Supplementary Materials

Proof of Lemma 3.1
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By the optimality of wy, we know that Eq 2 is smaller or equal to 0.
For Eq 1,
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Eq 4 is true we assume that I(-) is a-Lipschitz. Eq 5 is true since |z wj| < [l2;]2[|w}]l2, and in our
assumptions, we have [|z;]|z <1 and ||w}|l2 < B, so we have |z] w?| < B

The same argument can also be applied for Eq 3, to sum these up, we can get the conclusion that
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Proof of Theorem 3.1

Set wp as wg.
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Eq 6 is true from lemma 1. O
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Proof of Theorem 3.2
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N is the average number of samples per label, it usually does not scale with N, D or K for extreme classifi-
cation problems. Eq 7 is true by the concavity of logrithm and Eq 8 is true from lemma 1.

With naive zeros initializaiton, we have T}, , = O (K log (%))

If we analyze the upper bound of T}ysq; and Ttoml and assume that N and e does not scale with N, then we
have



So we can improve the upper bound of the total number of iterations by a factor of ©(log N) when using a
solver with linear convergence rate. ]

Proof for Lemma 3.2

Denote the minimum spanning tree of G as T (a set of edges). And the minimum spanning tree after removing
ep,q from G.

If ey q ¢ T, then obviously, T is still a minimum spanning tree after removing ey, 4, so the cost of minimum
spanning remains the same.

Ife,qo€T,let T/ = (T \ epq) U{€p s eqr}t. Obviously, 7" is still a spanning tree. Given that wy j +wqr =
Wp,q, S0 we have ¢(T') and ¢(7), which implies that 7’ is a minimum spanning tree of the graph after
removing e 4.

The cost of minimum spanning tree remains the same in both cases, so we complete the proof. O

Proof for Theorem 3.3

First, we keep edges e o Vk € [K]. Then we only need to consider edges e, , such that wy ; < wp o + wWg,0-
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where IV, denotes the number of positive samples for label p.

Note that [ (yp,yq) < Np + Ny iff label p and label ¢ does not share any positve samples.
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1 OVA-MST: algorithm

The detailed algorithm is shown in Algorithm 1.

Algorithm 1 OVA-MST
1: Input : {yy re(x
2: Construct label 0 and yq
3: Initialize a dictionary dy, for each label k.
4: for i =1to N do
5: for label pairs p,q s.t. p,q € L;, p # q do
6
7
8
9

dp [g]+=1
dglpl+ =1
: for p=1to K do <l convert d into weights.
: for label ¢ in d, do
10: dplq] = Np + Ng — 2dp]q]
11: for k=1 to K do <1 connect vertex 0 with all other edges
12: do[k] = Ng <1 N}, is the number of positve samples for label k&

13: Construct an empty undirected graph G(V, E) with K + 1 vertices.
14: for p=0to K do
15: for label ¢ in dp, s.t. ¢ > k do

16: Add edge e, , with weight d,[q] to E.
Run Kruskal’s algorithm to find the minimum spanning tree T of G.

17: Qutput : T

2 Implementation Details

All of our experiments are conducted on a server with 16 Intel Xeon E5-2690 @ 2.90GHz CPUs and 64GB
memory.

2.1 Stopping criterion for DISMEC, OVA-Naive and OVA-Primal++
For a subproblem, denote the number of its positive samples as N},,, and the number of negative samples as
Npeg. LIBLINEAR’s [1] default stopping criterion is ||V f(w)|2 < 0.01 x min{Npos, Nneg }/N ||V £(0)]|2.

In the setting of extreme classification, min{Npos, Npeg}/N = O(1/N), which is very strict when N is large.
So we modify the stopping criterion a little bit and stop when ||V f(w)]|2 < min{e; min{Npos, Npeg}/N, €2}V f(0)]]2.
We set ¢, = 1.0 and €5 = le — 4 in our experiments.
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