Supplementary Materials

Proof of Lemma 3.1

$$f(y_q, w_p^*) - f(y_q, w_q^*) = f(y_q, w_p^*) - f(y_p, w_p^*)$$
(1)

$$+ f(y_p, w_p^*) - f(y_q, w_p^*)$$
(2)

$$+ f(y_q, w_p^*) - f(y_q, w_q^*)$$
(3)

By the optimality of w_p^* , we know that Eq 2 is smaller or equal to 0. For Eq 1,

$$f(y_{q}, w_{p}^{*}) - f(y_{p}, w_{p}^{*}) = \left(\mathcal{R}(w_{p}^{*}) - \mathcal{R}(w_{p}^{*})\right) + C \sum_{i=1}^{N} \left(l(y_{q,i}x_{i}^{T}w_{p}^{*}) - l(y_{p,i}x_{i}^{T}w_{p}^{*})\right)$$

$$\leq C \sum_{i=1}^{N} \left|l(y_{q,i}x_{i}w_{p}^{*}) - l(y_{p,i}x_{i}^{T}w_{p}^{*})\right|$$

$$= C \sum_{i=1}^{N} \mathbf{1}\{y_{p,i} \neq y_{q,i}\} \left|l(x_{i}^{T}w_{p}^{*}) - l(-x_{i}^{T}w_{p}^{*})\right|$$

$$\leq C \sum_{i=1}^{N} \mathbf{1}\{y_{p,i} \neq y_{q,i}\} \alpha(2|x_{i}w_{p}^{*}|) \qquad (4)$$

$$\leq 2C \sum_{i=1}^{N} \mathbf{1}\{y_{p,i} \neq y_{q,i}\} \alpha B \qquad (5)$$

$$= 2C l_{H}(y_{p}, y_{q}) \alpha B$$

Eq 4 is true we assume that $l(\cdot)$ is α -Lipschitz. Eq 5 is true since $|x_i^T w_p^*| \leq ||x_i||_2 ||w_p^*||_2$, and in our assumptions, we have $||x_i||_2 \leq 1$ and $||w_p^*||_2 \leq B$, so we have $|x_i^T w_p^*| \leq B$

The same argument can also be applied for Eq 3, to sum these up, we can get the conclusion that

$$f(y_q, w_p^*) - f(y_q, w_q^*) \le 4l_H(y_p, y_q)C\alpha B.$$

Proof of Theorem 3.1

Set w_0 as w_0^* .

$$T_{total} = \sum_{k=1}^{K} T_{k}$$

$$= O\left(\frac{\sum_{k=1}^{K} \left(f(y_{k}, w_{0}^{*}) - f(y_{k}, w_{k}^{*})\right)}{\epsilon^{p}}\right)$$

$$= O\left(\frac{\sum_{k=1}^{K} 4l_{H}(y_{k}, y_{0})C\alpha B}{\epsilon^{p}}\right)$$

$$= O\left(\frac{\overline{NK}}{\epsilon^{p}}\right)$$

$$= O\left(\frac{N\overline{L}}{\epsilon^{p}}\right)$$
(6)

Eq 6 is true from lemma 1.

Proof of Theorem 3.2

$$T_{total} = \sum_{k=1}^{K} T_k$$
$$= O\left(\sum_{k=1}^{K} \log\left(\frac{f(y_k, w_0^*) - f(y_k, w_k^*)}{\epsilon}\right)\right)$$
$$= O\left(K \log\left(\sum_{k=1}^{K} \frac{f(y_k, w_0^*) - f(y_k, w_k^*)}{K\epsilon}\right)\right)$$
(7)

$$=O\left(K\log\left(\frac{\sum_{k=1}^{K}4l_{H}(y_{k},y_{0})C\alpha B}{K\epsilon}\right)\right)$$
(8)

$$=O\left(K\log\left(\frac{\overline{N}K}{K\epsilon}\right)\right)$$
$$=O\left(K\log\left(\frac{\overline{N}}{\epsilon}\right)\right)$$
(9)

 \overline{N} is the average number of samples per label, it usually does not scale with N, D or K for extreme classification problems. Eq 7 is true by the concavity of logrithm and Eq 8 is true from lemma 1.

With naive zeros initialization, we have $T'_{total} = O\left(K \log\left(\frac{N}{\epsilon}\right)\right)$

If we analyze the upper bound of T_{total} and T'_{total} and assume that \overline{N} and ϵ does not scale with N, then we have

$$\frac{K \log\left(\frac{N}{\epsilon}\right)}{K \log\left(\frac{\overline{N}}{\epsilon}\right)} = \log(\frac{N - \overline{N}}{\epsilon}) = \Theta(\log N)$$

So we can improve the upper bound of the total number of iterations by a factor of $\Theta(\log N)$ when using a solver with linear convergence rate.

Proof for Lemma 3.2

Denote the minimum spanning tree of G as $\mathcal{T}(a \text{ set of edges})$. And the minimum spanning tree after removing $e_{p,q}$ from G.

If $e_{p,q} \notin \mathcal{T}$, then obviously, \mathcal{T} is still a minimum spanning tree after removing $e_{p,q}$, so the cost of minimum spanning remains the same.

If $e_{p,q} \in \mathcal{T}$, let $\mathcal{T}' = (\mathcal{T} \setminus e_{p,q}) \cup \{e_{p,k}, e_{q,k}\}$. Obviously, \mathcal{T}' is still a spanning tree. Given that $w_{p,k} + w_{q,k} = w_{p,q}$, so we have $c(\mathcal{T}')$ and $c(\mathcal{T})$, which implies that \mathcal{T}' is a minimum spanning tree of the graph after removing $e_{p,q}$.

The cost of minimum spanning tree remains the same in both cases, so we complete the proof. \Box

Proof for Theorem 3.3

First, we keep edges $e_{k,0} \forall k \in [K]$. Then we only need to consider edges $e_{p,q}$ such that $w_{p,q} < w_{p,0} + w_{q,0}$.

$$|E| = K + \sum_{p=1}^{K} \sum_{q=p+1}^{K} \mathbf{1}\{l_H(y_p, y_q) < N_p + N_q\}$$

where N_p denotes the number of positive samples for label p.

Note that $l_H(y_p, y_q) < N_p + N_q$ iff label p and label q does not share any positive samples.

$$\begin{split} |E| = K + \sum_{p=1}^{K} \sum_{q=p+1}^{K} \mathbf{1} \Big\{ \sum_{i=1}^{N} \mathbf{1} \{ y_{p,i} = y_{q,i} = 1 \} > 0 \Big\} \\ \leq K + \sum_{p=1}^{K} \sum_{q=p+1}^{K} \sum_{i=1}^{N} \mathbf{1} \{ y_{p,i} = y_{q,i} = 1 \} \\ = K + \sum_{i=1}^{N} \Big(\sum_{p=1}^{K} \sum_{q=p+1}^{K} \mathbf{1} \{ y_{p,i} = y_{q,i} = 1 \} \Big) \\ = K + \sum_{i=1}^{N} |\mathcal{L}_i|^2 / 2 \end{split}$$

1 OVA-MST: algorithm

The detailed algorithm is shown in Algorithm 1.

Algorithm 1 OVA-MST

1: **Input** : $\{y_k\}_{k \in [K]}$ 2: Construct label 0 and y_0 3: Initialize a dictionary d_k for each label k. for i = 1 to N do 4: for label pairs p, q s.t. $p, q \in \mathcal{L}_i, p \neq q$ do 5: 6: $d_p[q] + = 1$ $d_{q}[p] + = 1$ 7: 8: for p = 1 to K do \triangleleft convert d into weights. for label q in d_p do 9: $d_p[q] = N_p + N_q - 2d_p[q]$ 10: 11: **for** k = 1 to K **do** \triangleleft connect vertex 0 with all other edges $d_0[k] = N_k$ $\triangleleft N_k$ is the number of positive samples for label k 12:13: Construct an empty undirected graph G(V, E) with K + 1 vertices. 14: for p = 0 to K do 15:for label q in d_p s.t. q > k do Add edge $e_{p,q}$ with weight $d_p[q]$ to E. 16:Run Kruskal's algorithm to find the minimum spanning tree \mathcal{T} of G. 17: **Output** : \mathcal{T}

2 Implementation Details

All of our experiments are conducted on a server with 16 Intel Xeon E5-2690 @ 2.90GHz CPUs and 64GB memory.

2.1 Stopping criterion for DiSMEC, OVA-Naive and OVA-Primal++

For a subproblem, denote the number of its positive samples as N_{pos} and the number of negative samples as N_{neg} . LIBLINEAR's [1] default stopping criterion is $\|\nabla f(w)\|_2 \leq 0.01 \times \min\{N_{pos}, N_{neg}\}/N\|\nabla f(0)\|_2$.

In the setting of extreme classification, $\min\{N_{pos}, N_{neg}\}/N = O(1/N)$, which is very strict when N is large. So we modify the stopping criterion a little bit and stop when $\|\nabla f(w)\|_2 \leq \min\{\epsilon_1 \min\{N_{pos}, N_{neg}\}/N, \epsilon_2\} \|\nabla f(0)\|_2$. We set $\epsilon_1 = 1.0$ and $\epsilon_2 = 1e - 4$ in our experiments.

References

 Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. LIBLINEAR: A library for large linear classification. *Journal of Machine Learning Research*, 9:1871–1874, 2008.