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Our goal is the efficient solution of

Ax = b (1)

via Krylov subspace methods. We assume that A ∈ Rn×n is large and
sparse. In this work A can be nonsymmetric and indefinite.

This is an extension of the MSLR preconditioner of Xi, Li, and Saad
[3], which was for symmetric problems.
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Reordering Algorithms→ Multilevel Structure

Ordering algorithms such as nested dissection, multilevel
coarsening, multicoloring, etc... can make (1) easier to solve.

The Hierarchical Interface Decomposition (HID) is a multilevel
combination of nested dissection and domain decomposition.

An L level HID reordering takes a matrix A and recursively
partitions it into the 2× 2 block form

Al =

(
Bl Fl
El Cl

)
, Cl = Al+1, l = 0 : L− 1. (2)
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HID Example
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Multilevel Structure Example L = 3

Figure: Laplacian matrix with 4-level HID Ordering
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The Schur Complement

At each level of (2) we have the Schur complement matrix:

Sl = Cl − ElB−1
l Fl .

The Schur complement appears in the block-LU factorization of
the matrix Al :

Al =

(
Bl Fl
El Cl

)
=

(
I 0

ElB−1
l I

)(
Bl Fl
0 Sl

)
= LU (3)

where A0 is the reordering of the original matrix A.
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If we use the U factor as a right preconditioner to A0, then in
exact arithmetic we get

A0U−1 =

(
B0 F0
E0 C0

)(
B0 F0
0 S0

)−1

=

(
B0 F0
E0 C0

)(
B−1

0 −B−1
0 F0S−1

0
0 S−1

0

)
=

(
B0 F0
E0 C0

)(
B−1

0 0
0 I

)(
I −F0
0 I

)(
I 0
0 S−1

0

)
= L

and GMRES will converge in two iterations [2].

Cost of this preconditioner:
2 linear solves (1 w/ B0 and 1 w/ S0)
1 sparse matvec

Problem: S0 is dense! How can we compute S−1
0 in order to

apply the preconditioner U−1?
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An approximation to S−1

To make this preconditioner practical, we have to approximate
the Schur Complement. Based on the analysis in [1, 3], we claim
that a good approximation to S−1

l is

S−1
l ≈ C−1

l + LRC (4)

where LRC is a low rank correction matrix.

We now will give some details of how LR is built.
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Building the low-rank correction

We assume that the Bl blocks have LU decompositions at all
levels, i.e.

Bl = LBl UBl , l = 0 : L− 1.

Substitute these factorizations in for Bl in the expression of the
Schur complement, we get

Sl = Cl − ElU−1
Bl

L−1
Bl

Fl = (I −Gl ) Cl (5)

where
Gl = ElU−1

Bl
L−1

Bl
FC−1

l . (6)

From (5) it follows that

S−1
l = C−1

l (I −Gl )
−1
. (7)
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The low-rank correction

We then take the complex Schur decomposition of Gl :

Gl = WlRlW H
l (8)

Substitute this into (7) and use the Sherman Morrison Woodbury
identity, we get

S−1
l = C−1

l

(
I + Wl

[
(I − Rl )

−1 − I
]

W H
l

)
. (9)

If R̃l ≈ Rl and then an approximate inverse of Sl is given by

S̃−1
l = C−1

l + C−1
l Wl

[
(I − R̃l )

−1 − I
]

W H
l = C−1

l

(
I + WlHlW H

l

)
(10)

where Hl = (I − R̃l )
−1 − I.



12/26

Introduction Preconditioner Construction Process Numerical Results Conclusions/Future Work References

An Example with L = 3 for solving Ax = b
1 Perform a 3 level HID reordering and call the reordered matrix A0.
2 We wish to use Ũ−1 as a right preconditioner for A0 where

Ũ−1 =

(
B̃−1

0
I

)(
I −F0

I

)(
I

S̃−1
0

)
with S̃−1

0 = C̃−1
0

(
I + W0H0W H

0

)
and B̃−1

0 ≈ B−1
0 . We assume that C0 is too large to

factor, so we use the fact that thanks to the HID reordering, C0 = A1 and move from level
0 to level 1.

3 At level 1, we have

C̃−1
0 ≈ A−1

1 =

(
I −B̃−1

1 F1
I

)(
B̃−1

1
S̃−1

1

)(
I

−E1B̃−1
1 I

)

with S̃−1
1 = C̃−1

1 (I + W1H1W T
1 ) and B̃−1

1 ≈ B−1
1 . We again assume that C1 is too large to

factor, so we move up a level.
4 At level 2, we have something similar:

C̃−1
1 ≈ A−1

2 =

(
I −B̃−1

2 F2
I

)(
B̃−1

2
S̃−1

2

)(
I

−E2B̃−1
2 I

)

with S̃−1
2 = C̃−1

2 (I + W2H2W T
2 ), B̃−1

2 ≈ B−1
2 . Here we assume that C2 is small enough to

factor, so we compute its ILU factorization C̃2 ≈ LC2UC2 .
5 The actual implementation starts with level 2 and moves down the tree:

LC2UC2 → C−1
2 → S̃−1

2 → A−1
2 → S̃−1

1 → A−1
1 → S̃−1

0 → Ũ−1.
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Building the preconditioner
Here is the L level version of the algorithm:

Algorithm 1 Generalized Multilevel Schur Low-Rank

1: procedure GMSLR
2: Apply an L-level reordering to A (A0 = reordered matrix).
3: for level l from L− 1 to 0 do
4: if l = L− 1 then
5: Compute ILU factorization of CL−1, CL−1 ≈ LCL−1UCL−1

6: end if
7: Compute ILU factorization of Bl , Bl ≈ LBl UBl . The Bl blocks

are block diagonal, so this can be done in parallel.
8: Compute kl largest eigenpairs by Arnoldi’s method . Call

Algorithm 2 (next slide) to apply C̃−1
l

[Vl ,Kl ] = Arnoldi(ElU−1
Bl

L−1
Bl

Fl C̃−1
l , kl )

9: Compute the complex Schur decomposition Kl = W0T0W T
0 .

10: Compute Wl,kl = VlW0 and set Rkl = T0(1:kl ,1:kl ).
11: Compute Hl = (I − Rkl )

−1 − I.
12: end for
13: end procedure
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Application of C̃−1
l

We still need a way to apply C̃−1
l , l = 0, . . . ,L− 1 to a vector.

Algorithm 2 A recursive formula for the approximation of y = C̃−1
l b.

1: procedure RecursiveSolve(l ,b)
2: if l = L− 1 then
3: return y = U−1

L−1L−1
L−1b

4: else
5: Split b = (bT

1 ,b
T
2 )T conformingly with the blocking of C̃l

6: Compute z1 = U−1
Bl

L−1
Bl

b1
7: Compute z2 = b2 − Elz1
8: if 1 ≤ l < L− 1 then
9: Compute w2 = Wl,kl HlW T

l,kl
z2

10: Compute y2 = RecursiveSolve(l + 1, z2 + w2)
11: Compute y1 = z1 − U−1

Bl
L−1

Bl
Fly2

12: else
13: Solve the system S0y2 = z2 right preconditioned by S̃−1

0 .
14: Compute y1 = U−1

B0
L−1

B0
(b1 − F0y2)

15: end if
16: return y = (yT

1 , y
T
2 )T

17: end if
18: end procedure
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Eigenvalue Analysis

We can analyze the spectrum of the preconditioned system A0U−1 by
looking at the generalized eigenvalue problem(

B0 F0
E0 C0

)(
x1
x2

)
= λ

(
B̃0 F0

0 S̃0

)(
x1
x2

)
.

If, for simplicity, we assume that B0 = B̃0, then the eigenvalues of
A0U−1 are

λ(A0U−1) = {1, λ(S0S̃−1
0 )}.
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Example: SiH4
This matrix is 5041× 5041 and is symmetric indefinite.

Figure: Eigenvalues of SiH4 preconditioned by GMSLR. fGMRES converges
in 4 iterations.
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Model Problems

Problem 1: Shifted Laplacians (Symmetric and Indefinite)

−∆u − cu = f in (0,1)3,

u = 0 on the boundary (11)

Problem 2: Steady-State Convection-Diffusion (Nonsymmetric)

−∆u − α · ∇u − cu = f in (0,1)3,

u = 0 on the boundary (12)

Problem 3: Helmholtz w/ PML boundary condition (complex
non-Hermitian)(

−∆− ω2

v(x)2

)
u(x , ω) = s(x , ω) in (0,1)3
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More Problems

Other nonsymmetric problems from Tim Davis’ collection:

Matrix Order nnz SPD Origin
CoupCons 416,800 22,322,336 no structural problem
AtmosModd 1,270,432 8,814,880 no atmospheric model
AtmosModL 1,489,752 10,319,760 no atmospheric model
Cage14 1,505,785 27,130,349 no directed weighted graph

Transport 1,602,111 23,500,731 no CFD problem
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Notation

The GMSLR preconditioner has many parameters to tune. We use
the following abbreviations when reporting performance:

fill = nnz(prec)
nnz(A)

p-t: wall clock time to build preconditioner (in seconds)
its: number of iterations of GMRES(40) required for
‖rk‖2 < 10−6. We use “F” to indicate that GMRES(40) did not
converge after 500 iterations.
i-t: wall clock time for the iteration phase of the solver. This time
is not reported when GMRES does not converge, as indicated by
“−”.
rk: maximum rank used in building low-rank corrections ( i.e. the
number of Arnoldi steps)
nlev: number of levels
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Problem 1 - 3D: N = 643, c = 0

nlev fill p-t i-t its
2 14.54 5.96 4.29 13
3 13.57 2.93 2.31 12
4 12.7 1.47 1.24 11
5 11.3 .863 .97 10
6 9.79 .876 .93 10
7 8.35 .526 .527 9
8 6.67 .285 .466 8
9 5.21 .246 .354 6
10 4.1 .391 .728 6
11 3.26 .452 .532 6

Table: Results for Problem 1 in 3D. Max rank is fixed at 20. For this
experiment, we only vary the number of levels. The inner solve runs for a
maximum of 10 iterations.
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Problem 1 - 3D: N = 323, c = 0.5

This shifted Laplacian matrix has 163 negative eigenvalues.

rank LU fill LRC fill p-t i-t its
10 5.56 .792 .074 2.66 45
20 5.56 1.58 .101 3.04 49
30 5.56 2.37 .18 2.08 21
40 5.56 3.17 .158 1.11 19
50 5.56 3.96 .288 1.19 18
60 5.56 4.75 .217 1.55 25
70 5.56 5.24 .247 1.35 22
80 5.56 5.99 .322 1.14 16
90 5.56 6.73 .367 1.5 16
100 5.56 7.48 .41 1.13 45

Table: Results for Problem 1 in 3D on a 323 regular grid. Max rank varies
from 10 to 100. The number of levels stays fixed at 6. Since we use the same
number of levels, the LU fill stays constant. However, since this problem is
fairly indefinite, we increase the maximum rank to 50 and allow the inner
solve to run for 50 iterations.
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Problem 2 - 3D

For this first problem, α = [.2, .2, .2]. The inner solve runs a maximum of
10 iterations.

size nlev fill p-t i-t its
323 10 2.56 .059 .098 6
643 10 4.04 .363 .649 7

1283 10 7.93 2.54 4.87 9

Table: Results for Problem 2 in 3D. Max rank is fixed at 4. For this experiment,
we only vary the problem size.

Now we add a shift of c = 0.1:
size nlev rank maxits fill p-t i-t its
323 10 4 10 2.57 .056 .412 14
643 10 50 30 11.6 1.73 17.49 61

Table: Results for Problem 2 in 3D. Max rank is fixed at 4. For this experiment,
we only vary the problem size. This problem is more difficult, so we have to vary
the rank and number of inner iterations.
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Problem 3 - 3D Helmholtz w/ PML BCs

Here we list the results of solving the 3D Helmholtz equation on a
sequence of meshes. These matrices are complex non-Hermitian.
The number of levels and max rank shown led to the best results.

ω/(2π) q n = N3 nlev rk fill p-t i-t its
2.5 8 203 4 16 5.43 .05 .035 6
3 8 303 5 16 6.65 .128 .147 8
5 8 403 6 16 7.56 .318 .775 8
6 8 503 6 16 10.45 1.01 1.72 9
8 8 603 6 20 15.09 3.35 3.33 9

10 8 803 6 40 22.44 19.34 14.54 13

Table: Results from solving Problem 3 on a sequence of 3D meshes with
GMSLR. Here the wave number is ω/(2π) and q denotes the number of
points per wavelength.
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Nonsymmetric problems

Results for some large, nonsymmetric problems taken from Tim
Davis’ collection. For reference, we compare to ILUT.

Matrix GMSLR ILUT
fill nlev rank p-t i-t its fill p-t i-t its

CoupCons 1.82 10 16 1.68 .64 5 1.64 17.49 2.03 23
AtmosModd 5.86 10 4 1.23 3.05 11 5.68 8.1 8.6 47
AtmosModL 5.81 11 4 1.67 2.12 7 6.03 11.35 6.37 30
Cage14 1.54 6 4 3.1 .89 4 1.57 5.09 0.7 4

Transport 2.52 11 4 1.85 7.45 23 2.96 17.92 76.93 F

Table: Comparison between GMSLR and ILUT preconditioners for solving
nonsymmetric test problems. ILUT parameters were chosen so that the fill
factor was close to that of GMSLR. Both sets of tests use the same reordered
matrix.
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Conclusions/Future Work

Conclusions
Combined ideas from block preconditioning and the MSLR
preconditioner.
Presented a multilevel method for computing the low rank
corrections.
Developed a preconditioner capable of solving symmetric and
nonsymmetric indefinite linear systems.

Future Work
Try this Schur complement approximation on multiphysics
problems.
Develop a non-recursive way of performing the Cl solves.
Look at different (cheaper) ways of computing the low rank
correction (randomized SVD, Lanczos bidiagonalization, etc).
Come up with heuristics for automatically choosing parameters
such as nlev, rank, etc...
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