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Classical vs. new approaches for non linear problems

Ideas for solving a non-linear problem F (u) = 0: use domain decomposition
to solve the Jacobian equation in a Newton’s method ⇒
Newton-Krylov-Schwarz methods (Cai 1994, 1998).

Alternatively we can
I use the fixed point iteration un+1 = G(un); to accelerate convergence, we

can solve instead F(u) := G(u)− u = 0 with Newton’s method.
I use a non-linear preconditioner called ASPIN introduced by Cai and Keyes

(2001, 2002).
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A simple example

A one dimensional non-linear model problem

L(u) = f , in Ω := (0, L),
u(0) = 0,
u(L) = 0,

(1)

where L(u) = −∂x ((1 + u2)∂x u). Two overlapping subdomains Ω1 := (0, β)
and Ω2 := (α, L), α < β

L(un
1) = f , in Ω1 := (0, β),

un
1(0) = 0,

un
1(β) = un−1

2 (β),
L(un

2) = f , in Ω2 := (α, L),
un
2(α) = un−1

1 (α),
un
2(L) = 0.

(2)
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Main idea for a simple problem

Global approximate solution, by glueing the approximate solutions
together.

un(x) :=
{

un
1(x) if 0 ≤ x < α+β

2 ,

un
2(x) if α+β

2 ≤ x ≤ L,
(3)

which induces two extension operators P̃i

un = P̃1un
1 + P̃2un

2
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Acceleration by a Newton method
Let the local solutions in the subdomains be

un
1 = G1(un−1), un

2 = G2(un−1), (4)

⇒ the classical parallel Schwarz method can be written in compact form

un =
I∑

i=1
P̃iGi (un−1) =: G1(un−1) (5)

This fixed point iteration can be used as a preconditioner for Newton’s
method, which means to apply Newton’s method to the non-linear equation

F̃1(u) := G1(u)− u =
I∑

i=1
P̃iGi (u)− u = 0, (6)

We call this method one level RASPEN (Restricted Additive Schwarz
Preconditioned Exact Newton).
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Simple tests
Forchheimer equation with 8 subdomains.
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FigRAS used as a nonlinear solver, or as a preconditioner for Newton’s method

The nonlinear RAS method decreases the residual only slowly at interfaces
but makes it zero within the subdomains.
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Comparison of ASPIN and RASPEN
Consider F : V → V , V - Hilbert vector space, and the non-linear problem

find u ∈ V such that F (u) = 0. (7)

Let Vi be Hilbert vector spaces. Let the linear restriction and prolongation
operators

Ri : V → Vi , Pi : Vi → V , i = 1, . . . , I

as well as the “restricted” prolongation P̃i

P̃i : Vi → V .

Assumption Assume Ri and Pi satisfy for i = 1, . . . , I

RiPi = IVi , the identity on Vi

and that Ri and P̃i satisfy

I∑
i=1

P̃iRi = IV
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Formulation of ASPIN and RASPEN

Define the local inverse Gi : V → Vi to be solutions of

RiF (PiGi (u) + (I − PiRi )u) = 0, (8)

Then, one level RASPEN solves the non-linear equation

F̃1(u) =
I∑

i=1
P̃iGi (u)− u (9)

using Newton’s method. The preconditioned nonlinear function (9)
corresponds to the fixed point iteration

un =
I∑

i=1
P̃iGi (un−1) (10)
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Formulation of ASPIN and RASPEN

For u ∈ V define the corrections Ci (u) ∈ Vi such that

RiF (u + PiCi (u)) = 0, i = 1, · · · , I. (11)

where
Gi (u) = Riu + Ci (u).

Then, the one level ASPIN is

F1(u) =
I∑

i=1
PiCi (u) =

I∑
i=1

PiGi (u)−
I∑

i=1
PiRiu (12)

This corresponds to the non-linear fixed point iteration

un = un−1 −
I∑

i=1
PiRiun−1 +

I∑
i=1

PiGi (un−1) (13)
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ASPIN vs. RASPEN

Remarks:
I The iterative version of ASPIN is not convergent in the overlap,

and needs a relaxation parameter to yield convergence for the
non-linear case.

I The use of restricted extension makes the RASPEN iterative
method convergent.

I The only interest in the additive correction in the overlap is that in
the linear case for a symmetric problem, the preconditioner remains
symmetric.
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Numerical comparison

Forchheimer equation on a domain of unit size, 8 subdomains, h = 1/100.
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Jacobian matrices ASPIN/RASPEN
Denote by

u(i) := PiGi (u) + (I − PiRi )u and J(v) := dF
du (v) (14)

By differentiating the subdomain solves we get

dGi
du (u) = −(RiJ(u(i))Pi )−1RiJ(u(i)) + Ri .

Jacobian of RASPEN

dF̃1
du (u) =

I∑
i=1

P̃i
dGi
du (u)− I = −

I∑
i=1

P̃i (RiJ(u(i))Pi )−1RiJ(u(i)) (15)

Similarly, for ASPEN we get

dF1
du (u) =

I∑
i=1

Pi
dGi
du (u)−

I∑
i=1

PiRi = −
I∑

i=1
Pi (RiJ(u(i))Pi )−1RiJ(u(i))

(16)
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In ASPIN, this exact Jacobian is replaced by the inexact Jacobian

dF1
du

inexact
(u) = −

( I∑
i=1

Pi (RiJ(u)Pi )−1Ri

)
J(u).

Remarks:
I The inexact Jacobian corresponds to the Jacobian J(u) of F (u)

preconditioned by the restricted additive Schwarz preconditioner, up to
the minus sign.

I The exact Jacobian is however also easily accessible, since the non linear
Newton solver for the non linear subdomain system
RiF (PiGi (u) + (I − PiRi )u) = 0 already computes the Jacobian matrix
RiJ(u(i))Pi .

I It suffices to compute instead the matrix RiJ(u(i)) for each non linear
subdomain system to easily obtain the exact Jacobian of F1.
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Coarse spaces for RASPEN and ASPIN

Let V0 and the linear restriction and prolongation operators

R0 : V → V0 and P0 : V0 → V . (17)

We introduce a projection operator in the residual space

R̃0 : V ′ → V ′0. (18)

Let F0 : V0 → V0 be the coarse non-linear function,

F0(u0) = R̃0F (P0(u0)). (19)

Let the coarse solution for two level ASPIN be u∗0 ∈ V0, i.e. F0(u∗0 ) = 0.
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Coarse correction in two-level ASPIN

The coarse correction CA
0 : V → V0 is defined by

F0(CA
0 (u) + u∗0 ) = −R̃0F (u), (20)

and the associated two level ASPIN function uses the coarse correction in an
additive fashion, i.e. Newton’s method is used to solve

F2(u) = P0CA
0 (u) +

I∑
i=1

PiCi (u) = 0. (21)

This corresponds to the non-linear two level fixed point iteration

un+1 = un + P0CA
0 (un) +

I∑
i=1

PiCi (un)

which is not convergent without relaxation parameter and also slows down
the Newton solver.
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Coarse correction in two-level FAS-RASPEN
Use the well established non-linear coarse correction C0(u) from the full
approximation scheme

F0(C0(u) + R0u) = F0(R0u)− R̃0F (u). (22)

This gives a different coarse correction from ASPIN and this coarse
correction is used in a multiplicative fashion in RASPEN, i.e. we solve with
Newton the preconditioned non-linear system

F̃2(u) = P0C0(u) +
n∑

i=1
P̃iCi (u + P0C0(u)) = 0. (23)

This corresponds to the non-linear two level fixed point iteration

un+1 = un + P0C0(un) +
n∑

i=1
P̃iCi (un + P0C0(un))

This iteration is convergent.
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Forchheimer model

Let the Forchheimer parameter β > 0, the permeability λ ∈ L∞(Ω) such
that 0 < λmin ≤ λ(x) ≤ λmax for all x ∈ Ω, and the function
q(g) = sgn(g)−1+

√
1+4β|g|
2β . The Forchheimer model on the interval

Ω = (0, L) is defined by the equation (q(−λ(x)u(x)′))′ = f (x) in Ω,
u(0) = uD

0 ,
u(L) = uD

L .
(24)

Note that at the limit when β → 0+, we recover the linear Darcy equation.
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Notations
Each Newton iteration requires two major steps:

1. Evaluation of the fixed point function F → solving a non-linear problem
in each subdomain → maximum number of inner iterations needed by the
subdomains at the outer iteration j : ls in

j .

2. The Jacobian matrix needs to be inverted (GMRES) → a linear
subdomain solve per subdomain per GMRES iteration → the number of
linear solves needed by GMRES at the outer Newton iteration step j : lsG

j .

The total number of linear subdomain solves after n outer Newton iterations

LSn :=
n∑

j=1

(
ls in

j + lsG
j
)

I PIN → outer Newton iterations for ASPIN
I PEN → outer Newton iterations for RASPEN.
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Test case: a smooth vs a non smooth example

I Ω = (0, 1), boundary conditions u(0) = 0 and u(1) = 1, β = 1.
I Linear stopping criterion for GMRES: 10−8, non linear stopping criteria

for the inner and outer Newton iterations: 10−8.
I Smooth example: λ(x) = cos x , f (x) = cos x .
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FigNon smooth example: λ(x) (left), f (x) (middle), initial guess/solution (right).
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ASPIN
No of domains 10 20 40

Overlap
Iter type PIN LSn PIN LSn PIN LSn

h 5 118 5 228 6 520
3h 5 118 5 227 6 516
5h 5 117 5 222 6 480
RASPEN
No of domains 10 20 40

Overlap
Iter type PEN LSn PEN LSn PEN LSn

h 4 92 4 172 4 340
3h 4 87 4 172 4 331
5h 4 88 4 168 4 313
Two level ASPIN
No of domains 10 20 40

Overlap
Iter type PIN LSn PIN LSn PIN LSn

h 5 140 5 240 5 280
3h 5 130 6 170 6 200
5h 5 115 7 149 6 147
Two level FAS RASPEN
No of domains 10 20 40

Overlap
Iter type PEN LSn PEN LSn PEN LSn

h 4 77 3 87 4 131
3h 3 60 3 67 4 90
5h 3 55 3 57 3 57
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ASPIN
No. of domains 10 20 40

Overlap
Iter type PIN LSn PIN LSn PIN LSn

h 8 184 15 663 - -
3h 7 156 14 631 11 883
5h 6 130 11 479 10 744
RASPEN
No of domains 10 20 40

Overlap
Iter type PEN LSn PEN LSn PEN LSn

h 7 150 9 369 9 701
3h 7 145 8 324 9 691
5h 6 126 7 274 9 659
Two-level ASPIN
No of domains 10 20 40

Overlap
Iter type PIN LSn PIN LSn PIN LSn

h 7 184 9 316 8 285
3h 6 141 9 246 7 183
5h 6 135 8 199 7 164
Two-level FAS-RASPEN
No of domains 10 20 40

Overlap
Iter type PEN LSn PEN LSn PEN LSn

h 7 134 9 272 8 258
3h 7 133 8 220 6 136
5h 6 112 8 211 6 116
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Two-dimensional examples

A non-linear diffusion problem discretised by P1 finite elements on a uniform
triangular mesh (computations using FreeFEM++)

IsoValue
0.997804
1.0011
1.00329
1.00549
1.00768
1.00988
1.01208
1.01427
1.01647
1.01866
1.02086
1.02305
1.02525
1.02745
1.02964
1.03184
1.03403
1.03623
1.03842
1.04391


−∇ · ((1 + u2)∇u) = f , Ω = [0, 1]2,

u = 1, x = 1,
∂u
∂n = 0, otherwise.

(25)
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Detailed convergence RASPEN vs. ASPIN

I decomposition into N × N subdomains with an overlap of one
mesh size h

I number of degrees of freedom per subdomain fixed

1-Level 2-Level
N × N n lsG

n ls in
n lsmin

n LSn lsG
n ls in

n lsmin
n LSn

2 × 2 1 15(20) 4(4) 3(3) 13(23) 4(4) 3(3)
2 17(23) 3(3) 3(3) 59(78) 15(26) 3(3) 3(3) 54(86)
3 18(26) 2(2) 2(2) 17(28) 2(2) 2(2)

4 × 4 1 32(37) 3(3) 3(3) 18(33) 3(3) 3(3)
2 35(41) 3(3) 2(2) 113(132) 22(39) 3(3) 2(2) 74(126)
3 38(46) 2(2) 2(2) 26(46) 2(2) 2(2)

8 × 8 1 62(71) 3(3) 2(2) 18(35) 3(3) 3(2)
2 67(77) 3(3) 2(2) 211(240) 23(44) 3(3) 2(2) 77(139)
3 74(84) 2(2) 1(2) 28(53) 2(2) 2(1)

16 × 16 1 125(141) 3(3) 2(2) 18(35) 3(3) 3(2)
2 136(155) 2(2) 2(2) 418(471) 23(44) 2(2) 2(2) 75(140)
3 150(167) 2(2) 1(1) 27(54) 2(2) 2(1)

⇒ RASPEN clearly outperforms ASPIN (which not convergent as a
basic fixed point iteration).
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Conclusions

I accelerate fixed point iterations for non-linear problems using
Newton’s method → guiding principle for constructing non-linear
preconditioners.

I explore the parallel properties of the RASPEN method on more
realistic models and configurations.

I design of other nonlinear preconditioners (ongoing work) based on
non-overlapping decompositions using Neumann-Neumann or
Robin-Robin iterations. (application to the Richards equation).
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