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Proof of Lemma 3.1

f(yq, w
∗
p)− f(yq, w

∗
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∗
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∗
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∗
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By the optimality of w∗p, we know that Eq 2 is smaller or equal to 0.

For Eq 1,
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N∑
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=2ClH(yp, yq)αB

Eq 4 is true we assume that l(·) is α-Lipschitz. Eq 5 is true since |xTi w∗p| ≤ ‖xi‖2‖w∗p‖2, and in our

assumptions, we have ‖xi‖2 ≤ 1 and ‖w∗p‖2 ≤ B, so we have |xTi w∗p| ≤ B

The same argument can also be applied for Eq 3, to sum these up, we can get the conclusion that

f(yq, w
∗
p)− f(yq, w

∗
q ) ≤ 4lH(yp, yq)CαB.
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Proof of Theorem 3.1

Set w0 as w∗0 .

Ttotal =

K∑
k=1

Tk
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Eq 6 is true from lemma 1. �

Proof of Theorem 3.2

Ttotal =
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N is the average number of samples per label, it usually does not scale with N,D or K for extreme classifi-
cation problems. Eq 7 is true by the concavity of logrithm and Eq 8 is true from lemma 1.

With naive zeros initializaiton, we have T ′total = O
(
K log

(
N
ε

))
If we analyze the upper bound of Ttotal and T ′total and assume that N and ε does not scale with N , then we
have
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K log
(
N
ε

)
K log

(
N
ε

)
= log(

N −N
ε

)

=Θ(logN)

So we can improve the upper bound of the total number of iterations by a factor of Θ(logN) when using a
solver with linear convergence rate. �

Proof for Lemma 3.2

Denote the minimum spanning tree of G as T (a set of edges). And the minimum spanning tree after removing
ep,q from G.

If ep,q /∈ T , then obviously, T is still a minimum spanning tree after removing ep,q, so the cost of minimum
spanning remains the same.

If ep,q ∈ T , let T ′ = (T \ ep,q)∪{ep,k, eq,k}. Obviously, T ′ is still a spanning tree. Given that wp,k +wq,k =
wp,q, so we have c(T ′) and c(T ), which implies that T ′ is a minimum spanning tree of the graph after
removing ep,q.

The cost of minimum spanning tree remains the same in both cases, so we complete the proof. �

Proof for Theorem 3.3

First, we keep edges ek,0 ∀k ∈ [K]. Then we only need to consider edges ep,q such that wp,q < wp,0 + wq,0.

|E| = K +

K∑
p=1

K∑
q=p+1

1{lH(yp, yq) < Np +Nq}

where Np denotes the number of positive samples for label p.

Note that lH(yp, yq) < Np +Nq iff label p and label q does not share any positve samples.

|E| =K +

K∑
p=1

K∑
q=p+1

1
{ N∑
i=1

1{yp,i = yq,i = 1} > 0
}

≤K +

K∑
p=1

K∑
q=p+1

N∑
i=1

1{yp,i = yq,i = 1}

=K +

N∑
i=1

( K∑
p=1

K∑
q=p+1

1{yp,i = yq,i = 1}
)

=K +

N∑
i=1

|Li|2/2
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1 OVA-MST: algorithm

The detailed algorithm is shown in Algorithm 1.

Algorithm 1 OVA-MST

1: Input : {yk}k∈[K]

2: Construct label 0 and y0
3: Initialize a dictionary dk for each label k.
4: for i = 1 to N do
5: for label pairs p, q s.t. p, q ∈ Li, p 6= q do
6: dp[q]+ = 1
7: dq[p]+ = 1

8: for p = 1 to K do C convert d into weights.
9: for label q in dp do

10: dp[q] = Np +Nq − 2dp[q]

11: for k = 1 to K do C connect vertex 0 with all other edges
12: d0[k] = Nk C Nk is the number of positve samples for label k

13: Construct an empty undirected graph G(V,E) with K + 1 vertices.
14: for p = 0 to K do
15: for label q in dp s.t. q > k do
16: Add edge ep,q with weight dp[q] to E.

Run Kruskal’s algorithm to find the minimum spanning tree T of G.
17: Output : T

2 Implementation Details

All of our experiments are conducted on a server with 16 Intel Xeon E5-2690 @ 2.90GHz CPUs and 64GB
memory.

2.1 Stopping criterion for DiSMEC, OVA-Naive and OVA-Primal++

For a subproblem, denote the number of its positive samples as Npos and the number of negative samples as
Nneg. LIBLINEAR’s [1] default stopping criterion is ‖∇f(w)‖2 ≤ 0.01×min{Npos, Nneg}/N‖∇f(0)‖2.

In the setting of extreme classification, min{Npos, Nneg}/N = O(1/N), which is very strict when N is large.
So we modify the stopping criterion a little bit and stop when ‖∇f(w)‖2 ≤ min{ε1 min{Npos, Nneg}/N, ε2}‖∇f(0)‖2.
We set ε1 = 1.0 and ε2 = 1e− 4 in our experiments.
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