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Gaussian processes

Gaussian processes (GP) are stochastic models
whereby observations are jointly Gaussian

Notation: site x ∈ Rd,
(random) observation Z(x) : Rd → R,
mean function µ(x) : Rd → R,
covariance function k(x,x′) : Rd × Rd → R
For any collection of distinct sites x1, . . . , xn,
the random vector z ∼ N (µ,K), where

z =

Z(x1)
...

Z(xn)

 , µ =

µ(x1)
...

µ(xn)

 ,

K =

k(x1,x1) · · · k(x1,xn)
...

. . .
...

k(xn,x1) · · · k(xn,xn)

 .

x
0 0.5 1

Z
(x

)

-3

-2

-1

0

1

2

1D example

2D example

Jie Chen (IBM Research) Covariance Matrices Preconditioning 2017 2 / 47



Gaussian processes

GP models may be used for:

Sampling: Simulate random observations

Kriging: Interpolate observations

Model selection: What is the right interpolation?

(a) Sampling (b) Kriging (c) Model selection

Uncertainty quantification:

Observation = Physical model (diff. eqn.) + GP noise

All calculations involve the covariance matrix K
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Gaussian processes

Assume zero-mean for simplicity

Sampling:

z = Cholesky(K) · y or = K
1
2y, where y ∼ N (0n, In)

Kriging:

Ẑ(x0) = wT
0 K
−1z where w0 = [k(x0,x1), . . . , k(x0,xn)]T

Var{Ẑ(x0)− Z(x0)} = Var{Z(x0)} −wT
0 K
−1w0

Log-likelihood function (Assume kernel is parameterized by θ):

L(θ) = −1

2
zTK(θ)−1z − 1

2
log detK(θ)− n

2
log 2π

Evaluating L(θ) is often a subroutine inside an optimization problem (e.g.,
maximum likelihood MLE, maximum a posteriori MAP, etc)
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What is special about covariance matrices?

Symetric positive definite

Fully dense

Increasingly ill conditioned
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Positive definiteness

K must be pd because by definition, it is covariance

A bivariate function k(·, ·) is strictly pd if
∑
αiαjk(xi,xj) > 0 for all α 6= 0

Stationary kernel: Simplify k(y, z) as k(x), where x = y − z

Bochner’s Theorem (1D)

A function k with k(0) = 1 is pd if and only if it is a characteristic function.

k(x) = E[eixΩ] =

∫
R
eixω dF (ω)︸ ︷︷ ︸

cdf

; if F ′ = f , then k(x) =

∫
R
eixω f(ω)︸︷︷︸

pdf

dω.

Example: Matérn covariance functions

k(x) =
1

2ν−1Γ(ν)

(√
2ν‖x‖
`

)ν
Kν

(√
2ν‖x‖
`

)

f(ω) =
(2ν)νΓ(ν + d/2)

πd/2`2νΓ(ν)

(
2ν

`2
+ ‖ω‖2

)−(ν+d/2)

> 0
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Positive definiteness
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Ill conditioning

Basic tools for calculating condition number

In what follows we always assume that k is stationary and continuous

Quadratic form of K is related to Fourier integral

aTKa =
∑
i,j

aiajk(xi − xj) =

∫
Rd
f(ω)

∣∣∣∣∣∑
j

aje
iωTxj

∣∣∣∣∣
2

dω.

Quadratic form is also the variance of a linear combination of the random
observations

aTKa = Var

∑
j

ajZ(xj)

 .
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Ill conditioning

Theorem
Assume the observation domain has a finite parameter. Then, the condition
number κ(K) grows faster than linearly in n.

Proof.

Observation sites x1, . . . ,xn become denser and denser in a fixed domain;
hence one may pick two sites y and z increasingly close, such that
Var{Z(y)− Z(z)} → 0.

Therefore, minimum eigenvalue of K tends to 0.

There exists r > 0 such that k(x) ≥ 1
2k(0) for all ‖x‖ ≤ r. The domain may

be covered by balls of diameter r. Let the number of these balls be B.

One of the balls must contain at least m ≥ n/B observations.

Hence, the sum of these observations, divided by
√
m, has variance at least

1
2k(0)m ≥ k(0)

2B n

Therefore, maximum eigenvalue of K grows at least linearly in n.
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Ill conditioning

In practice, the condition number may grow much faster than linearly.

Consider a regular grid ∈ [0, 1]d with size n1 × · · · × nd. Let n = n1n2 · · ·nd.

Use vector indices.

When restricted on grid, the Fourier integral may be rewritten as an integral
in [−π, π]d:

aTKa =

∫
[−π,π]d

fn(ω)

∣∣∣∣∣∑
j

aje
iωT j

∣∣∣∣∣
2

dω,

where
fn(ω) = n

∑
l∈Zd

f(n ◦ (ω + 2πl)), ω ∈ [−π, π]d.

If f is radially decreasing,

sup fn = fn(0) ∼ nf(0) and inf fn = fn(π) ∼ 2dnf(n ◦ π).

Thus, κ(K) increases in a polynomial rate if f decreases so.
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Ill conditioning

Theorem
For anisotropic Matérn covariance functions

k(x) =

(√
2νr
)ν

Kν
(√

2νr
)

2ν−1Γ(ν)
where r =

√
x2

1

`21
+ · · ·+ x2

1

`21
,

the condition number κ(K) grows as (`21n
2
1 + · · ·+ `2dn

2
d)
ν+d/2. Therefore, if the

grid has the same size along each dimension, then κ grows as n1+2ν/d.
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Why preconditioning?

(Obvious reason:) Improve convergence speed of iterative solves

(Additional reason:) Improve parameter estimates
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Parameter estimation

A covariance function has a vector θ of parameters. E.g., in Matérn, the
parameters are ν and `.

There are several approaches for estimating θ.

Maximum likelihood estimation approach:

θ̂ = argmax
θ

L(θ), where L ≡ −1

2
zTK(θ)−1z−1

2
log detK(θ)−n

2
log 2π

Estimating equation approach:

θ̂ solves h(θ) = 0 where E[h] = 0.

Effectiveness of the estimation:

θ̂
a∼ N (θ,G{h}−1) if z ∼ N (0,K(θ)).

where G{h} ≡ E[∇h] ·Var{h}−1 ·E[∇h] is the Godambe information matrix.

When the estimating equations are score equations h = ∇L,

G{h} = −∇2L.
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Parameter estimation

To bypass the trace calculation, one may use approximate score equations

hi =
1

2
zTK−1(∂iK)K−1z − 1

2
tr[K−1(∂iK)]

↓

hNi =
1

2
zTK−1(∂iK)K−1z − 1

2N

N∑
j=1

uTj K
−1(∂iK)uj

where the uj ’s are independent symmetric Bernoulli vectors (taking ±1 with
equal probability)

Theorem

G{hN} �
{

1 +
(κ+ 1)2

4κN

}−1

G{h}, where κ is the condition number of K.
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Preconditioning overview
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Overview

In all the techniques that follow, preconditioning is in the form

K̃ = LKLT ,

where L is a discrete analog of differential operators.

Because of domain boundary, L may have fewer rows than columns.

Such techniques correspond to whitening a process:

Var{Lz} = LKLT −→ well conditioned

L ∈ Rm×n. As long as m ≈ n, estimation asymptotics is preserved.

For example, the quadratic term in the likelihood function

zTK−1z
new problem−−−−−−−→ zTLT (LKLT︸ ︷︷ ︸

K̃

)−1 Lz︸︷︷︸
z̃

In some scenarios, we may get an O(1) condition number.
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Part 1: 1D, irregular grid

• • • • • •
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f ’s tail behaves like ω−2

Let 0 ≤ x0 < x1 < · · · < xn ≤ T . Define dj = xj − xj−1.

Theorem A

Assume that f(ω)ω2 is bounded away from 0 and ∞ as ω →∞. Define filtered
random variables

Y
(1)
j = [Z(xj)− Z(xj−1)]/

√
dj

and denote by K(1) their covariance matrix. Then, there exists a constant
depending only on T and f that bounds the condition number of K(1) for all n.

That is,

K(1) = L(1)KL(1)T ,

where L
(1)
j,j−1 = −1/

√
dj and L

(1)
j,j = 1/

√
dj .

L(1) =

 
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f ’s tail behaves like ω−2

Note that L(1)1 = 0

For any a, the quadratic form of K(1) becomes

aTK(1)a = aTL(1)K L(1)Ta︸ ︷︷ ︸
b

= bTKb,

where bT1 = 0.

In other words, we only need to consider the quadratic form of K in the
orthogonal complement of 1.
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f ’s tail behaves like ω−2

Proof sketch.

Construct fR where fR = f near the origin and fR ∝ (1 + ω2)−1 at the tail.
Then, because f(ω)ω2 is bounded away from 0 and ∞ at the tail, there
exists C0 and C1 such that C0fR ≤ f ≤ C1fR for all ω. Then, based on
Fourier integral,

C0a
TK

(1)
fR
a ≤ aTK(1)

f a ≤ C1a
TK

(1)
fR
a, ∀a. (1)

Brownian motion is not stationary, but it also admits a Fourier integral
representation:

Var

∑
j

bjZ(xj)

 =
∑
i,j

bibjG(xi − xj) =

∫
g(ω)

∣∣∣∣∣∑
j

bje
iωxj

∣∣∣∣∣
2

dω,

for all b satisfying bT1 = 0, where g = ω−2 and G ∝ |x|.
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f ’s tail behaves like ω−2

Proof sketch (continued).

We leverage some results on the equivalence of Gaussian measures:

PT,0(fR) ≡ PT,0((1 + ω2)−1) ≡ PT,0(g).

That is, there exists C2 and C3 such that

C2 Varg

∑
j

bjZ(xj)

 ≤ VarfR

∑
j

bjZ(xj)

 ≤ C3 Varg

∑
j

bjZ(xj)

 .

For any a, we have b = L(1)Ta satisfying bT1 = 0. Therefore, relating the
variance to the quadratic form, we have

C2a
TK(1)

g a ≤ aTK(1)
fR
a ≤ C3a

TK(1)
g a, ∀a. (2)
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f ’s tail behaves like ω−2

Proof sketch (continued).

Combining (1) and (2) leads to

C0C2a
TK(1)

g a ≤ aTK(1)
f a ≤ C1C3a

TK(1)
g a, ∀a.

For Brownian motion, K
(1)
g is a multiple of the identity. Therefore, the

condition number of K
(1)
f is bounded by (C1C3)/(C0C2).
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f ’s tail behaves like ω−2

In Theorem A, L(1) is rectangular. We now make it square.

Corollary A

Based on Theorem A, we additionally define

Y
(1)
0 = Z(x0)

and denote by K̃(1) the covariance matrix of the Y
(1)
j ’s. Then, there exists a

constant depending only on T and f that bounds the condition number of K̃(1)

for all n.

K̃(1) = L̃(1)KL̃(1)T , L̃(1) =


1



Jie Chen (IBM Research) Covariance Matrices Preconditioning 2017 23 / 47



f ’s tail behaves like ω−4

In Theorem A, the tail of f behaves like ω−2. We now assume a different tail.

Theorem B

Assume that f(ω)ω4 is bounded away from 0 and ∞ as ω →∞. Define filtered
random variables

Y
(2)
j =

[Z(xj+1)− Z(xj)]/dj+1 − [Z(xj)− Z(xj−1)]/dj

2
√
dj+1 + dj

and denote by K(2) their covariance matrix. Then, there exists a constant
depending only on T and f that bounds the condition number of K(2) for all n.

K(2) = L(2)KL(2)T ,
L

(2)
j,j−1 = (2dj

√
dj+1 + dj)

−1

L
(2)
j,j+1 = (2dj+1

√
dj+1 + dj)

−1

L
(2)
j,j = −L(2)

j,j−1 − L
(2)
j,j+1

L(2) =

 
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f ’s tail behaves like ω−4

In Theorem B, L(2) is rectangular. We now make it square.

Corollary B

Based on Theorem B, we additionally define

Y
(2)
0 = Z(x0) + Z(xn) and Y (2)

n = [Z(xn)− Z(x0)]/(xn − x0)

and denote by K̃(2) the covariance matrix of the Y
(2)
j ’s. Then, there exists a

constant depending only on T and f that bounds the condition number of K̃(2)

for all n.

K̃(2) = L̃(2)KL̃(2)T , L̃(2) =


1 1

−δ δ

 , δ = 1/(xn − x0)
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Numerical examples

Uniformly random points in [0, 1]

Length scale ` = 0.05
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Numerical examples

What if the tail of f is similar to neither ω−2 nor ω−4?

Preconditioning is still useful (more on this in Parts 4 and 5).
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Part 2: d dimensions, regular grid
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f behaves like (1 + ‖ω‖)−4τ

WLOG, assume equal spacing δ along each dimension. Different spacings
may be absorbed by the anisotropy of the kernel.

Using vector index, a grid point is δj, 0 ≤ j ≤ n
Define discrete Laplace operator D

DZ(x) =

d∑
p=1

Z(x− δep)− 2Z(x) + Z(x+ δep), x ∈ grid.

For any positive integer τ , define filtered random variables

Y
[τ ]
j = Dτ Z(δj).

Theorem

Assume that f(ω) � (1 + ‖ω‖)4τ . Denote by K [τ ] the covariance matrix of the

Y
[τ ]
j ’s. Then, there exists a constant depending only on the domain size and on f

that bounds the condition number of K [τ ] for all n.
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f behaves like (1 + ‖ω‖)−4τ

The preconditioned matrix

K [τ ] = L[τ ]KL[τ ]T

where

L[τ ] = Ln−τ+1 · · ·Ln−1Ln

size of Ls is (s− 1)d × (s+ 1)d with

(i, j)-element =


−2d, i = j,

1, i = j ± ep, p = 1, . . . , d,

0, otherwise.

Note that the proof relies on the assumption f(ω) � (1 + ‖ω‖)4τ for all ω, not
just the tail.
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Numerical examples

Domain [0, 1]2

Length scale `1 = 0.05, `2 = 0.08

Extreme eigenvalues are estimated by using Lanczos1
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1Not quite accurate for the smallest eigenvalue if condition number is high
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Part 3: d dimensions, irregular grid
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f behaves like (1 + ‖ω‖)−4τ

What is the discrete Laplace operator D on an irregular grid?

For this, we borrow ideas from finite elements.

For u ∈ C2(Ω), discretize the Green’s identity to obtain discrete ∆u∫
Ω

(v∆u+∇v · ∇u) =

∮
∂Ω

v(∇u · n).

Use d-simplex elements and linear basis functions for simplicity
Let vi(x) denotes the basis at node xi
Result:

M


...

∆u(xi)
...

 = (S +B)


...

u(xi)
...

 ,
where

Mki =

∫
Ω

vkvi︸ ︷︷ ︸
mass matrix

, Ski = −
∫

Ω

∇vk · ∇vi︸ ︷︷ ︸
stiffness matrix

, Bki =

∮
∂Ω

vk(∇vi · n)︸ ︷︷ ︸
boundary

.
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f behaves like (1 + ‖ω‖)−4τ

D = M−1(S +B)?

Not good enough, because unlike differential equations that come with a
boundary condition, we have “unknown” points xi on the boundary.

To make a proper definition, we need some properties of M , S, and B.

Proposition

For every k,

Mkk = 2
∑
i 6=kMki∑

i Ski = 0. In particular for every xk /∈ ∂Ω,
∑
i Skixi = 0∑

iBki = 0. In particular for every xk /∈ ∂Ω, Bki = 0 for all i∑
i(S +B)kixi = 0

Mkk =
2

d(d+ 1)

∑
E3xk

meas(E), so M is well conditioned for “good” meshes
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f behaves like (1 + ‖ω‖)−4τ

We are now ready to deal with boundary

Let M ′ be diagonal with M ′kk = 3
2
Mkk (absorbing off-diagonals)

For M ′, remove the rows and columns corresponding to boundary
For S and B, remove the rows corresponding to boundary
After removing the rows, B becomes empty

Thus, our version of the discrete Laplace operator is the matrix L with

Lki =
Ski
Mkk

, ∀xk /∈ ∂Ω, ∀xi

Similar to the regular grid case, the preconditioned matrix

K [τ ] = L[τ ]KL[τ ]T

where L[τ ] = Ln−τ+1 · · ·Ln−1Ln and each Ls is a copy of L defined above,
with layer(s) of boundary points removed.
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Numerical examples

Seeded with random points inside [0, 1]× [0, 0.8]

Use triangle software to triangulate and refine the
mesh recursively, based on area constraint

Length scale ` = 0.05
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Part 4: f behaves like (1 + ‖ω‖)−α for general α
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f behaves like (1 + ‖ω‖)−α

Intuitions:

For regularly grided data, rewrite the Fourier integral as one in [−π, π]d.
Spectral density f becomes a periodic function fn. Eigenvalues of K are
approximately the equally-spaced samples of fn:

aTKa =

∫
[−π,π]d

fn(ω)

∣∣∣∣∣∑
j

aje
iωT j

∣∣∣∣∣
2

≈ (2π)d

n

∑
k

fn(2πk/n)

∣∣∣∣∣∑
j

aje
i(2πk/n)T j

∣∣∣∣∣
2

After applying discrete Laplace operator 2s times, K becomes K [s] and fn
becomes f

[s]
n , where

f [s]
n (ω) = fn(ω)

[
d∑
p=1

4n2
p sin2

(ωp
2

)]2s

.

In the continuous case, the spectral density is similarly flattened:

∆2sk(x) =

∫
Rd

‖ω‖4sf(ω)︸ ︷︷ ︸
decreases slower than f

eiω
Tx dω.
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Numerical examples

Rule of thumb: Apply discrete Laplace operator 2s times such that 4s is
closest to α

Recall, for Matérn, α = 2ν + d

d = 2 for all the following plots
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(b) ν = 1.5, FEM mesh
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(c) ν = 2, FEM mesh
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Numerical examples

Number of CG iterations to solve K [s]x = 1 such that relative residual < 1e-8

ν s
log2 n ≈

9 10 11 12 13 14
Grid 1 1 33 33 34 34 36 37
Grid 3 1 25 34 52 88 151 287
Grid 3 2 57 77 102 127 157 185
Grid 1.5 1 25 27 30 34 38 42
Mesh 1.5 1 97 104 103 96 95 94
Mesh 2 1 88 91 88 90 100 119
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Part 5: Generalized covariance functions
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Generalized covariance functions

We have seen in the proof of Theorem A that some Gaussian processes,
despite nonstationary, admit a Fourier integral representation

Var

∑
j

ajZ(xj)

 =
∑
i,j

aiajG(xi − xj) =

∫
g(ω)

∣∣∣∣∣∑
j

aje
iωTxj

∣∣∣∣∣
2

dω,

for all a lying in a subspace.

For example, the powerlaw kernel

G(x) =

{
Γ(−β/2)‖x‖β , β/2 /∈ N,
2(−1)β/2+1

(β/2)! ‖x‖β log ‖x‖, β/2 ∈ N,

g(ω) =
2β

πd/2
Γ

(
β + d

2

)
‖ω‖−β−d,∑

j

ajP (xj) = 0 for all polynomials P of degree up to bβ/2c.
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Numerical examples

Rule of thumb: Apply discrete Laplace operator 2s times such that 4s is
closest to β + d

d = 2 for all the following plots
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(a) β = 2, regular grid
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(b) β = 2, FEM mesh
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(c) β = 3, FEM mesh
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Numerical examples

Number of CG iterations to solve K [s]x = 1 such that relative residual < 1e-8

β s
log2 n ≈

9 10 11 12 13 14
Grid 2 1 13 13 13 13 13 13
Mesh 2 1 32 36 33 35 37 40
Mesh 3 1 60 78 85 108 128 160
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Concluding remarks

Gaussian processes pose substantial challenges for linear algebra

We initially thought of doing things in a matrix-free way [1, 2, 3]: Turn
everything (square root [4], determinant [5, 6], linear solves [7, 8], etc) into
fast matvec [9, 10] + preconditioning [11, 12]

There is a lot to exploit from the covariance function k

For preconditioning, look at the decay rate of the Fourier transform f and
differentiate it a number of times (to flatten the spectrum)

The proposed method is mathematically interesting and it empirically works
well, but is it the best approach?

See my talk tomorrow at Minisymposium 5: Preconditioning in the Context
of Radial Basis Functions, Part I. 09:45am–11:45am. FSC 1005
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