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Abstract

We consider the problem of training one-versus-all (OVA)

linear classifiers for multiclass or multilabel classification

when the number of labels is large. A naive extension of

OVA to this problem, even with hundreds of cores, usually

requires hours for training on large real world datasets.

We propose a novel algorithm called OVA-Primal++ that

speeds up the training of OVA by using a tree-structured

training order, where each classifier is trained using its

parent’s classifier as initialization. OVA-Primal++ is both

theoretically and empirically faster than the naive OVA

algorithm, and yet still enjoys the same highly parallelizability

and small memory footprint. Extensive experiments on

multiclass and multilabel classification datasets validate the

effectiveness of our method.

Keywords: One-versus-All Classification

1 Introduction

Classification with multiple classes or labels is a funda-
mental problem in machine learning. With the emer-
gence of big data, recent applications such as image
recognition or text tagging commonly involve milticlass
and multilabel classification with huge amount of fea-
tures, labels, and data points. These are known as
extreme classification (XMC) problems.

One-versus-all (OVA) is a simple and effective
approach for multiclass and multilabel classification. It
divides the whole problem into K binary classification
subproblems, where K is the number of labels, and tries
to learn K corresponding classifiers one by one. By its
nature, OVA enjoys two important features that make
it popular in practice: small memory usage and high
parallelizability.

OVA with linear classifiers plays an important
role in both academia and industry. Some important
features include its ability to produce sparse and effective
solutions for high-dimensional text classification by
pruning out small weights after training [1], and its
ability to achieve state-of-the-art accuracy for image
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classification by fine tuning the last layer of a pretrained
convolutional network [2, 3]. However, these applications
usually involve hundreds of thousands of labels and a
naive implementation of OVA, even with hundreds of
computational cores, would require hours for training [4].

Recent approaches [5, 6] have been proposed to
resolve the expensive training issue. However, these
proposals involve changes to the objective function of
the linear classification that can degrade prediction
accuracy. Moreover, both approaches are designed
to handle high-dimensional sparse data, and as we
demonstrate empirically, they usually works poorly with
low-dimensional dense data; see §4.

Our proposed algorithm, called OVA-Primal++,
works for large-scale multiclass and multilabel classifi-
cation, and is effective for both high-dimensional sparse
data and low-dimensional dense data. It also avoids mod-
ifcations to the classification objective function, and thus
avoids the disadvantages of previous approaches. As with
naive OVA, OVA-Primal++ is highly parallelizable and
has a small memory footprint. Under some mild assump-
tions, we formally prove that the proposed algorithm can
reduce the upper bound of runtime compared with the
naive OVA approach. When a subproblem solver with
a sublinear convergence rate is used, our algorithm can
reduce the runtime upper-bound by a factor of K, where
K is number of labels. When the subproblem solver
has a linear-convergence rate, we can reduce the upper
bound by a factor of Θ(logN), where N is the number of
samples. Experiments on large-scale real-world datasets
validate the effectiveness of our approach.

2 Related Work

For classification that involves a large number of labels,
existing approaches can roughly be divided into three
categories: tree-based, embedding-based, and OVA-
based approaches.

2.1 Tree-based approaches FastXML [7] was the
first tree-based model for XMC problems. It partitions
the feature space in a tree structure and can achieve
logarithmic prediction time and high test accuracy.
PfastreXML [8] is an improved version of FastXML and
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can yield better prediction for rare labels. A more recent
approach called Prabel [6] tries to partition the label
space into a balanced binary tree, and it empirically
demonstrates fast training times for high-dimensional
sparse data. Note that all of the above tree-structure
based approaches require more memory usage than the
training of OVA linear classifiers.

2.2 Embedding-based approaches To reduce the
model size and training time, some approaches assume
that the optimal classifiers have a low-rank structure
[9, 10, 11]. Although this assumption can reduce the
training and prediction time, the prediction accuracy is
usually inferior to tree-based or OVA-based approaches.
To yield better prediction, the local embedding approach
SLEEC [12] has higher prediction accuracy than previous
embedding-based approaches, but it is expensive to
training and its performance can be unstable on some
data sets [5].

2.3 OVA-based approaches A naive extension of
OVA strategy to large-scale multiclass or multilabel
classificaiton is expensive to train and could produce a
very large model for high dimensional data. PDSparse [4]
is a modified OVA approach that could learn very sparse
model with separation ranking loss and L1 regularization.
Although PDSparse can learn a small model, its training
is not memory efficient and could require hundreds of
gigabytes memory on some large datasets [5]. Moreover,
its test accuracy is usually inferior to the naive OVA
method. DiSMEC [1] was the first attempt to scale
classical OVA to XMC by using hundreds of cores for
training. After training, DiSMEC proposed to prune out
small model weights by hard thresholding. This post-
processing leads to small model size, and experiments
on real world datasets demonstrated that traditional
OVA (with pruning) can actually achieve state-of-the-
art accuracy and competitive prediction time [1, 5]. A
recent work PPDSparse [5] studied the sparse inducing
property of OVA and proposed a primal-dual active set
approach to speed up the training of traditional OVA.
Although PPDSparse is empirically faster than DiSMEC,
it is less flexible, allowing only elastic-net regularization
and works well only with high dimensional sparse data.

3 Proposed Method

In this section we propose a novel approach to speedup
the training of OVA.

3.1 Problem Setup We consider the multilabel clas-
sification problem with N training samples {xi}i∈[N ],
each sample xi ∈ RD has D features. We use K to
denote the number of labels and yk ∈ {−1,+1}N as

the binary coding for label k, where yk,i = +1 if the
k-th label belongs to xi and yk,i = −1 otherwise. In
this way, the labels for sample xi can be expressed as
Li = {k | yk,i = +1}. The average number of labels per

sample is defined as L =
∑
|Li|
N . For extreme classifica-

tion, both N and K are large, but L is comparatively
small and does not scale with K or N .

For one-versus-all (OVA) linear classification, the
original multilabel problem is divided into K binary
classification subproblems where the k-th subproblem
learns a classifier for the k-th label. The optimization
problem for the k-th label is given by:

(3.1) min
wk

f(yk,wk) := R(wk) + C

N∑
i=1

l(yk,iw
T
k xi)

where wk is the classifier for the k-th label. l(·) is a
loss function (e.g. logistic loss, L1-hinge loss or L2-hinge
loss), R is the regularization and C is the balancing
parameter that controls the trade-off between empirical
risk and regularization.

Note that we write f(·) as a function not only with
variable w but also with variable y; This notation will
help our analysis and its use will be clear in the following
sections. We assume the problem has the following
properties.
Assumptions:

• Each sample is only involved with a small number
of true labels. ∀i ∈ [N ], |Li| � K.

• For the simplicity of analysis, we assume that
‖xi‖2 ≤ 1 for i = 1, 2, ..., N .

• The average number of labels per sample L and the

average number of samples per label NL
K does not

scale with N or K, which is usually true for extreme
classification datasets.

• Each subproblem (3.1) is solved by an iterative
solver A.

3.2 Key Observations Let w∗k be the minimizer of
f(yk,wk) with respect to wk. Also define lH(yp,yq) =∑n

i=1 1{yp,i 6= yq,i} as the Hamming loss between yp

and yq. For label p and label q, if lH(yp,yq) = 0, then
obviously w∗p = w∗q . A question naturally arises: when
lH(yp,yq) is small, will the iterative solver A converges
to w∗q in fewer iterations if it is initialized by w∗p instead
of the naive zero initialization? If this is true, when we
have a large number of subproblems, can we exploit the
above property to gain significant speedup for training
OVA classifiers? We will formally describe the property
and show how we use it to speed up OVA for extreme
classification in this section.
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Lemma 3.1. Assume l(·) is α-Lipschitz and ‖w∗k‖2 ≤
B ∀k ∈ [K]. Let p, q ∈ [K] and yp,yq ∈ {−1,+1}N .
Then

(3.2) f(yq,w
∗
p)− f(yq,w

∗
q ) ≤ 4lH(yp,yq)CαB.

Please see supplementary material for the proof. Lemma
3.1 shows that if lH(yp,yq) is small, then the initial
objective value will be close to the optimal objective
value if we solve subproblem q with initialization w∗p.
However, if we use zeros as initialization, the best upper
bound for f(yq,0) − f(yq,w

∗
q ) is CNl(0). Note that

in Lemma 3.1 we do not make any assumptions on our
regularizer R, which means our analysis and proposed
method are flexible and could be applied to any kind of
regularization.

This result motivates us to construct a “fake”
subproblem with label y0. Assume the solution of
this fake subproblem is w∗0 , we then use w∗0 as the
initialization for all the subproblems. Of course, forcing
all subproblems to use the same initialization may not
be optimal, and we will describe a more general method
in section 3.4. Now we study how to select the best
y0. To minimize the upper bound of the overall initial
objective gap

∑K
k=1 |f(yk,w

∗
0) − f(yk,w

∗
k)|, based on

Lemma 3.1 we need to minimize
∑K

k=1 lH(y0,yk). It is
easy to show that the optimal solution is

(3.3) y0,i = sign(

K∑
k=1

yi,k),

where sign(z) = 2× 1{z ≥ 0} − 1.
In the setting of extreme classification, usually we

have |Li| � K, thus almost always y0 = −1n which is
a vector with all -1 elements. Based on lemma 3.1,
we develop the following theorems to show that we
could significantly reduce runtime upper bound with
the improved initialization.

Theorem 3.1. Assume that l(·) is α-Lipschitz and we
have a solver A with sublinear convergence rate that
can solve each subproblem k with ε precision in Tk =

O

(
f(yk,w0)− f(yk,w

∗
k)

εp

)
iterations. With w0 = w∗0

(using the solution of the fake subproblem to initilalize),
we can bound the total number of iterations of OVA by

Ttotal =

K∑
k=1

Tk = O

(∑K
k=1 lH(yk,y0)

εp

)
= O

(
NL

εp

)
.

Remark 1. Recall that the best upper bound for
f(yk,0)− f(yk,w

∗
k) is O(N). Therefore under a naive

zeros initialization w0 = 0, using a solver A described
in theorem 3.1, the best bound we can achieve is

Ttotal =

K∑
k=1

Tk = O

(
NK

εp

)
.

Compared with the result in Theorem 3.1, we can reduce
the upper bound of run time by a factor of K

L
.

For extreme classification problem, K
L

is usually
quite large and Theorem 3.1 implies that our algorithm
can significantly reduce the upper bound of runtime
when using a solver with sublinear convergence rate such
as stochastic gradient descent [13].

Theorem 3.2. Assume that l(·) is α-Lipschitz and we
have a solver A that can solve each subproblem k with

ε precision in Tk = O

(
log

(
f(yk,w0)− f(yk,w

∗
k)

ε

))
iterations. With w0 = w∗0, we can bound the total
number of iterations of OVA by

Ttotal =

K∑
k=1

Tk = O

(
K log

(∑K
k=1 lH(yk,y0)

Kε

))

= O

(
K log

(
NL

Kε

))
.

Remark 2. Recall that the best upper bound for
f(yk,0)− f(yk,w

∗
k) is O(N), Therefore under a naive

zeros initialization w0 = 0, using a solver A described
in theorem 3.2, the best bound we can achieve is

Ttotal =

K∑
k=1

Tk = O

(
K log

(
N

ε

))
.

Compared with the result in Theorem 3.2, we can
reduce the upper bound of runtime by a factor of logN
asymptotically if the average number of samples per label

N = NL
K does not scale with N or K.

When we have a solver with linear convergence rate,
such as gradient descent for strongly convex functions,
Theorem 3.2 implies that our algorithm can reduce a
factor of Θ(logN) for the upper bound of runtime.

3.3 OVA-Primal: A Fast Primal OVA Solver
Motivated by Theorem 3.1 and Theorem 3.2, we propose
a novel algorithm called OVA-Primal that speeds up the
training of OVA classification. The detailed algorithm
is shown in Algorithm 1. Compared with the naive
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Algorithm 1 OVA-Primal

1: Input : {xi}i∈[N ], {yk}k∈[K], C,A
2: Construct the “fake” subproblem (label defined

in (3.3))
3: Solve the “fake” subproblem by A with 0 initializa-

tion and get w∗0
4: for k = 1 to K do C parallelizable
5: Initialize w0 = w∗0
6: Solve the k-th subproblem by A and get w∗k
7: Optional: Compress and store w∗k C for

high dimensional data
8: end

OVA classification, OVA-Primal only needs to solve one
extra subproblem. It is faster than DiSMEC (naive OVA
training) while enjoying the same advantage such as high
parallelizability and small model size.

3.4 OVA-Primal++: Further Speeding up
OVA-Primal with Tree-Structured Initialization
In this part, we show that OVA-Primal can be further
accelerated by using a tree structured ordering to train
all subproblems and propose a corresponding algorithm
called OVA-Primal++.

Figure 1: Example

Imagine that we have
the example shown in
Figure 1. When we
use OVA-Primal, we have
lH(y0,y1) + lH(y0,y2) =
3, but this can be im-
proved if we use w∗0 as
the initialization to cal-
culate w∗1 and then use
w∗1 as the initialization
to get w∗2 . In this case,
we will have lH(y0,y1) +
lH(y1,y2) = 2. This example motivates us to use the
classifier of the “nearest” label as the initialization to
calucate current classifier instead of just initializing w∗0 .

Formally speaking, after we add the fake subproblem,
there are in total K + 1 subproblems, and we want to
find the “ideal ordering” π to train these subproblems
such that the total Hamming loss is minimized.

Interestingly, finding the best ordering of training
these subproblems can be viewed as a graph problem,
where we have in total K + 1 vertices {vk}k∈[K+1], and
each vk represents the k-th subproblem. The weight
associated with edge ep,q is set to be lH(yp,yq). Every
possible ordering π corresponds to a tree on the graph.
We start from the root and solve subproblem q with
classifier w∗p as initialization if vp is the parent of vq. It
is easy to see that the “ideal ordering” is the tree with

minimum total weights and this is actually an minimum
spanning tree problem.

The detailed algorithm of OVA-Primal++ is shown
in Algorithm 2.

Recall that in Theorem 3.1 and 3.2, the upper bound
of the runtime is controlled by the term

∑K
k=1 lH(yk,y0).

By using this tree–structured training, we can guarantee
that

∑K
k=1 lH(yk,yΠ(k)) ≤

∑K
k=1 lH(yk,y0), where Π(k)

denotes the parent of vk; thus the upper bound on the
runtime of OVA-Primal++ is at least as good as OVA-
Primal, and usually observed to be a lot better than
OVA-Primal.

3.5 OVA-MST How to solve the minimum spanning
tree problem is non-trivial because our graph is highly
dense. In this section, we propose an efficient algorithm
called OVA-MST to solve our minimum spanning tree
problem by only considering necessary edges.

Lemma 3.2. For a weighted undirected graph G(V,E),
denote the cost of its minimum spanning tree as c(G). If
there are 3 vertices vp,vq,vk such that wp,k+wq,k = wp,q,
then the cost of minimum spanning tree remains the same
if we remove ep,q from G.

Lemma 3.2 implies that if there are no samples that
have both label p and q, then we can exclude the edge
ep,q from G, since lH(y0,yp) + lH(y0,yq) = lH(yp,yq).
With this observation, we develop the following theorem
to bound the number of necessary edges.

Theorem 3.3. Denote G as the graph described in sec-
tion 3.4, where each vertex of G stands for a subproblem
and wp,q = lH(yp,yq) for 0 ≤ p 6= q ≤ K. The number

of edges we need to consider is O(K +
∑N

i=1 |Li|2).

By theorem 3.3, we bound the number of
edges in O(K +

∑N
i=1 |Li|2), so if we run Kruskal’s

algorithm [14] to find the minimum spanning
tree, we are guaranteed to find the MST in

O
((
K +

∑N
i=1 |Li|2

)
log
(
K +

∑N
i=1 |Li|2

))
time.

Due to the space limitation, we place the de-
tailed graph formulation and OVA-MST algorithm
in the supplementary materials. To summarize
the result, the space complexity of OVA-MST is
O(K +

∑N
i=1 |Li|2) and the time complexity is

O
((
K +

∑N
i=1 |Li|2

)
log
(
K +

∑N
i=1 |Li|2

))
, which is

near linear in N and K if L does not scale with N
or K. We use Kruskal’s algorithm to solve the MST
problem in this work, but it is also worth to note that
there are some other clever algorithms [15] that we
can use instead of Kruskal’s algorithm, by which we
are potentially able to solve the MST even faster by
employing clever parallelization.
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(a) Naive OVA (b) OVA-Primal (c) OVA-Primal++

Figure 2: Illustrative geometric interpretation of naive OVA, OVA-Primal and OVA-Primal++, please zoom.

Datasets NUS-WIDE EURLex AmazonCat13k AmazonCat14k Wiki31k

# subtrees 889 2072 9510 10875 9816

Height of T 4 5 8 8 10

Table 1: Statistics of minimum spanning trees

Algorithm 2 OVA-Primal++

1: Input : {xi}i∈[N ], {yk}k∈[K], C,A
2: Construct the “fake” subproblem (label defined

in (3.3)), denote it as label 0.
3: Call OVA-MST and contruct the minimum spanning

tree T that root at label 0.
4: Solve the “fake” subproblem by A with 0 as initial-

ization and get w∗0
5: for each subtree connect with root(T ) do

C parallelizable
6: Traverse subtree via depth-first search
7: At each node, solve its corresponding subproblem

by A, initialized by its parent’s classifier.
8: When all children of a node are solved, optionally

compress its classifier.
9: end

3.6 Parallelization for OVA-Primal++ In this
section, we propose a method called blocked depth-first
search that can parallelize OVA-Primal++ with small
memory footprint.

Breath-First Search: We denote our minimum
spanning tree that rooted at label 0 as T . Note
that each subproblem uses its parent’s classifier as the
initialization, so the children of the same parent can be
solved “independently”. This suggests using breadth-
first search (BFS) for tree traversal, since it is easily
parallelizable. However, using BFS requires us to store
all the internal nodes’ classifiers as the initialization for
their children and we cannot apply DiSMEC’s prunning
heuristics(model compression) for high dimensional data

after solving each subproblem, which makes the space
complexity to be O(KD) and hence memory inefficient.

Depth-First Search: Depth-first search (DFS)
could resolve the memory issue. We can compress a
parent’s classifer as long as all of its children are visited,
so its space complexity is O(hD + M), where h is the
height of T and M is the model size after compression.
However, DFS is hard to parallelize because each child
needs its parent’s classifier as its initialization, which
makes naive DFS inappropriate for our problem.

Blocked Depth-First Search: For most large-
scale multilabel classification datasets, we observe that
for many labels, their “nearest” vertex is actually label
0 (the fake problem). This implies that our minimum
spanning tree T is usually “short” and “wide”. The
statistics of T for different datasets are shown in Table 1.
Based on this observation, we propose a method called
blocked depth-first search to parallelize OVA-Primal++.
Basically, we first solve the root’s problem, then we
divide the “short” and “wide” T into many subtrees
whose roots are connected with the root of T . For
extreme classification datasets, there are usually a large
number of subtrees and each subtree is small. For the
subproblems on each subtree, we apply DFS and use
different threads to solve different subtrees in parallel.
The space complexity is O(hDτ + M), where τ is the
number of threads.

3.7 Geometric Interpretation The geometric in-
terpretation of naive OVA, OVA-Primal and OVA-
Primal++ is shown in Figrue 2. Each arrow in the
figure stands for one iteration of the solver. Note that
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Datasets tiny-imagenet Aloi NUS-WIDE EURLex AmazonCat13k AmazonCat14k Wiki31k

Ntrain 100000 97200 161789 15539 1186239 4398050 14146
Ntest 10000 10800 107859 3809 306782 1099725 6616
D 512 128 128 5000 203882 597540 101938
K 200 1000 1000 3993 13330 14588 30938

L 1 1 5.78 5.31 5.04 3.53 18.64

N 500 97.2 935.22 25.73 448.57 1330.1 8.52
Density 1.0 0.2476 0.9925 0.0476 3.54× 10−4 8.13× 10−5 0.00661

Table 2: Data Statistics, where L stands for the average number of labels per sample and N denotes the average
number of samples per label.

this is just an illustrative example to visualize the main
idea behind OVA-Primal and OVA-Primal++.

4 Experiments

In this section, we compare our algorithm with other
state-of-the-art solvers for multilabel classification prob-
lems in terms of training time and prediction accuracy.
We include the following methods in our comparison:

• FastXML [7]: an efficient tree-based approach that
perform partition on feature space.

• Parabel [6]: a very recently proposed tree-based
approach that empirically works well with high
dimensional sparse data.

• SLEEC [12]: the representative embedding-based
approach that learns a sparse local embedding and
is guaranteed to produce a small model.

• DiSMEC [1]: a highly parallelizable OVA model
with L2-hinge loss and L2 regularization. It uses
LIBLINEAR’s [16] trust region Newton’s method
[17] to solve each subproblem and learn very sparse
parameters by pruning out small weights after
training.

• PPDSparse [5]: a recent method that uses a primal-
dual method to solve OVA with L2-hinge loss and
elastic-net regularization. PPDSparse also aims at
accelerating the training of the OVA model, but it
focus on solving the dual of each subproblem.

• OVA-Primal++: our proposed method using L2-
hinge loss and L2 regularization as suggested by [1].
We solve each subproblem by LIBLINEAR’s trun-
cated Newton’s method with backtracking line-
search [18]. It is worth noting that the truncated
Newton’s method used in OVA-Primal++ has lin-
ear convergence rate in terms of the number of
inner conjugate gradient (CG) iterations [17, 19]
for strongly convex functions. Our code is public
available at https://github.com/fanghgit/XMC.

• OVA-Naive: the baseline method. It has the same
objective function as OVA-Primal++ and uses the
same solver for each subproblem but with the naive
zeros initialization.

For FastXML, Parabel, SLEEC, DiSMEC and
PPDSparse, we use their online available code from
the Extreme Classification Repository1. The statistics
of the datasets are shown in Table 2, tiny-imagenet is
a subset of the imageNet dataset[20] where all images
are downsampled into 64 × 64 ones, we use the 512-
dimensional representation extracted by a pretrained
ResNet18[21] and here our task is fast fine-tuning the
last layer. For NUS-WIDE, we use its 128 dimensional
cVLAD+ features that downloadable from Mulan 2. Aloi
is downloaded from LIBSVM’s website 3. EURLex, Ama-
zonCat13k, AmazonCat14k and Wiki31k are standard
high-dimensinal text classification datasets that available
from the Extreme Classification Repository.

Implementation Details
Following the setting in DiSMEC [1], we use the

default train/test split for each dataset and apply a
tf-idf transformation if it is text data. As suggested
by [1, 5], we use L2-hinge loss, L2-regularization and
set C = 1 for all experiments. For SLEEC, FastXML
and PPDSparse, we use their suggested setting of hyper-
parameters. All experiments are conducted on a server
with 16 Intel Xeon E5-2640 2.40GHz CPUs and and
64GB RAM. For more implementation details, see the
supplementary materials.

Evaluation Metrics
We evaluate different approaches by their training

time Ttrain and prediction accuracy. The prediction
accuracy is measured by Precision@k (denoted by P@k)
defined as:

1http://manikvarma.org/downloads/XC/XMLRepository.html
2http://mulan.sourceforge.net/datasets-mlc.html
3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

datasets/
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Data & Metrics
1 core Tree-based approaches, 10 cores OVA-based approaches, 10 cores

SLEEC FastXML Parabel PPDSparse DiSMEC OVA-Naive OVA-Primal++

tiny-imagenet

Ttrain 7043.2s 1104.05s 269.68s 122.2s 108.81s 101.81s 65.21s

P@1 39.78 41.29 48.29 27.88 46.81 47.32 47.56
P@3 19.33 18.78 22.39 15.10 21.59 22.46 22.51

P@5 12.94 12.54 14.83 10.79 14.33 14.99 15.01

Aloi

Ttrain 921.3s 94.89s 16.32s 11.1s 49.75s 45.7s 25.09s
P@1 86.24 88.63 81.57 77.15 86.13 86.03 86.09
P@3 31.87 31.56 29.90 29.51 30.91 30.86 30.87

P@5 19.51 19.27 18.48 18.34 18.89 18.89 18.87

NUS-WIDE
Ttrain 7923s 352.79s 970.72s 309.43s 329s 254.73 115.17s

P@1 16.24 17.13 16.94 16.22 17.13 17.15 17.15

P@3 12.80 13.47 13.44 12.71 13.44 13.45 13.45
P@5 10.89 11.51 11.51 10.82 11.41 11.41 11.41

EURLex
Ttrain 310.35s 34.2s 26.26s 45.5s 64.05s 64.97s 33.96s
P@1 72.70 71.07 82.25 81.99 82.83 82.49 82.57
P@3 55.93 59.31 68.71 69.06 69.89 69.83 69.79
P@5 45.44 50.39 57.53 57.86 58.44 58.66 58.53

Amazon13k

Ttrain 60353s 3396.93s 2722s 8370s 13536s 13286 7330s

P@1 89.20 93.08 93.02 93.04 93.79 93.75 93.75
P@3 75.18 78.16 79.14 78.09 78.89 78.89 78.89

P@5 61.09 63.35 64.51 62.50 63.66 63.76 63.66

Amazon14k

Ttrain 147220s 6224s 8145s 28500s 37118s 38001s 17796s
P@1 88.84 88.45 89.27 88.28 89.91 89.95 89.95
P@3 69.07 68.01 69.36 66.04 68.99 69.37 69.38
P@5 54.51 53.11 54.44 49.71 53.77 54.42 54.32

Wiki31k
Ttrain 2964.8s 128.14s 334.79s 1560s 2550s 2434s 1364s
P@1 84.28 82.91 84.19 85.38 84.17 84.16 84.17

P@3 72.05 67.89 72.46 74.88 74.72 74.70 74.73
P@5 61.80 57.78 63.37 65.54 65.94 65.92 65.92

Table 3: Experimental result for all methods. Note that DiSMEC, OVA-Naive and OVA-Primal++ have the same
objective function and use the same stopping criterion; thus their prediction accuracy are very similar and their
training time is comparable. Due to limited resources, we use 10 cores to parallelize all methods except SLEEC
because their code does not support parallelization. Note that we highlight the best training time of OVA-based
algorithms and non OVA-based algorithm separately since the focus of this paper is to speed up the training of
OVA linear classifiers instead of developing a new model for multilabel classification.

P@k :=
1

k

∑
l∈rankk(ŷ)

yl,

where y ∈ {0, 1}K is the true label vector and
ŷ ∈ RK is our predicted score vector for all labels.
rankk(·) represent the k labels that correspond to the k
highest scores.

4.1 Experimental Results on Training Time
and Test Accuracy The result of training time and
prediction accuracy are presented in Table 3, note that
the prediction accuracy for tiny-imagenet is much less
than the stat-of-the-art accuracy for imageNet since the

figures in tiny-imagenet are resized to 64 × 64 pixels
instead of 224 × 224 pixels in the original imageNet
dataset. As shown in Table 3, our results validate
the arguments in [1, 5] that OVA method is able to
yield high prediction accuracy compared with tree-
based and embedding-based approaches. From Table
3, we also found that OVA-Primal++ is consistently
faster than other OVA-based approaches for both high
dimensional sparse and low dimensional dense datasets,
and usually 2 ∼ 3 times faster than DiSMEC and
OVA-Naive. Note that all of DiSMEC, OVA-Naive
and OVA-Primal++ are built on the C code from
LIBLINEAR; they have the same objective function
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(a) Speedup on NUS-WIDE (b) Speedup on EURLex

Figure 3: Speedup with different number of cores on NUS-WIDE and EURLex

Datasets NUS-WIDE EURLex AmazonCat13k AmazonCat14k Wiki31k

Run time of OVA-MST 0.608 0.088s 5.317s 4.087s 2.582s

Table 4: Runtime of OVA-MST

and use exactly the same stopping criterion, thus their
training times are comparable. For the recently proposed
tree-based algorithm Parabel, although it is fast for high
dimensional sparse text data, its training time on low
dimensional dense data is inferior. The experimental
results of training time demonstrate the effectiveness of
our proposed method.

4.2 Run time of OVA-MST In Table 4, we present
the time spent on solving the minimum spanning tree
problem. Note that tiny-imagenet and Aloi are not
included in the table since they are multiclass datasets
and OVA-Primal++ can be reduced to OVA-Primal in
this case. Consistent to our analysis in section 3.5, OVA-
MST is efficient and the run time of OVA-MST can be
ignored when compared with the training time of OVA
classifiers.

4.3 Evalution for Parallelization In this part,
we empirically evaluate the parallelizability of OVA-
Primal++ in a multi-core environment. Experimental
result is presented in Figure 3. As shown in the figure,
similar to OVA-Naive, OVA-Primal++ could achieve
nearly linear speedup and this implies that we can po-
tentially further reduce the training time with more com-
puting resources. Note that here we only use NUS-WIDE
and EURLex for the experiments since the training using
1 core for larger datasets is too expensive.

5 Conclusion

In this paper, we considered the training of OVA
linear classifiers when the number of labels is large.
By exploiting the underlying relationships between
all K subproblems, we proposed a novel algorithm
OVA-Primal++ that uses a tree-structured ordering
of training and could solve each subproblem with a
better initialization. OVA-Primal++ enjoys the same
advantage as naive OVA—highly parallelizable with
a small memory footprint. Furthermore, it is both
theoretically and empirically faster than naive OVA
implementation. Different from recent works [5, 6] that
only consider high dimensional sparse data, our method
is more flexible and could be potentially used for a wider
range of applications.
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