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Gaussian processes

o Gaussian processes (GP) are stochastic models
whereby observations are jointly Gaussian

o Notation: site & € R,
(random) observation Z(x) : R? — R,
mean function u(x) : R — R,
covariance function k(z,z’') : RY x R? — R

@ For any collection of distinct sites 1, ..., @y,
the random vector z ~ N (p, K), where

Z(z1) (1)
z= : M= : )
Z(zn) (@)
k(xy,x1) -+ k(xy,x,)
K= : . :
k(@n,x1) - k(zn, n)

Z(x)
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X
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Gaussian processes

GP models may be used for:
@ Sampling: Simulate random observations
o Kriging: Interpolate observations
@ Model selection: What is the right interpolation?

e

(a) Sampling ) Kriging ) Model selection

@ Uncertainty quantification:
Observation = Physical model (diff. eqn.) + GP noise

All calculations involve the covariance matrix K
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Gaussian processes

Assume zero-mean for simplicity

@ Sampling:
z = Cholesky(K)-y or =K%y, wherey~N(0,,I,)
o Kriging:

Z(xo) = wa K 'z where wy = [k(xg, 1), .., k(xo,x,)]"

Var{Z(zo) — Z (o)} = Var{Z(xo)} — wl K 'w,

o Log-likelihood function (Assume kernel is parameterized by 0):

1
£(0) = —52"K(0) 'z — 5 logdet K (6) — glog o

e Evaluating £(0) is often a subroutine inside an optimization problem (e.g.,
maximum likelihood MLE, maximum a posteriori MAP, etc)
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What is special about covariance matrices?

@ Symetric positive definite
o Fully dense

@ Increasingly ill conditioned
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Positive definiteness

@ K must be pd because by definition, it is covariance
@ A bivariate function k(-,-) is strictly pd if > oz ;k(x;, ;) > 0 for all ¢ # 0
o Stationary kernel: Simplify k(y, z) as k(x), where x =y — z

Bochner's Theorem (1D)

A function k with k£(0) = 1 is pd if and only if it is a characteristic function.

k(z) = 9] = / ¢ dF(w); i F' = f, then k(z) = / 7 f(w) do.
S L
c p

Example: Matérn covariance functions
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Positive definiteness
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Matérn covariance function and spectral density (length scale £ = 1)

Jie Chen (IBM Research)

Covariance Matrices

Preconditioning 2017 7/ 47



lll conditioning

Basic tools for calculating condition number
@ In what follows we always assume that k is stationary and continuous

o Quadratic form of K is related to Fourier integral

2
T iw ez,
a Ka= a;aik(x; —x;) = w a;e 7 dw.
Saasklei—w) = [ @) Yo
i, J
@ Quadratic form is also the variance of a linear combination of the random

observations

a” Ka = Var ZajZ(mj)
J
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lll conditioning

Assume the observation domain has a finite parameter. Then, the condition
number k(K) grows faster than linearly in n.

Proof.

@ Observation sites x1,...,x, become denser and denser in a fixed domain;
hence one may pick two sites y and z increasingly close, such that
Var{Z(y) — Z(z)} — 0.

@ Therefore, minimum eigenvalue of K tends to 0.

o There exists r > 0 such that k(z) > $k(0) for all ||| < r. The domain may
be covered by balls of diameter r. Let the number of these balls be B.

@ One of the balls must contain at least m > n/B observations.

@ Hence, the sum of these observations, divided by y/m, has variance at least
$k(0)ym > %n

@ Therefore, maximum eigenvalue of K grows at least linearly in n. ]
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lll conditioning

In practice, the condition number may grow much faster than linearly.
o Consider a regular grid € [0, 1]¢ with size ny x --- x ng. Let n = niny---ny.
@ Use vector indices.
@ When restdricted on grid, the Fourier integral may be rewritten as an integral

in [—7, ] ,

dw,

a"Ka = / fn(w)
[=m,m]d

. T -
E oW
aje
J

where
fa@)=nY_ f(no(w+2nl), wel-mmr"

leza

o If f is radially decreasing,
Supfn:fn(O)an(O) and inffn:fn(ﬂ)Nanf(noﬂ)'

@ Thus, k(K) increases in a polynomial rate if f decreases so.
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lll conditioning

Theorem

For anisotropic Matérn covariance functions

( QVT)VKU( 21/7’)
2v=1T(v)

k(x) =

the condition number x(K) grows as (£2n? + - - - + £2n2)?+4/2 Therefore, if the
grid has the same size along each dimension, then K grows as nlt2v/d,

x" s X
12
,--Xv

z 10 =z
I e %
2 8 X g

X

6f .
x
25 3 3.5
log ,, (n)

(ayd=1,v=2
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Why preconditioning?

@ (Obvious reason:) Improve convergence speed of iterative solves

o (Additional reason:) Improve parameter estimates
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Parameter estimation

@ A covariance function has a vector 6 of parameters. E.g., in Matérn, the
parameters are v and /.

@ There are several approaches for estimating 6.
@ Maximum likelihood estimation approach:

~ 1 1
0 = argmax £(6), where L= —izTK(H)*lz—i log det K(O)—g log 27
)

o Estimating equation approach:

6 solves h(0)=0 where E[h]=0.
o Effectiveness of the estimation:

0L N@O,G{h}™") if z~N(0, K(6)).

where G{h} = E[Vh]-Var{h}~!-E[Vh] is the Godambe information matrix.
@ When the estimating equations are score equations h = V.,

G{h} = -V?L.
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Parameter estimation

@ To bypass the trace calculation, one may use approximate score equations
L gy o, 1 -1
hi = iz K (6ZK)K z — §tr[K (61K)]
+
1 1 &
N _ L Tg—1 -1 T 7-—1
WY =52 KT 0K 2 — ﬁ;ujf( (0, K )

where the u;'s are independent symmetric Bernoulli vectors (taking £1 with
equal probability)

(k+1)°
4k N

=]
} G{h}, where k is the condition number of K.

G{RY) = {1+
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Preconditioning overview
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Overview

@ In all the techniques that follow, preconditioning is in the form
K=LKL",

where L is a discrete analog of differential operators.

Because of domain boundary, L may have fewer rows than columns.
@ Such techniques correspond to whitening a process:

Var{Lz} = LKL" — well conditioned

L € R™*™ As long as m = n, estimation asymptotics is preserved.

For example, the quadratic term in the likelihood function

TRy feverdem TrT(IKLT) Lz
— =~

K z

@ In some scenarios, we may get an O(1) condition number.
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Part 1: 1D, irregular grid
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f's tail behaves like w2

o let0<zy <21 < <xp <T. Defined; =x; —xj_1.

Theorem A

Assume that f(w)w? is bounded away from 0 and co as w — co. Define filtered

random variables .
Y = [2(x;) - Z(z;1))/ V45

and denote by K@) their covariance matrix. Then, there exists a constant
depending only on 7" and f that bounds the condition number of K1) for all n.

4

That is,

KW = WK™, jA \\
where L( _,=-1/4/d; and L(1 =1/./d;
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f's tail behaves like w2

o Note that LMW1 =0

e For any a, the quadratic form of K becomes

aTKWa=a’LOK LMW ¢ — 5T Kb,
—
b

where b1 = 0.

@ In other words, we only need to consider the quadratic form of K in the
orthogonal complement of 1.
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f's tail behaves like w2

Proof sketch.

e Construct fr where fr = f near the origin and fr o (1 4+ w?)~! at the tail.
Then, because f(w)w? is bounded away from 0 and oo at the tail, there
exists Cy and C such that Cyfr < f < Cyfg for all w. Then, based on
Fourier integral,

C’OaTK](cll%)a < aTKJ(cl)a < C’laTKJ(cll:{)a, Va. (1)

@ Brownian motion is not stationary, but it also admits a Fourier integral
representation:

2
dw,

§ bj eiwmj

J

Var d 30,200 b = b, Glai ) = / o(w)

for all b satisfying 871 = 0, where g = w™2 and G o |z|.
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f's tail behaves like w2

Proof sketch (continued).

@ We leverage some results on the equivalence of Gaussian measures:
Pro(fr) = Pro((1+w?)™") = Pro(g).
That is, there exists C'y and C5 such that
Cy Varg ¢ > b Z(x;) p < Varg, § > bjZ(x;) p < Cs Varg Y b Z(x;)
J J J

@ For any a, we have b = L7 satisfying b7 1 = 0. Therefore, relating the
variance to the quadratic form, we have

C’gaTK_él)a < aTKJ(c;)a < C’gaTKgl)a, Va. (2)
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f's tail behaves like w2

Proof sketch (continued).
e Combining (1) and (2) leads to

COCgaTK!gl)a < aTKJ(cl)a < CngaTKél)a, Va.

@ For Brownian motion, Kél) is a multiple of the identity. Therefore, the
condition number of KJ(}) is bounded by (C1C35)/(CyCa). O
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f's tail behaves like w2

In Theorem A, LV is rectangular. We now make it square.

Corollary A

Based on Theorem A, we additionally define

YV = Z(x0)

)

and denote by K™ the covariance matrix of the Yj(1 's. Then, there exists a

constant depending only on 7" and f that bounds the condition number of KO
for all n.

1
RO _IORI0, L0 \\
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f's tail behaves like w=*

In Theorem A, the tail of f behaves like w™2. We now assume a different tail.

Theorem B

Assume that f(w)w* is bounded away from 0 and oo as w — co. Define filtered

random variables

(Z(zj41) — Z(x))]/dj+1 — [Z(x5) — Z(xj-1)]/d;

(2 _
Yj =

2\/dj1+d;

and denote by K@) their covariance matrix. Then, there exists a constant

depending only on 7" and f that bounds the condition number of K2 for all n.

v

K® = Q™"
2 _
L) ) = (2d;\ /1 + d;) !
ij?+1 = (2dj41/dj + ;)7

@ _ @ @)
Ljvj - _LjJ'—l o Lj,j+1

10 \\\

24 /

47
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f's tail behaves like w=*

In Theorem B, L2 is rectangular. We now make it square.

Corollary B

Based on Theorem B, we additionally define

Yy = Z(z0) + Z(zn) and YD = [Z(zn) — Z(0)]/(zn — o)

and denote by K® the covariance matrix of the Yj(Q)'s. Then, there exists a

constant depending only on 7" and f that bounds the condition number of K®
for all n.

1 1
RO _[@KI@" [®_ \\\ , 6 =1/(xn — o)
—5 5
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Numerical examples

@ Uniformly random points in [0, 1]
@ Length scale £ =0.05

-©-K &K
8 1|k Sek@
~-tilde K ) 15 t|-O-tilde K ?
s =
2 E
_8) . 8 10
—0—0—90—90—%
2 : 5/ ¢——0—0—0—0
25 3 3.5 2.5 3 35
log ,,(n) log ,,(n)
(a) d=1, v =0.5. (f tail w™2) (b) d=1, v =15. (f tail w™?)
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Numerical examples

@ What if the tail of f is similar to neither w2 nor w47
@ Preconditioning is still useful (more on this in Parts 4 and 5).

10

10g 15 ()

(@)

-©-K i 20
KM
%k
z 15
e
810

-©-K
KM

0k

25 3 3.5 25 3 3.5
log ;4 (n) log ;4 (n)
d=1,v=1 (f tail lw|™3) (b) d=1,v=2. (f tail |w|7?)
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Part 2: d dimensions, regular grid

Jie Chen (IBM Research) Covariance Matrices Preconditioning 2017 28 / 47



f behaves like (1 + |lw||)~*

@ WLOG, assume equal spacing ¢ along each dimension. Different spacings
may be absorbed by the anisotropy of the kernel.

@ Using vector index, a grid pointis 67, 0 < j <mn

@ Define discrete Laplace operator D

d
DZ(x) = ZZ(:E —dep) —2Z(x) + Z(x + dep), « € grid.

p=1

@ For any positive integer 7, define filtered random variables

[l _ DT 7(54
v;" = D" Z(55).

Assume that f(w) = (1 + ||w|)*". Denote by K] the covariance matrix of the
Yj[T]’s. Then, there exists a constant depending only on the domain size and on f
that bounds the condition number of K7 for all n.
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f behaves like (1 + |lw||)~*

The preconditioned matrix
Kl — gt
where
° L[T] = Lnf'rJrl - Lp_1Ly,

e size of Ly is (s — 1)? x (s + 1)? with

—-2d, 1=7,
(i,7)-element = ¢ 1, i=jte, p=1,...,d,
0, otherwise.

Note that the proof relies on the assumption f(w) < (1 + ||w||)*" for all w, not
just the tail.
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Numerical examples

e Domain [0, 1]?
o Length scale /1 = 0.05, /5 = 0.08

o Extreme eigenvalues are estimated by using Lanczos!

8 -©-K | oK
el 10 |k
7 , G
Ze z 8
2 2
8° g
4
4
3
2 2 -
3 4 5 6 3 4 5 6
log ;4 (n) log ;4 (n)

@d=2v=1L(f<x1+[w)™™) (B)d=2v=3 (f<A+|wl])"®)

INot quite accurate for the smallest eigenvalue if condition number is high
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Part 3: d dimensions, irregular grid
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f behaves like (1 + ||w||)~

@ What is the discrete Laplace operator D on an irregular grid?
@ For this, we borrow ideas from finite elements.
e For u € C?(Q), discretize the Green's identity to obtain discrete Au

/Q(vAu—kaVu):jI{ v(Vu - n).

o0

o Use d-simplex elements and linear basis functions for simplicity
o Let v;() denotes the basis at node x;

o Result:
M | Au(z;) | = (S + B) |u(xi) |,
where
Mki = / VUi, Skl = —/ V’l}k . Vvi, Bki = % ’l)k(vvi . n) .
Q Q o0

mass matrix stiffness matrix boundary
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f behaves like (1 + |lw||)~*

e D=M"1S+B)?
e Not good enough, because unlike differential equations that come with a
boundary condition, we have “unknown” points &; on the boundary.

@ To make a proper definition, we need some properties of M, S, and B.

Proposition

For every k,
© My =234y Myi
> . Sk=0. In particular for every x;, & 08, >, Spix; =0
> . By =0. In particular for every xy ¢ 09, By; = 0 for all i
> (S+Bixi=0

2
o My, = CZ(T—FU Z meas(E), so M is well conditioned for “good” meshes

E>xy,
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f behaves like (1 + ||w||)~

@ We are now ready to deal with boundary
o Let M’ be diagonal with M}, = 3 My (absorbing off-diagonals)
e For M’, remove the rows and columns corresponding to boundary
e For S and B, remove the rows corresponding to boundary
o After removing the rows, B becomes empty

@ Thus, our version of the discrete Laplace operator is the matrix L with

Shi
L i = 5 V 89, V 7
W= G r

@ Similar to the regular grid case, the preconditioned matrix
K = gt

where L7l = Ly—r41---Lp_1L, and each Ly is a copy of L defined above,
with layer(s) of boundary points removed.
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Numerical examples

@ Seeded with random points inside [0, 1] x [0,0.8]

@ Use triangle software to triangulate and refine the
mesh recursively, based on area constraint

@ Length scale £ = 0.05

log (%)
w ES (6] [¢] ~ [o<]

3 3.5 4 3 3.5 4
log ,, (n) log ,,(n)

@d=2v=1(f<Q+[wh™) (b)d=2v=3 (f<1+[wl)"®)
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Part 4: f behaves like (1 + ||w]||)~“ for general «
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f behaves like (1 + ||w]|)~®

Intuitions:

@ For regularly grided data, rewrite the Fourier integral as one in [—, 7]%.
Spectral density f becomes a periodic function f,,. Eigenvalues of K are
approximately the equally-spaced samples of f,:

aTKa, = / f,n(w) Zajei(Zﬂ'k/n)Tj
[—m,m]d j

o After applying discrete Laplace operator 2s times, K becomes K*! and f,
becomes f,[f], where

715 (w) [sz sin ( )TS.

@ In the continuous case, the spectral density is similarly flattened:

2

(27k/n)

Ake) = [ [l fw)
R4 ——

decreases slower than f

2
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Numerical examples

@ Rule of thumb: Apply discrete Laplace operator 2s times such that 4s is
closest to «

@ Recall, for Matérn, o = 2v + d
@ d = 2 for all the following plots

5

log 0 (K)

(a) v = 1.5, regular grid

-©-K

log ;o (x)

)

-©-K

log ;4 (k)

IS

7

o

-©-K
0k

Jie Chen (IBM Research)

35
log 5 (")

4

3 3.5 4
10, (n)

(b) v = 1.5, FEM mesh
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3 35 4
log , (n)

(c) v =2, FEM mesh
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Numerical examples

Number of CG iterations to solve K[!z = 1 such that relative residual < 1e-8

v s logy,n ~

9 10 11 12 13 14
Grid 1 1|33 33 34 34 36 37
Grid 3 1|25 34 52 8 151 287
Grid 3 2|57 77 102 127 157 185
Grid 15 1|25 27 30 34 38 42
Mesh 15 1|97 104 103 96 95 94
Mesh 2 118 91 8 90 100 119
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Part 5: Generalized covariance functions
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Generalized covariance functions

@ We have seen in the proof of Theorem A that some Gaussian processes,
despite nonstationary, admit a Fourier integral representation

;ajZ(a:] Zalaj /

for all @ lying in a subspace.

2

1w T

@ For example, the powerlaw kernel

Gl { (=B/2) =" B/2¢ N,

_ B/ +1
AP log |1zl B/2 €N,

B+d —B—a
gte) = 20 (250 ol

ZajP(mj) =0 for all polynomials P of degree up to |3/2].
J
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Numerical examples

@ Rule of thumb: Apply discrete Laplace operator 2s times such that 4s is
closest to 8+ d

@ d = 2 for all the following plots

10 12 -
oK oK oK

8 7 ¢ E 10 -
=6 NG - E8 |
g4 8. g ° l

2 i 4 1

2 i 9/9—6-—‘9—‘9'__6
0 | ——o0—0—0—% 2 -
3 35 4 3 35 4 3 35 4
log 5 () log () Iog o (")
(a) B =2, regular grid (b) B =2, FEM mesh (c) B =3, FEM mesh

Jie Chen (IBM Research) Covariance Matrices Preconditioning 2017 43 / 47



Numerical examples

Number of CG iterations to solve K[!z = 1 such that relative residual < 1e-8

logyn =~
Boslg 10 11 12 13 14
Grid 2 1|13 13 13 13 13 13
Mesh 2 1|32 36 33 35 37 40
Mesh 3 1|60 78 85 108 128 160
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Concluding remarks

@ Gaussian processes pose substantial challenges for linear algebra

o We initially thought of doing things in a matrix-free way [1, 2, 3]: Turn
everything (square root [4], determinant [5, 6], linear solves [7, 8], etc) into
fast matvec [9, 10] + preconditioning [11, 12]

@ There is a lot to exploit from the covariance function k

@ For preconditioning, look at the decay rate of the Fourier transform f and
differentiate it a number of times (to flatten the spectrum)

@ The proposed method is mathematically interesting and it empirically works
well, but is it the best approach?

@ See my talk tomorrow at Minisymposium 5: Preconditioning in the Context
of Radial Basis Functions, Part |. 09:45am-11:45am. FSC 1005
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