialization can get close to a solution even
before one pass of all coordinates. On the other hand,
although GCD with least-squares initialization has a
smaller initial objective value than zero initialization,
it suffers from slow convergence and requires a full
pass of all coordinates before reaching the same low
error, which is consistent with our intuition. Random
initialization with different standard deviation also
varies in their performance and random initialization,
with smaller variance tends to converge faster; however
they are still outperformed by the zero initialization
for the same reasons as the least-squares initialization.

6.2 Evaluation of ∆-GCD

In this section, we evaluate the proposed ∆-GCD algo-
rithm on LASSO, 1-norm regularized logistic regression,
and kernel SVM problems. As shown in Figure 5, the
value of ∆ has a clear impact on the size of the working
set, where smaller values of ∆ tend to promote sparser
iterates for all the test problems. This trend is more
obvious when the underlying solution is less sparse, as
shown in Figures 5b and 5f. This is because vanilla
GCD produces a working set that is much larger than
needed. Sometimes this stronger screening ability of
a smaller ∆ can lead to slightly faster convergence

compared to standard GCD (i.e., ∆ = 1) as shown in
Figures 5a and 5b. A by-product of ∆-GCD is early
identification of the final sparsity pattern, which can be
leveraged in two-stage methods (Bertsekas, 1976; Ko
et al., 1994; Daniilidis et al., 2009; Wright, 2012). How-
ever, the acceleration functionality of ∆-GCD is not
present for all test problems, since vanilla GCD already
has a very strong screening ability for constraining the
size of the working set.

Figure 3 shows the size of the working set after 105

iterations (as an approximation for the true |W∆|) with
different choices of ∆ ∈ {2−k | k = 0, 1, . . . , 6} on a
LASSO problem with dataset colon and λ = 0.1. As
shown in the figure, the size of |W∆| is monotonically
decreasing with ∆.

Figure 3: The effect of ∆ on W∆.

7 Conclusions
By bringing techniques from sparsity pattern identifi-
cation and convergence analysis of GCD, we formally
analyze the screening ability of GCD and explicitly
answered why GCD is usually fast for sparse optimiza-
tion. We also propose an improved selection rule with
a stronger ability to encourage sparse iterates and con-
nect to existing algorithms.

For future work, we would like to generalize our analysis
and relax the strong-convex assumption on the function
f . In particular, we wish to consider problems where
x∗ may not be unique (but supp(x∗) may be). The core
of our analysis relies on understanding the convergence
of the iterates themselves, and not just the function
values. Thus, the challenge in generalizing our analysis
to more general smooth objectives requires a different
proof technique. We also wish to consider to tighten
the working set bound in Theorem 5. The bound
illustrated in Figure 2b is still about 10 times worse
than the actual size of the working set, and for small
value of λ, the actual working set become larger and
our bound can be trivially larger than d.

https://github.com/fanghgit/Greed_Meets_Sparsity
https://github.com/fanghgit/Greed_Meets_Sparsity

Greed Meets Sparsity: Understanding and Improving Greedy Coordinate Descent for Sparse
Optimization

(a) LASSO, data: leukemia, λ = 0.1. (b) LASSO, data: colon, λ = 0.1.

Figure 4: Comparison between different kinds of initialization

(a) LASSO, data: leukemia, λ = 0.1. Solid = obj.
value, dashed = # nonzeros in xt.

(b) LASSO, data: leukemia, λ = 0.01. Solid = obj.
value, dashed = # nonzeros in xt.

(c) L1-regularized logistic regression, data: colon,
λ = 0.1.

(d) L1-regularized logistic regression, data: leukemia,
λ = 0.1.

(e) kernel SVM, data: make_circle, C = 10, γ = 0.5. (f) kernel SVM, data: ijcnn1, C = 32, γ = 2

Figure 5: Compare ∆-GCD with different choices of ∆.

Huang Fang, Zhenan Fan, Yifan Sun, Michael P. Friedlander

References
Allen-Zhu, Z., Qu, Z., Richtarik, P., and Yuan, Y.
(2016). Even faster accelerated coordinate descent
using non-uniform sampling. In Proceedings of ICML,
volume 48, pages 1110–1119.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire,
R. E. (1995). Gambling in a rigged casino: The
adversarial multi-arm bandit problem. In Proceedings
of FOCS, pages 322–331.

Bengio, Y., Delalleau, O., and Le Roux, N. (2006).
Label propagation and quadratic criterion. In Semi-
Supervised Learning, pages 193–216. MIT Press.

Bertsekas, D. P. (1976). On the goldstein-levitin-polyak
gradient projection method. IEEE Transactions on
automatic control, 21(2):174–184.

Bertsekas, D. P. (1999). Nonlinear Programming, vol-
ume second edition. Athena Scientific.

Boyd, S. and Vandenberghe, L. (2004). Convex Opti-
mization. Cambridge University Press, New York,
NY, USA.

Burke, J. V. and Moré, J. J. (1988). On the iden-
tification of active constraints. SIAM Journal on
Numerical Analysis, 25(5):1197–1211.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A li-
brary for support vector machines. ACM Transac-
tions on Intelligent Systems and Technology, 2:27:1–
27:27. Software available at http://www.csie.ntu.
edu.tw/~cjlin/libsvm.

Cichocki, A. and Phan, A. H. (2009). Fast local algo-
rithms for large scale nonnegative matrix and tensor
factorizations. IEICE Transactions, 92-A(3):708–
721.

Daniilidis, A., Sagastizábal, C., and Solodov, M. (2009).
Identifying structure of nonsmooth convex functions
by the bundle technique. SIAM Journal on Opti-
mization, 20(2):820–840.

Davis, G., Mallat, S., and Avellaneda, M. (1997). Adap-
tive greedy approximations. Constructive approxi-
mation, 13(1):57–98.

Dhillon, I. S., Ravikumar, P., and Tewari, A. (2011).
Nearest neighbor based greedy coordinate descent.
In Proceedings of NIPS, pages 2160–2168.

Dunn, J. C. (1987). On the convergence of projected
gradient processes to singular critical points. Journal
of Optimization Theory and Applications, 55(2):203–
216.

Foucart, S. and Rauhut, H. (2013). A Mathematical
Introduction to Compressive Sensing. Birkhäuser
Basel.

Hare, W. L. and Lewis, A. S. (2007). Identifying active
manifolds. Algorithmic Operations Research, 2(2):75.

Hastie, T., Friedman, J. H., and Tibshirani, R. (2008).
Regularization paths and coordinate descent. In
Proceedings of ACM-SIGKDD, page 3.

Hsieh, C.-J., Si, S., and Dhillon, I. (2014). A divide-and-
conquer solver for kernel support vector machines.
In Proceedings of ICML, volume 32 of Proceedings of
Machine Learning Research, pages 566–574. PMLR.

Joachims, T. (1999). Making large-scale SVM learning
practical. In Advances in Kernel Methods - Support
Vector Learning, chapter 11, pages 169–184. MIT
Press, Cambridge, MA.

Karimireddy, S. P., Koloskova, A., Stich, S. U., and
Jaggi, M. (2019). Efficient greedy coordinate descent
for composite problems. In Proceedings of Machine
Learning Research, volume 89 of Proceedings of Ma-
chine Learning Research, pages 2887–2896. PMLR.

Ko, M., Zowe, J., et al. (1994). An iterative two-
step algorithm for linear complementarity problems.
Numerische Mathematik, 68(1):95–106.

Lewis, A. S. and Wright, S. J. (2011). Identifying
activity. SIAM Journal on Optimization, 21(2):597–
614.

Li, Y. and Osher, S. (2009). Coordinate descent op-
timization for l1 minimization with application to
compressed sensing; a greedy algorithm. Inverse
Probl. Imaging, 3:487–503.

Liang, J., Fadili, J., and Peyré, G. (2017). Activity
identification and local linear convergence of forward-
backward-type methods. SIAM Journal on Optimiza-
tion, 27(1):408–437.

Liu, J., Wright, S. J., Ré, C., Bittorf, V., and Sridhar,
S. (2015). An asynchronous parallel stochastic co-
ordinate descent algorithm. J. Mach. Learn. Res.,
16:285–322.

Luo, Z. and Tseng, P. (1993). Error bounds and con-
vergence analysis of feasible descent methods: a gen-
eral approach. Annals of Operations Research, 46-
47(1):157–178.

Nesterov, Y. (2012). Efficiency of coordinate descent
methods on huge-scale optimization problems. SIAM
Journal on Optimization, 22(2):341–362.

Nesterov, Y. and Stich, S. U. (2017). Efficiency of the
accelerated coordinate descent method on structured
optimization problems. SIAM Journal on Optimiza-
tion, 27(1):110–123.

Nutini, J., Laradji, I., and Schmidt, M. (2017a). Let’s
make block coordinate descent go fast: Faster greedy
rules, message-passing, active-set complexity, and
superlinear convergence.

Nutini, J., Schmidt, M., and Hare, W. (2017b). "active-
set complexity" of proximal gradient: How long does

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Greed Meets Sparsity: Understanding and Improving Greedy Coordinate Descent for Sparse
Optimization

it take to find the sparsity pattern? Optimization
Letter.

Nutini, J., Schmidt, M. W., Laradji, I. H., Friedlander,
M. P., and Koepke, H. A. (2015). Coordinate descent
converges faster with the gauss-southwell rule than
random selection. In Proceedings of ICML, pages
1632–1641.

Pati, Y. C., Rezaiifar, R., and Krishnaprasad, P. S.
(1993). Orthogonal matching pursuit: Recursive
function approximation with applications to wavelet
decomposition. In Proceedings of 27th Asilomar con-
ference on signals, systems and computers, pages
40–44. IEEE.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel,
V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. J. Mach. Learn. Res., 12:2825–2830.

Platt, J. C. (1999). Fast training of support vector
machines using sequential minimal optimization. In
Advances in Kernel Methods, pages 185–208. MIT
Press.

Powell, M. J. D. (1973). On search directions for mini-
mization algorithms. Math. Program., 4(1):193–201.

Richtárik, P. and Takác, M. (2014). Iteration complex-
ity of randomized block-coordinate descent methods
for minimizing a composite function. Math. Program.,
144(1-2):1–38.

Richtárik, P. and Takác, M. (2016). Parallel coordinate
descent methods for big data optimization. Math.
Program., 156(1-2):433–484.

Rockafellar, R. T. (1970). Convex Analysis. Princeton
University Press, Princeton.

Shalev-Shwartz, S. and Zhang, T. (2013). Stochastic
dual coordinate ascent methods for regularized loss
minimization. J. Mach. Learn. Res., 14(1):2013.

Southwell, R. V. (1940). Relaxation methods in engi-
neering science : a treatise on approximate compu-
tation.

Sun, Y., Jeong, H., Nutini, J., and Schmidt, M. W.
(2019). Are we there yet? manifold identification of
gradient-related proximal methods. In Proceedings
of AISTATS, pages 1110–1119.

Tseng, P. and Yun, S. (2009). A coordinate gradient de-
scent method for nonsmooth separable minimization.
Math. Program., 117(1-2):387–423.

Wright, S. J. (1993). Identifiable surfaces in constrained
optimization. SIAM Journal on Control and Opti-
mization, 31(4):1063–1079.

Wright, S. J. (2012). Accelerated block-coordinate re-
laxation for regularized optimization. SIAM Journal
on Optimization, 22(1):159–186.

Wright, S. J. (2015). Coordinate descent algorithms.
Math. Program., 151(1):3–34.

Zhang, Y. and Lin, X. (2015). Stochastic primal-dual
coordinate method for regularized empirical risk min-
imization. In Proceedings of ICML.

Huang Fang, Zhenan Fan, Yifan Sun, Michael P. Friedlander

Supplement

A Preliminaries

We introduce some notations and Lemmas that appear in Nutini et al. (2015) and Karimireddy et al. (2019).

We say a gradient step is good if the post-processing step in (3) is not triggered i.e., xt+1
i xti ≥ 0, otherwise we

call this step a bad step. We denote the set of good steps until the t-th iteration as Gt, since a bad step always
follows a good step, it is easy to verify that

|Gt| ≤
⌈
t

2

⌉
. (17)

Recall the selection rule in section 3:

Selection rule 10 (GS-s rule). Select i ∈ arg maxj Qj(x
t) where

Qi(x) = min
s∈∂gi

|∇if(x) + s|. (18)

Lemma 11 (Karimireddy et al. (2019)). Assume f(·) is µ1 strongly convex with respect to 1-norm, then the
iterates generated from Algorithm 1 with GS-s rule (selection rule 2) satisfy

F (xt)− F (x∗) ≤
(

1− µ1

L

)d t2 e
(F (0)− F (x∗)) .

The above lemma is from Karimireddy et al. (2019).

Lemma 12 (Karimireddy et al. (2019)). Consider g(·) to be `1 regularization or non-negative constraint. Then
if the t-th iteration is a good step, we have

F (xt+1) ≤ F (xt)− 1

2L
max
i∈[d]

Qi(x
t)2, (19)

where Qi(·) is defined in the GS-s rule (selection rule 2).

B Proof of Theorem Sketch 2

Let W = {w1, w2, ..., wk} s.t. w1 < w2 < ... < wk ∈ N, we define new functions h(·) : Rk → R, h(y) =

f(
∑k
i=1 yiewi) and H(y) := h(y) +

∑k
i=1 gwi(yi).

First, we show that h(y + αei) is also L-smooth ∀i ∈ [k].

For any i ∈ [k], y ∈ Rk,

h(y + αei) = f(

k∑
j=1

yjewj + αewi)

≤ f(

k∑
j=1

yjewj) + α∇wif(

k∑
j=1

yjewj) +
L

2
α2 (20)

= h(y) + α∇ih(y) +
L

2
α2

Second, we show that we can get the same iterates if we run GCD on F (x) or H(y), that is, we want to show
that xt =

∑k
i=1 ewiy

t
i ∀t ≥ 0. We prove by induction:

When t = 0, obviously we have x0 =
∑k
i=1 ewiy

0
i = 0.

Suppose that xt =
∑k
i=1 ewiy

t
i , i = arg maxj Qj(x

t), ĩ = arg maxj Qj(y
t) and i = wm, we can show that ĩ = m:

Greed Meets Sparsity: Understanding and Improving Greedy Coordinate Descent for Sparse
Optimization

Note that

Qi(x
t) = min

s∈∂gi
|∇if(xt) + s|

= min
s∈∂gm

|∇mh(x) + s|

= Qm(yt), (21)

Thus, it is easy to see that ĩ = m.

x
t+ 1

2
i = xti −

1

L
∇fi(xt) = ytm −

1

L
∇hm(yt) = y

t+ 1
2

m .

Note that gi(·) = gwm(·), thus we further have

xt+1
i = prox 1

L gi

[
x
t+ 1

2
i

]
= prox 1

L gwm

[
y
t+ 1

2
m

]
= yt+1

m+1.

Thus we have xt =
∑k
i=1 ewiy

t
i ∀t = 0, 1, 2, ...

Plug H(·) into Lemma 11 and using the above result, we can get

F (xt)− F (x∗) = H(yt)−H(y∗) ≤
(

1− µ̃1

L

)d t2e
(H(0)−H(y∗)) =

(
1− µ̃1

L

)d t2e
(F (0)− F (x∗)) ,

where µ̃1 is the 1-norm strongly convex constant for the k-dimensional small problem H(·), since H is also µ2

strongly convex, we can easily verify that max{µ2/k, µ1} ≤ µ̃1 ≤ µ2, which completes the proof.

C Proof of Lemma 3

If i is not select by Algorithm 1 at the t-th iteration, then xt+1
i = 0 trivially remains 0.

If i is selected at the t-th iteration, by assuming |∇if(xt)−∇if(x∗)| ≤ δi, we know that

− δi +∇if(x∗) ≤ ∇if(xt) ≤ δi +∇if(x∗)

(i)⇒− ui ≤ ∇if(xt) ≤ −li, (22)

where (i) follows directly from the definition of δi := min {−∇if(x∗)− li, ui +∇if(x∗)}.

Then we show that prox g
Li

(0− 1
Li
∇if(xt)) = 0:

prox g
Li

(
0− 1

Li
∇if(xt)

)
= arg min

y

{
1

2

(
y −

(
− 1

Li
∇fi(xt)

))2

+
1

Li
gi(y)

}
(23)

This minimization problem is strongly convex and thus has a unique solution satisfies:

0 ∈ y +
1

Li
∇if(xt) +

1

Li
∂gi(y) (24)

By knowing −ui ≤ ∇if(xt) ≤ −li from (22) and int∂gi(0) = (li, ui) by the definition of li and ui. We can easily
conclude that y = 0 satisfies (24) and therefore

xt+1
i = prox g

Li

(
0− 1

Li
∇if(xt)

)
= 0.

Huang Fang, Zhenan Fan, Yifan Sun, Michael P. Friedlander

D Proof of Theorem 4
Let t ≤ d − τ and recall the definition of good steps until the t-th iteration from section A in Appendix:
|Gt| = {i1, i2, . . . , ik}, where k ≥

⌈
t
2

⌉
.

At iteration im,m ∈ [k], xim is guaranteed to be m − 1–sparse, by assuming f(·) is µ(τ+m−1)
1 strongly convex

w.r.t. 1-norm and τ + m − 1–sparse vectors, we know that F (·) is also µ1 strongly convex w.r.t. 1-norm and
τ +m− 1–sparse vectors. Thus ∀y ∈ Rd that is τ -sparse, |supp(y)∪ supp(xim)| ≤ τ +m− 1 and by the definition
of µ(τ+m−1)

1 , we have

F (y) ≥ F (xim) + 〈∂F (xim), y − xim〉+
µ

(τ+m−1)
1

2
‖y − xim‖21, (25)

with a little bit abuse of notation, here ∂F (xt) stands for any vector in the subdifferential of F (xt). Taking
minimum on both side of (25) w.r.t. y that is τ sparse,

F (x∗) ≥ F (xim)− sup
‖y‖0≤τ

(
〈−∂F (xim), y − xim〉 − µ

(τ+m−1)
1

2
‖y − xim‖21

)

≥ F (xim)− sup
y∈Rd

(
〈−∂F (xim), y − xim〉 − µ

(τ+m−1)
1

2
‖y − xim‖21

)
(i)
= F (xim)−

(
µ

(τ+m−1)
1

2
‖ · ‖21

)∗
(−∂F (xim))

(ii)
= F (xim)− 1

2µ
(τ+m−1)
1

‖∂F (xim)‖2∞,

where (i) is from the definition of conjugate function, and (ii) is from the fact that
(

1
2‖ · ‖

2
1

)∗
= 1

2‖ · ‖
2
∞ (Boyd

and Vandenberghe, 2004).

More specifically,

F (x∗) ≥ F (xim)− 1

2µ
(τ+m−1)
1

‖∇f(xim) + u‖2∞ ∀u ∈ ∂g(xim).

By the definition of Qi(·) in the GS-s rule (selection rule 2), we further have

F (x∗) ≥ F (xim)− 1

2µ
(τ+m−1)
1

max
i∈[d]

Qi(x
im)2. (26)

Recall Lemma 12, we have

F (xim+1) ≥ F (xim)− 1

2L
max
i∈[d]

Qi(x
im)2.

Plug the above equation into (26)

F (x∗) ≥ F (xim)− L

µ
(τ+m−1)
1

(F (xim+1)− F (xim))

⇒ F (xim+1)− F ∗ ≤

(
1− µ

(τ+m)
1

L

)
(F (xim)− F ∗).

By applying the above inequality recursively, we get

F (xt)− F ∗ ≤
k∏

m=1

(
1− µ

(τ+m−1)
1

L

)
(F (0)− F ∗)

≤
d t2e∏
i=1

(
1− µ

(τ+i−1)
1

L

)
(F (0)− F ∗),

which completes the proof.

Greed Meets Sparsity: Understanding and Improving Greedy Coordinate Descent for Sparse
Optimization

E Proof of Theorem 8
This proof is essentially the same as Theorem 4, the difference is that, by the definition of the ∆-GS-s rule
(selection rule 7), the Lemma 12 becomes

F (xt+1)− F (xt) ≤ − ∆

2L
max
i∈[d]

Qi(x
t)2

at each good step t.

Knowing that supp(xt) ⊂W∆, we have |supp(x∗) ∪ supp(xt)| ≤ |W∆| ∀t > 0. Then we can incorporate the new
Lemma into the analysis of Theorem 4 and get

F (xt)− F ∗ ≤

(
1− ∆µ

(|W∆|)
1

L

)d t2 e
(F (0)− F ∗)

≤
(

1− ∆µ2

|W∆|L

)d t2 e
(F (0)− F ∗) .

F Proof of Theorem 9
Preliminaries:

Given ∆ > 0, we sort W∆ = {i1, i2, ..., im} by the number of iteration when they first enter the working set W∆

i.e., i1 is the first coordinate being selected and i2 is the second coordinate to be included in W∆, etc.

We denote the t-th iterate from the ∆-GCD algorithm as xt and the t-th iterate from the totally corrective
greedy algorithm (TCGA) as x̃t. W] = {̃i1, ĩ2, . . . , ĩk}, its elements is also sorted by the time when they enter
the working set.

A claim:

First, we show that ∀j ≤ k, there ∃ εj > 0 such that ∀∆ < εj , the first j elements in W∆ is the same as the first
j elements in W].

We prove this claim by induction, when j = 1, ∀∆ ≤ 1, ∆-GCD and the TCGA both select the coordinate
arg maxi∈[d]Qi(0) at the first iteration, thus the claim is true in this base case.

Assuming that the claim is true with some j > 0, then for j + 1:

By the continuity of Qi(·), we know that there ∃ ε′ such that ∀‖x− x̃j‖ ≤ ε′, arg maxi∈[d]Qi(x) = ĩj+1.

By the uniqueness (recall that F (·) is strongly convex) of x̃j :

x̃j := arg min
supp(x)⊆Wj

f(x) + g(x)

and the optimiality condition, we also know that there ∃ δ > 0 such that ∀x ∈ Rd satisfy supp(x) ⊆ Wj and
maxi∈Wj Qi(x) ≤ δ, we have ‖x− xj‖ ≤ ε′.

Denote Qi(xt) (recall xt is generated from ∆-GCD) is bounded by some constant B ∀t > 0.

Then, by setting ∆ ≤ (min{εj , δ/B})2, when ij+1 first enter W∆ at some iteration t, we have

arg max
i∈Wj

Qi(x
t) ≤

√
∆ arg max

i∈[d]
Qi(x

t) ≤ δ

B
B = δ,

also by the induction assumption, we know that supp(xt) ⊆Wj . Putting these two conditions together, we get
‖xt − xj‖ ≤ ε′ and thus arg maxi∈[d]Qi(x

t) = ĩj+1, which implies that ij+1 = ĩj+1. And this complete the proof
of this claim.

Back to the proof:

Following the claim, we know that there ∃ εk > 0 such that for ∀∆ < εk, the first k elements in W∆ is just W].

Huang Fang, Zhenan Fan, Yifan Sun, Michael P. Friedlander

By the nondegeneracy assumption i.e., δi > 0 ∀x∗i = 0 and continuity of Qi(·),∇f(·), we know that there ∃ ε′′ > 0
such that ∀‖x − x∗‖ < ε′′ (note that x̃k = x∗), |∇if(x) − ∇if(x∗)| ≤ δi ∀x∗i = 0 and this further implies
Qi(x) = 0 ∀i /∈W] (note that supp(x∗) ∈W]).

Again, there exist δ′′ > 0 such that ∀x ∈ Rd satisfy suppW](x) and maxi∈W] Qi(x) ≤ δ′′, we have ‖x− x∗‖ ≤ ε′′.

Thus for ∆ ≤ min{εk, δ′′}, the first k elements in W∆ will be W], and any coordinate i /∈W] can not be included
in W∆. Therefore W∆ = W].

G Proof of Theorem 5

Given the number of iteration t, denote Zt = {i ∈ [d] | xt′i = 0 ∀t′ < t}, which is the entries of xt that filled with
0’s. and Vt = {i ∈ [d] | |∇if(xt

′
)−∇if(x∗)| ≤ δi ∀t′ ≥ t}.

From Lemma 3 (in the main text), we know that any coordinates in Zt ∩Vt will always stay at 0 and thus cannot
be in W , that is

W ⊂ [d]\(Zt ∩ Vt) ∀t > 0

⇒|W | ≤ min
t∈[d]
{d− |Zt ∩ Vt|} . (27)

Recall the definition of the set of good steps until the t-th iteration Gt ⊂ [t]:

|Vt| =
d∑
i=1

1{|∇if(xt
′
)−∇if(x∗)| ≤ δi ∀t′ ≥ t}

≥
d∑
i=1

1{‖∇f(xt
′
)−∇f(x∗)‖∞ ≤ δi ∀t′ ≥ t}

(i)

≥
d∑
i=1

1{L∞‖xt
′
− x∗‖1 ≤ δi ∀t′ ≥ t}

≥
d∑
i=1

1{L∞ sup
t′≥t
‖xt − x∗‖1 ≤ δi}, (28)

where (i) follows from the ∞-norm smoothness assumption.

By the definition of Gt in section A, we also have |Zt| ≥ d− |Gt|, and further

|Zt ∩ Vt| = |Zt|+ |Vt| − |Zt ∪ Vt|
≥ d− |Gt|+ |Vt| − d
≥ |Vt| − |Gt|. (29)

Plug the above result in (27), we get

|W | ≤ min
t>0
{d− |Vt|+ |Gt|}

≤ min
t>0

{
d−

d∑
i=1

1{L∞ sup
t′≥t
‖xt

′
− x∗‖1 ≤ δi}+ |Gt|

}

≤ min
t∈[d]

{
d−

d∑
i=1

1{L∞ sup
t′≥t
‖xt

′
− x∗‖1 ≤ δi}+ t

}
= min
t∈[d]

Bt + t, (30)

where Bt is defined as Bt := d− pδ
(
L∞ supi≥t

{
‖xi − x∗‖1

})
in Theorem 5.

Greed Meets Sparsity: Understanding and Improving Greedy Coordinate Descent for Sparse
Optimization

H Proof of Corollary 6
Similar to the proof of Theorem 5, denote Zt = {i ∈ [d] | xt′i = 0 ∀t′ < t}, which is the entries of xt that filled
with 0’s. and Vt = {i ∈ [d] | |∇if(xt

′
)−∇if(x∗)| ≤ δi ∀t′ ≥ t}.

From Lemma 3 (in the main text), we know that any coordinates in Zt ∩Vt will always stay at 0 and thus cannot
be in W , that is

W ⊂ [d]\(Zt ∩ Vt) ∀t > 0

⇒|W | ≤ min
t∈[d]
{d− |Zt ∩ Vt|} . (31)

Recall the definition of the set of good steps until the t-th iteration Gt ⊂ [t].

|Vt| =
d∑
i=1

1{|∇if(xt
′
)−∇if(x∗)| ≤ δi ∀t′ ≥ t}

≥
d∑
i=1

1{‖∇f(xt
′
)−∇f(x∗)‖∞ ≤ δi ∀t′ ≥ t}

(i)

≥
d∑
i=1

1{L∞‖xt
′
− x∗‖1 ≤ δi ∀t′ ≥ t}

(ii)

≥
d∑
i=1

1

{
L∞

√
2

µ1
(F (xt)− F (x∗)) ≤ δi ∀t′ ≥ t

}
(iii)
=

d∑
i=1

1

{
L∞

√
2

µ1
(F (xt)− F (x∗)) ≤ δi

}
(iv)
= pδ

(
L∞

√
2

µ1
(F (xt)− F (x∗))

)
(v)

≥ pδ

L∞
√√√√ 2

µ1

|Gt|∏
i=1

(
1− µ

(τ+i−1)
1

L

)
(F (0)− F ∗)

 , (32)

where (i) follows from the ∞-norm smoothness assumption, (ii) is from µ1 strongly convex, (iii) is true since
F (xt) is a decreasing sequence, (iv) is by the definition of pδ(·), (v) directly follows from Theorem 4.

By the definition of Gt, we also have |Zt| ≥ d− |Gt|, and further

|Zt ∩ Vt| = |Zt|+ |Vt| − |Zt ∪ Vt|
≥ d− |Gt|+ |Vt| − d
≥ |Vt| − |Gt|. (33)

Plug the above result in (31), we get

|W | ≤ min
t>0
{d− |Vt|+ |Gt|}

≤ min
t>0

d−
L∞

√√√√ 2

µ1

|Gt|∏
i=1

(
1− µ

(τ+i−1)
1

L

)
(F (0)− F ∗)

+ |Gt|

≤ min
t∈[d]

d−
L∞

√√√√ 2

µ1

t∏
i=1

(
1− µ

(τ+i−1)
1

L

)
(F (0)− F ∗)

+ t

= min
t∈[d]

Bt + t, (34)

where Bt is defined as Bt := d− pδ

(√
2L2

∞
µ1

∏t−1
i=0

(
1− µ

(τ+i)
1

L

)
(F (0)− F ∗)

)
in Theorem 5.

	Introduction
	Related Work
	Coordinate descent (CD)
	Greedy coordinate descent (GCD)
	Sparsity pattern identification

	Problem statement
	The merits of keeping the iterates sparse

	Analysis
	Numerical motivation
	Fast initial convergence
	Fast support identification

	Improved selection rule
	Experiments
	Zero v.s. other initializations
	Evaluation of -GCD

	Conclusions
	Preliminaries
	Proof of Theorem Sketch 2
	Proof of Lemma 3
	Proof of Theorem 4
	Proof of Theorem 8
	Proof of Theorem 9
	Proof of Theorem 5
	Proof of Corollary 6

