Efficient Block Preconditioning for a C^1 Finite Element Discretisation of the Dirichlet biharmonic problem

Jennifer Pestana, Richard Muddle, Matthias Heil, Françoise Tisseur & Milan Mihalović

July 31, 2017

The biharmonic problem

The problem

The biharmonic problem

Find $u \in C^4(\Omega)$ such that

$$abla^4 u = f, \qquad u = rac{\partial u}{\partial n} = 0 ext{ on } \partial\Omega,$$

where $\Omega \subset \mathbb{R}^2$ has piecewise smooth boundary $\partial \Omega$, $f \in L^2(\Omega)$.

Two approaches

Original form

$$abla^4 u = f, \qquad u = rac{\partial u}{\partial n} = 0 ext{ on } \partial \Omega$$

Mixed form

$$-\nabla^2 w = f$$
$$-\nabla^2 u = w$$
$$u = \frac{\partial u}{\partial n} = 0 \text{ on } \partial\Omega$$

Two approaches

Original form

$$abla^4 u = f, \qquad u = rac{\partial u}{\partial n} = 0 \text{ on } \partial\Omega$$

Mixed form

$$-\nabla^2 w = f$$
$$-\nabla^2 u = w$$
$$u = \frac{\partial u}{\partial n} = 0 \text{ on } \partial\Omega$$

The finite element formulation

Finite element formulation

u,

$$\begin{split} \mathsf{a}(u,v) &:= \int_{\Omega} \nabla^2 u \, \nabla^2 v \, \mathrm{d}\Omega = \int_{\Omega} \mathsf{f} v \, \mathrm{d}\Omega \\ u &= \frac{\partial u}{\partial n} = 0 \text{ on } \partial\Omega \\ v \in S_0 \subset H_0^2(\Omega), \quad S_0 = \operatorname{span}\{\phi_1, \phi_2, \dots, \phi_N\} \end{split}$$

The finite element formulation

$$\sum_{i=1}^{N} u_i \int_{\Omega} \nabla^2 \phi_i \, \nabla^2 \phi_j \, \mathrm{d}\Omega = \int_{\Omega} f \phi_j \, \mathrm{d}\Omega$$

Linear system

 $\mathcal{A}\boldsymbol{u}=\boldsymbol{b},$

$$(\mathcal{A})_{ij} = \underbrace{\int_{\Omega} \nabla^2 \phi_i \, \nabla^2 \phi_j \, \mathrm{d}\Omega}_{\mathbf{a}(\phi_i, \phi_j)},$$

 $(\mathbf{u})_i = u_i, \qquad (\mathbf{b})_j = \int_{\Omega} f \phi_j \, \mathrm{d}\Omega$

 $\ensuremath{\mathcal{A}}$ is symmetric positive definite and sparse

Preconditioned conjugate gradients

 PCG

- Additive Schwarz methods X. Zhang (1994,1996)
- BPX preconditioning Oswald (1995)
- Problem-specific multigrid methods
 S. Zhang (1989), Bramble & X. Zhang (1995)
- Fast auxiliary space (FASP) preconditioning S. Zhang and Xu (2014)

Block preconditioners

Block preconditioners

$$\mathcal{A}_{ij} = \int_{\Omega} \nabla^2 \phi_i \nabla^2 \phi_j \, \mathrm{d}\Omega$$

$$\mathcal{A} = \begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{12}^T & A_{22} & A_{23} & A_{24} \\ A_{13}^T & A_{23}^T & A_{33} & A_{34} \\ A_{14}^T & A_{24}^T & A_{34}^T & A_{44} \end{bmatrix} \underbrace{\partial u/\partial x}{\partial^2 u/\partial x \partial y}$$

 $A_{ij} \in \mathbb{R}^{n \times n}$, $i, j = 1, \dots, 4$

First preconditioner

	4 × 4	8 imes 8	16 imes 16	32 imes 32
$\lambda_{min}(\mathcal{P}_1^{-1}\mathcal{A})$	0.72	0.64	0.61	0.60
$\lambda_{max}(\mathcal{P}_1^{-1}\mathcal{A})$	1.28	1.36	1.39	1.40

A first analysis

$$\mathcal{A} = \begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{12}^T & A_{22} & A_{23} & A_{24} \\ A_{13}^T & A_{23}^T & A_{33} & A_{34} \\ \hline A_{14}^T & A_{24}^T & A_{34}^T & A_{44} \end{bmatrix}$$

$$\mathcal{P}_1 = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{12}^T & A_{22} & A_{23} \\ A_{13}^T & A_{23}^T & A_{33} \\ & & & & A_{44} \end{bmatrix}$$

A first analysis

$$\mathcal{A} = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{12}^T & A_{22} & A_{23} \\ A_{13}^T & A_{23}^T & A_{33} \\ \hline A_{14}^T & A_{24}^T & A_{34}^T \\ \hline A_{14}^T & A_{14}^T & A_{14}^T \\ \hline A_{14}^T & A_{14}^T &$$

Theorem (PMHTH 16)

 $\mathcal{P}_1^{-1}\mathcal{A}$ has 4n-2r eigenvalues equal to 1 and any remaining eigenvalues λ satisfy

$$0 < 1 - \sqrt{\mu_{ extsf{max}}} \leq \lambda \leq 1 + \sqrt{\mu_{ extsf{max}}} < 2.$$

A first analysis

$$\mathcal{A} = \begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{12}^T & A_{22} & A_{23} & A_{24} \\ A_{13}^T & A_{23}^T & A_{33} & A_{34} \\ \hline A_{14}^T & A_{24}^T & A_{34}^T & A_{44} \end{bmatrix} \qquad \qquad \mathcal{P}_1 = \begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{13} & A_{14} \\ A_{12}^T & A_{22} & A_{23} & A_{23} & A_{24} \\ A_{13}^T & A_{23}^T & A_{33} & A_{34} \\ & & & & & & & & & & \\ \end{array}$$

Theorem (PMHTH 16)

 $\mathcal{P}_1^{-1}\mathcal{A}$ has 4n - 2r eigenvalues equal to 1 and any remaining eigenvalues λ satisfy

$$0 < 1 - \sqrt{\mu_{ extsf{max}}} \leq \lambda \leq 1 + \sqrt{\mu_{ extsf{max}}} < 2\lambda$$

 $\lambda_{\max}(\mathcal{P}_1^{-1}\mathcal{A}) < 2$ but the smallest eigenvalue could be arbitrarily small

A closer look

$$\mathcal{A}_{ij} = \int_{\Omega} \nabla^2 \phi_i \, \nabla^2 \phi_j = \sum_{i=1}^{M} \int_{\Omega_i} \nabla^2 \phi_i \, \nabla^2 \phi_j$$

$$\mathcal{A}_{ij} = \int_{\Omega} \nabla^2 \phi_i \, \nabla^2 \phi_j = \sum_{i=1}^{M} \int_{\Omega_i} \nabla^2 \phi_i \, \nabla^2 \phi_j$$

$$\mathcal{A}_{ij} = \int_{\Omega} \nabla^2 \phi_i \, \nabla^2 \phi_j = \sum_{i=1}^{M} \int_{\Omega_i} \nabla^2 \phi_i \, \nabla^2 \phi_j$$

$$\mathcal{A}_{ij} = \int_{\Omega} \nabla^2 \phi_i \, \nabla^2 \phi_j = \sum_{i=1}^{M} \int_{\Omega_i} \nabla^2 \phi_i \, \nabla^2 \phi_j$$

To assemble the matrix \mathcal{A} , we form

$$\mathcal{A} = \mathcal{L}^{\mathcal{T}} \begin{bmatrix} \mathcal{A}_{e_1} & & & \\ & \mathcal{A}_{e_2} & & \\ & & & \mathcal{A}_{e_M} \end{bmatrix} \mathcal{L}$$

Idea behind the analysis

$$\mathcal{A} = L^T \operatorname{diag}(A_e)L, \qquad \mathcal{P}_1 = L^T \operatorname{diag}(P_e)L$$

Idea: use the **element matrices** for eigenvalue analysis, since this is independent of the mesh size (Wathen 1987, 1992)

$$\mathcal{A} = L^T \operatorname{diag}(A_e)L, \qquad \mathcal{P}_1 = L^T \operatorname{diag}(P_e)L$$

Variational characterisation of eigenvalues

$$\lambda_{\min}(\mathcal{P}_1^{-1}\mathcal{A}) = \min_{\boldsymbol{x}\neq 0} \frac{\boldsymbol{x}^{\mathsf{T}}\mathcal{A}\boldsymbol{x}}{\boldsymbol{x}^{\mathsf{T}}\mathcal{P}_1\boldsymbol{x}}$$

$$\mathcal{A} = L^T \operatorname{diag}(A_e)L, \qquad \mathcal{P}_1 = L^T \operatorname{diag}(P_e)L$$

Variational characterisation of eigenvalues

$$\lambda_{\min}(\mathcal{P}_1^{-1}\mathcal{A}) = \min_{\mathbf{x}\neq 0} \frac{\mathbf{x}^T \mathcal{A} \mathbf{x}}{\mathbf{x}^T \mathcal{P}_1 \mathbf{x}} = \min_{\substack{\mathbf{y}=L\mathbf{x},\\\mathbf{x}\neq 0}} \frac{\mathbf{y}^T \operatorname{diag}(\mathcal{A}_e) \mathbf{y}}{\mathbf{y}^T \operatorname{diag}(\mathcal{P}_e) \mathbf{y}}$$

Can just examine each 16 \times 16 generalised eigenvalue problem

$$A_e \mathbf{z} = \mu P_e \mathbf{z}$$

A sticky situation

$$\lambda_{\min}(\widehat{\mathcal{P}}_{BD}^{-1}\mathcal{A}) = \min_{\mathbf{x}\neq 0} \frac{\mathbf{x}^{T}\mathcal{A}\mathbf{x}}{\mathbf{x}^{T}\mathcal{P}_{1}\mathbf{x}} = \min_{\substack{\mathbf{y}=L\mathbf{x},\\\mathbf{x}\neq 0}} \frac{\mathbf{y}^{T}\operatorname{diag}(A_{e})\mathbf{y}}{\mathbf{y}^{T}\operatorname{diag}(P_{e})\mathbf{y}}$$

- Both A_e and P_e are singular
- $\operatorname{null}(\operatorname{diag}(P_e)) \subset \operatorname{null}(\operatorname{diag}(A_e))$

$$\lambda_{\min}(\widehat{\mathcal{P}}_{BD}^{-1}\mathcal{A}) = \min_{\boldsymbol{x}\neq 0} \frac{\boldsymbol{x}^{T}\mathcal{A}\boldsymbol{x}}{\boldsymbol{x}^{T}\mathcal{P}_{1}\boldsymbol{x}} = \min_{\substack{\boldsymbol{y}=L\boldsymbol{x},\\\boldsymbol{x}\neq 0}} \frac{\boldsymbol{y}^{T}\operatorname{diag}(A_{e})\boldsymbol{y}}{\boldsymbol{y}^{T}\operatorname{diag}(P_{e})\boldsymbol{y}}$$

Both A_e and P_e are singular
null(diag(P_e)) ⊂ null(diag(A_e))

$$\frac{\mathbf{y}^{T} \operatorname{diag}(A_{e})\mathbf{y}}{\mathbf{y}^{T} \operatorname{diag}(P_{e})\mathbf{y}} = \frac{\mathbf{y}_{R}^{T} \operatorname{diag}(A_{e})\mathbf{y}_{R}}{(\mathbf{y}_{R} + \mathbf{y}_{M})^{T} \operatorname{diag}(P_{e})(\mathbf{y}_{R} + \mathbf{y}_{M})}$$

 $\mathcal{R} = \mathsf{range}(\mathsf{diag}(A_e)) \qquad \mathcal{M} = \mathsf{null}(\mathsf{diag}(A_e)) \cap (\mathsf{null}(\mathsf{diag}(P_e)))^{\perp}$

$$\lambda_{\min}(\widehat{\mathcal{P}}_{BD}^{-1}\mathcal{A}) = \min_{\mathbf{x}\neq 0} \frac{\mathbf{x}^{T}\mathcal{A}\mathbf{x}}{\mathbf{x}^{T}\mathcal{P}_{1}\mathbf{x}} = \min_{\substack{\mathbf{y}=L\mathbf{x},\\\mathbf{x}\neq 0}} \frac{\mathbf{y}^{T}\operatorname{diag}(A_{e})\mathbf{y}}{\mathbf{y}^{T}\operatorname{diag}(P_{e})\mathbf{y}} = \frac{\mathbf{y}_{R}^{T}\operatorname{diag}(A_{e})\mathbf{y}_{R}}{(\mathbf{y}_{R} + \mathbf{y}_{M})^{T}\operatorname{diag}(P_{e})(\mathbf{y}_{R} + \mathbf{y}_{M})}$$
$$\mathcal{R} = \operatorname{range}(\operatorname{diag}(A_{e})) \qquad \qquad \mathcal{M} = \operatorname{null}(\operatorname{diag}(A_{e})) \cap (\operatorname{null}(\operatorname{diag}(P_{e})))^{\perp}$$

For all grids tested $\boldsymbol{y}_R^T \operatorname{diag}(P_e) \boldsymbol{y}_R > \boldsymbol{y}_M^T \operatorname{diag}(P_e) \boldsymbol{y}_M$ for any $\boldsymbol{y} = L \boldsymbol{x}$

Pulling things together

Theorem (PMHTH 16)

Assuming that $\mathbf{y}_R^T \operatorname{diag}(P_e)\mathbf{y}_R > \mathbf{y}_M^T \operatorname{diag}(P_e)\mathbf{y}_M$, the eigenvalues λ of $\mathcal{P}_1^{-1}\mathcal{A}$ satisfy

 $0.0118 \leq \lambda < 2.$

Similar results hold for stretched grids.

For comparison:

	4 × 4	8 imes 8	16 imes 16	32 imes 32
$\lambda_{min}(\mathcal{P}_1^{-1}\mathcal{A})$	0.72	0.64	0.61	0.60
$\lambda_{max}(\mathcal{P}_1^{-1}\mathcal{A})$	1.28	1.36	1.39	1.40

A more practical preconditioner

Second preconditioner

$$\mathcal{P}_{1} = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{12}^{T} & A_{22} & A_{23} \\ A_{13}^{T} & A_{23}^{T} & A_{33} \\ & & & A_{44} \end{bmatrix} \qquad \qquad \mathcal{P}_{2} = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{12}^{T} & A_{22} & \\ A_{13}^{T} & & A_{33} \\ & & & & A_{44} \end{bmatrix}$$

	4 × 4	8×8	16 imes16	32 imes 32
$\lambda_{min}(\mathcal{P}_2^{-1}\mathcal{A})$	0.72	0.62	0.58	0.56
$\lambda_{max}(\mathcal{P}_2^{-1}\mathcal{A})$	1.28	1.38	1.40	1.41

Second preconditioner

$$\mathcal{P}_{1} = \begin{bmatrix} A_{11} & A_{12} & A_{13} & & \\ A_{12}^{T} & A_{22} & A_{23} & & \\ A_{13}^{T} & A_{23}^{T} & A_{33} & & \\ & & & & A_{44} \end{bmatrix} \qquad \qquad \mathcal{P}_{2} = \begin{bmatrix} A_{11} & A_{12} & A_{13} & & \\ A_{12}^{T} & A_{22} & & & \\ A_{13}^{T} & & A_{33} & & \\ & & & & & A_{44} \end{bmatrix}$$

	4 × 4	8×8	16 imes16	32 imes 32
$\lambda_{min}(\mathcal{P}_2^{-1}\mathcal{A})$	0.72	0.62	0.58	0.56
$\lambda_{max}(\mathcal{P}_2^{-1}\mathcal{A})$	1.28	1.38	1.40	1.41

- Can bound eigenvalues by combining bounds for $\mathcal{P}_2^{-1}\mathcal{P}_1$ and $\mathcal{P}_1^{-1}\mathcal{A}$
- These are complicated

Implementation

where

$$S_{11} = A_{11} - A_{12}A_{22}^{-1}A_{12}^{T} - A_{13}A_{33}^{-1}A_{13}^{T}$$

• Can lump A₂₂, A₃₃, A₄₄, or use diagonal, without greatly affecting eigenvalues/bounds

• Can approximate S₁₁ using multigrid

Square elements

Stretched elements

Distorted elements

Non-convex domain

Conclusions

Conclusions

- Preconditioners based on blocking *A* according to basis function type can be very effective
- Both \mathcal{P}_1 and \mathcal{P}_2 seem to give mesh independent convergence; proved for \mathcal{P}_1
- Preconditioners robust to stretching and distortion of elements
- Some loss of robustness of AMG version but still the fastest!

Future work

- More complete analysis of \mathcal{P}_1 and \mathcal{P}_2
- Alternative block preconditioners
- More robust AMG

Thank you!

References

- J. Pestana *et al.*, "Efficient block preconditioning for a C¹ finite element discretization of the Dirichlet biharmonic problem," *SIAM J. Sci. Comput.*, vol. 38, A325–A345, 2016.
- A. J. Wathen, "Spectral bounds and preconditioning methods using element-by-element analysis for Galerkin finite element equations," in *The Mathematics of Finite Elements and Applications VI, MAFELAP* 1987, J. R. Whiteman, Ed., London, UK: Academic Press, 1988, pp. 157–168.

——, "Singular element preconditioning for the finite element method," in *Iterative Methods in Linear Algebra*, R. Beauwens and P. de Groen, Eds., Amsterdam: North Holland, 1992, pp. 531–540.